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ABSTRACT: Nitrification has been studied extensively as a result of its significance within the biological process 
and at intervals the necessity for treatment of waste water. In the last decade, the treatment of high ammonical 
concentration effluents has become a matter of nice interest. Many effluents will contain some hundred milligrams 
of nitrogen per liter (supernatants from anaerobic digestion, lechates from municipal water, etc.) may have specific 
treatment before utilization them to the plant recycling process. Sometimes this reaction is applied by maintaining 
robust ammonical concentrations which have the role of inhibiting the nitrite – oxidizing population responsible for 
the reaction of nitrites into nitrates (final stage of nitrification). However the nitrification methods served as a very 
important basis for the development of today understands and mathematical models for several waste treatment 
processes (activated sludge process using biofilm reactors) and self – purification in rivers. Often nitrogen removal 
from sea wastewater is problematic due to the low rate of bacteria concerned. Immobilization is an economical 
technique to retain slow growing organisms in continuous flow reactors. Immobilized cells can be classified into 
“naturally” attached cells (biofilms) and “artificially” immobilized cells. The simultaneous nitrification and 
denitrification within the step feeding biological nitrogen removal method were investigated below different 
inflowing substrate and aeration flow rates. The experimental results showed that there was additionally linear 
relationship between simultaneous nitrification and denitrification and DO concentration below the conditions of 
low and high aeration rate.  

Key words: Nitrification; Biofilms; Wastewater; Immobilization; Nitrosomonas; Nitrobacter.  

INTRODUCTION 
Now a day’s ammonia is that the most typically occurring nitrogenous waste product in wastewater. Ammonical 
nitrogen reaches surface and causes pollution. Sources of ammonical water will be underground water from sewage, 
agricultural and industrial sources. The industrial waste of this include: oil refineries, coal gasification plants, dairy 
plants, distilleries, fertilizer plants, pharmaceutical plants, glass production plants, cellulose and paper production 
plants. Ammonia exists in solution in two forms: NH3 and NH4

+. Though both forms are also harmful, unionized 
ammonia (NH3) is of most harmful at low concentrations of the aqueous solution (Meade.J.W, 1985). For given 
total ammonia (NH3 and NH4

+) concentration in an aqueous solution depends on temperature, pH and salinity 
(Trusell.R.P, 1972). Lower pH and temperatures increase the percentage of ionized ammonia (Huguenin.J.E, and 
Colt.J, 1989). Thus, the total ammonia nitrogen (TAN) concentration instead of ammonia nitrogen is often used as a 
key limiting factor of water quality parameter in intensive aquaculture systems design and operation (Losordo.T.M, 
and Westers.H, 1994). The possible solution to the problem of ammonia removal is nitrification, which is a 
component of biological wastewater treatment. 
Nitrification  
In nitrification process, ammonia is first oxidized into nitrite (NO2

-) by several genera of autotrophic bacteria, the 
most important being Nitrosomonas. Nitrite is then oxidized to the much less toxic nitrate (NO3

-) by several other 
genera of bacteria, the most important of which is Nitrobacter. Eqs. (1) and (2) show the basic chemical conversions 
occurring in a nitrification process (WPCF, 1983; USEPA, 1984). 
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NH4
+ + 1.5 O2                         2H+ + H2O + NO2

-    -------- Eq (1) 

NO2
- + 0.5 O2                       NO3

-                         -------- Eq (2) 

Energy released from the above conversions is used by Nitrosomonas and Nitrobacter to drive their life processes. 
In addition, these reactions require oxygen, produce hydrogen ions (lowering pH) and produce nitrite as an 
intermediate product. According to USEPA, (1984), the complete nitrification process can be expressed as: 

NH4
+ + 1.83 O2 + 1.98 HCO3

-                0.021 C5H7O2N + 0.98 NO3
- + 1.041 H2O +  

1.88 H2CO3
-   ----- Eq (3) 

For every gram of TAN oxidized to nitrate nitrogen, approximately 4.18 g of oxygen (or 4.57 g according to 
Losordo.T.M, Westers.H, (1994)) and 7.07 g of alkalinity (as CaCO3) are consumed and 0.17 g of bacteria biomass 
is produced. 

Before parameters like BOD, COD and organic carbon were used to choose the potency of wastewater treatment 
system, a high degree of nitrification during a secondary effluent was assumed to be an indicator of a well – treated 
waste material (Gujer.W, 1974). The introduction of the chemostat by Monod.J, (1950), and Novick.A, Szilard.L, 
(1950) set ground for the understanding and mathematical modeling of microbial culture systems. 

Garrett.M.T, (1958) seems to be the first author who related microbial growth to the activated sludge process. A 
substantial step in understanding nitrification in the activated sludge process is due to a research group at the British 
Water Pollution Research Laboratory (Water Pollution Research, 1964). For the treatment of wastewater, 
nitrification with autotrophic bacteria has received most attention. It has been shown that under these conditions 
autotrophic nitrification is favorable and rates are orders of magnitude higher than those of heterotrophic bacteria.  

Biological nitrification 
Biological nitrification will be accomplished in two types of systems: suspended and attached growth. Under a 
suspended growth environment, the organism is freely mobile within the liquid providing direct contact between the 
microorganism cells and therefore the bulk water. In attached growth system, microorganisms had grown up on a 
visco – elastic layer of biofilm that are attached on the surface of a solid support medium. Thus, this process is 
termed a fixed film process in which the individual microorganisms are immobilized. attached growth on a fixed 
biofilm system offers many benefits when compared to suspended growth processes, such as handling convenience, 
increasing process stability in terms of withstanding shock loading and preventing the microorganism population 
from being washed off (Fitch.M.W, 1998; Nogueira.R, et.al., 1988) and handling convience. 
Immobilization is an efficient method to retain slow growing organisms in continuous – flow reactors. Immobilized 
cells can be divided into “naturally” attached cells (biofilms) (Denac.M, 1983; Harremoes.P, 1982; LaMotta.E.J, 
1976) and “artificially” immobilized cells (Dalili.M, and Chau.P.C, 9187). The residence time of the liquid phase in 
these systems may be chosen independently of the specific growth rate; as a result, immobilized – cell reactors are 
compact in comparison to activated – sludge plants. 

Naturally attached cells (biofilms) 
The trickling filter is the mostly widely applied immobilized cell system. A trickling filter is a percolating filter 
consisting of a bed with a porous support, on which a biofilm develops. In the first instance, the support materials 
used were lava and stone, which have relatively limited external specific areas (100 m2 m-3). In the second 
generation of trickling filters, plastic media were used with a specific area of 100 – 300 m2 m-3. Although the 
specific area of trickling filters is still small, the system is widely used because in practice there is much experience 
with them. 
A system with comparable specific surface area is the rotating biologic contactor, in which the biofilm is attached to 
discs. A large number of these discs are closely arranged and mounted on a shaft, which rotates in the reactor. The 
discs are partly submerged in the sewage. As the shaft rotates slowly, attached biomass is alternatively exposed to 
air and sewage. Both trickling filters and rotating biological contactors have a limited capacity because of the 
relatively low specific surface area of the support. In the case of fluidized – bed reactors, increased oxygen transfer 
rates can be reached by sparging air in the column, creating a three – phase system in the reactor (Black.G.M, 1986; 
Denac.M, et.al., 1983; Focht.D.D and Verstraeta.W, 1977; Tanaka.H, et.al., 1981; Venkatasubramanian.K, et.al., 
1983). Similar capacities can be reached in fluidized – bed systems with a draft loop reactors which have a more 
defined liquid flow (Woodward.J, 1988). 

International Journal of Applied Biology and Pharmaceutical Technology          Page: 121                         
Available online at www.ijabpt.com 



 

Lakshmi Devi and Pydi Setty                                 Coden: IJABPT, Copyrights@2014, ISSN : 0976-4550               

Artificially immobilized cells 
Immobilized – cell reactors with naturally attached biomass are controllable to a limited extent, although underlying 
mechanisms are not very well understood. A better defined and more controllable system is obtained by artificial 
immobilization of pure strains of bacteria. One of the most common techniques for artificial immobilization is gel 
entrapment. Materials that are widely applied for entrapment are alginate and carrageenan. For this, solutions of 
polymers with cells suspended in them are extruded drop wise into a solution in which gelation of drops into solid 
spheres is initiated. In the case of alginate and carrageenan, gelation is initiated by Ca+2 and K+ respectively 
(Woodward.J, 1988). 
 
Nitrification Kinetics 
The rate of ammonia or nitrite oxidation depends mainly on the concentrations of those substrates within the bulk 
solution. During a pure culture under a single limiting – substrate condition, the steady state kinetics of substrate 
removal is typically represented by the Monod – type expression (Drtil.M, et.al., 1993; Rittmann.B.E and 
McCarty.P.L, 1980; Srna.R.F and Baggaley.A, 1975): 

  ------------ Eq (4) 

Where R = substrate removal rate (g m-3 day-1) 
 µmax = maximum specific growth rate (day-1) 
 X = bacterial mass concentration (g cell m-3) 
 YS = yield of bacterial mass per unit of substrate used (g cell g-1 substrate -1) 
 S = limiting substrate concentration (g m-3) 
 KS = half saturation constant (g m-3). 

This equation may be used to describe nitrification kinetics when ammonia is assumed as the growth – limiting 
substrate for Nitrosomonas while nitrite as the limiting substrate for Nitrobacter. It absolutely was reported that the 
growth rate of Nitrobacter is bigger than that of Nitrosomonas (WPCF, 1983) and oxidation of ammonia is typically 
the rate – limiting step within the conversion of ammonia to nitrate. Thus, in Eq (4), values for ammonia oxidation 
are the rate limiting parameters in describing nitrification (Wheaton.F.W, et.al., 1994). Both mathematical analysis 
and experimental information observed two major characteristics of Eq (4). 

Nitrification in the bacterial film of the biofilter involves physical, chemical and biological processes that are 
governed by a variety of parameters such as substrate and dissolved oxygen concentrations, temperature, pH, 
alkalinity, salinity and turbulence level. 

Substrate Concentration  
The concentration of total ammonia nitrogen (TAN) as the substrate of nitrification is the most significant factor to 
consider within the design and operation. The best water quality, in terms of ammonia, is defined by a minimum 
substrate concentration that a biofilter will operate a sustainable basis, Smin. The concept of a minimum substrate 
concentration required to support a steady state biofilm was proposed and proved by Rittmann.B.E and 
McCarty.P.L, (1980) and Rittmann.B.E and Manem.J.A, (1992). Rittmann.B.E and McCarty.P.L, (1980), also 
mathematically defined the Smin for a biofilm as: 

   ---------- Eq (5) 

Where Smin is the minimum substrate concentration (mg L-1) and b is the specific bacterial decay rate (day-1). 

Zhu.S and Chen.S, (1999) evaluated the minimum TAN concentration for submerged nitrification biofilters in a 
reactor series system and therefore the mean value of the minimum TAN concentration was found to be 0.07 ± 0.05 
mg L-1 at 27.2 oC. At low concentrations (S << KS), the nitrification kinetics may be simplified into a first – order 
reaction model: 

  ----------- Eq (6) 

 Where R = substrate oxidation rate (g m-2 day-1) 
  Rmax = maximum substrate oxidation rate (g m-2 day-1) 
  S = limiting substrate concentration (mg L-1 or g m-3) 
  KS = half saturation constant (mg L-1 or g m-1). 
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Eq (6) shows that nitrification rates increase linearly with increase of TAN substrate concentration. This 
relationship has been confirmed with experimental aquaculture systems. Ester.C.C, et.al., (1994) studied the 
performance of three rotating biological contactor (RBC) systems used for RAS wherever water temperature was 
varied from 24 to 30 oC and determined first – order nitrification kinetics at low concentrations. Different 
researchers (Surampalli.R, et.al., 1989; Watanabe.Y, et.al., 1980) have also found that a first – order reaction can be 
developed for RBC reactors at very low ammonia concentrations and low organic loading rates. Liu.Y and 
Capdeville.B, (1994) also developed a linear relationship between influent ammonia concentration and ammonia 
removal rate in RBC. 

Dissolved oxygen 
The relationship between nitrification rate and DO concentration had major interest in nitrification. As demonstrated 
in Eq (3), oxygen may be a requirement in ammonia oxidation. The theoretical oxygen needs in step with the 
nitrification stoichiometric equations are: 3.43 mg for oxidation of 1 mg NH3 – N and 1.14 mg for oxidation of 1 mg 
NO2 – N, though a rather lower ratio of oxygen consumed to nitrogen oxidized in an experimental study was also 
reported by Sharma.B and Ahlert.R.C, (1977) and Wezernak.C.T and Gannon.J.J, (1967). 
The effects of the DO concentration on the nitrification rates had been reviewed by many authors (Beccari.M, et.al., 
1992; Painter. H.A, 1986; Sharma.B and Ahlert.R.C, 1977; Stenstrom.M and Poduska.R, 1980) in both attached and 
suspended growth systems. Wuhrman.K (1963) reported the optimum DO of 4 mg L-1 for max nitrification rate in 
activated sludge and most of the experiments considered to be the limitation of low DO on nitrification. Zhu.S and 
Chen.S, (2002) reported that it absolutely was more important to maintain sufficient do in the fixed film process 
than within the suspended growth process as a result of the character of diffusion transport with fixed film. DO 
concentration profiles at intervals biofilms were studied using a micro technique and a microslicing technique with 
heterotrophic biofilms, heterotrophic – autotrophic biofilms and nitrifying biofilms was reported by Zhang.T.C, 
et.al., (1995). 

Temperature 
It was well accepted that a better temperature enhances nitrification rate because the biochemical driven 
microorganism processes accelerate as temperature increases. This can be true in a suspended growth system. For 
fixed film filters, however, the results of temperature on nitrification kinetics are also influenced by different 
phenomena and parameters was explained by Fdz-Polanco.F, (1994), especially substrate diffusion and transport. A 
general conclusion on the relationship between nitrification rate and temperature must also include the effect of 
mass transfer and microorganism. However, the impacts of change on nitrification rate in fixed film biofilters were 
poorly understood by Okey.R.W and Albertson.O.E, 1989. Very little data is available to quantify the results of 
temperature on fixed film nitrification rate (Wheaton.F.W, et.al., 1994).  
Zhu.S and Chen.S, (2002) studied the impact of temperature on nitrification rate through laboratory experiments, 
mathematical modeling and sensitivity analysis. They (Zhu.S and Chen.S, 2002) showed that in the case of oxygen 
limitation, temperatures from 14 to 27 oC had no significant impact on nitrification rate. A lower nitrification rate 
was observed only at the lowest temperature they tested, 8 oC. Temperature had a more significant effect on 
nitrification rate within the case of TAN limitation than within the case of DO limitation. 

pH 
A great deal of investigations conducted has demonstrated the ph effects on nitrification. However, poor agreement 
existed on how much, and what point, ph begins to effect nitrification rates (Biesterfeld.S, et.al., 2001). Based on 
the review provided by Sharma.B and Ahlert.R.C, (1977) and studies by other researchers, the optimal pH for the 
growth of nitrifying microorganism varies wide. The optimum ph for nitrification will vary from 7.0 to 9.0 with the 
optimum ph vary from 7.2 to 8.8 for Nitrosomonas and 7.2 to 9.0 for Nitrobacter. Based on the ability of free 
ammonia (NH3) and free nitrous acid (HNO2) to penetrate the nitrifying organism, Anthonisen. A.C, (1974) 
reported that both NH3 and HNO2 were inhibitory to nitrifying bacteria than ammonia and nitrite ions. Moreover, 
Suzuki.I, et.al., (1974) and Painter.H.A, (1986) recommended that free ammonia rather than ammonium ion is the 
substrate for ammonia – oxidizing bacteria (Nitrosomonas) supported the observation of an identical Monod 
saturation constant under variable free ammonia concentration.  
Therefore, reduced nitrification activity at lower pH levels may result indirectly from substrate limitation since the 
fraction of NH3 – N in the total ammonia nitrogen decreases with decrease of pH (Allison.S.M and Prosser.J.I, 
1993). When a higher TAN is used, a higher non – limiting concentration of NH3 may be maintained at lower pH 
values (Biesterfeld.S, et.al., 2001). Interestingly, to evaluate the pH effect on ammonia oxidation activity, 
Groeneweg.J, et al., (1994) measured ammonia oxidization rates at a constant NH3 – N of 0.37 mg L-1 (varying 
TAN in accordance with pH) and a constant TAN of 5 mg L-1 (NH3 – N varies with pH) over a wide pH range (5 – 
11).  
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They found that the maximum ammonia oxidization rate was obtained between pH 6.7 and 7.0 (0.37 mg L-1 NH3 – 
N) and pH 7.5 and 8.0 (5 mg L-1TAN), while the ammonia oxidization rate decreased sharply outside the optimum 
pH ranges. 

Alkalinity 
Alkalinity effects the conversion of ammonia to nitrate as seen from Eq (3). In fact, pH alkalinity type of carbonate 
and hydrogen carbonate may be a nutrient component for nitrifying bacteria. Additionally, alkalinity provides the 
buffering capability that is necessary to prevent pH changes because of acid production within the nitrification 
process. Therefore, the impact of alkalinity on the nitrification rate is additionally related to that of the pH. During a 
study on the pH effect upon the efficiency in an upflow biofilter, it was reported that the nitrification efficiency 
showed a linear increase of 13 % per unit pH increase from pH 5.0 to 8.5 (Villaverde.S, et.al., 1997). The same 
authors additionally investigated the relationship between pH and alkalinity. They determined a linear correlation 
between the alkalinity (as mg CaCO3 L-1) and pH, with a stoichiometry coefficient of 7.1 mg CaCO3 consumed/ mg 
NH4

+ - N oxidized. Chen.G.H, et al., (1989) showed that the rate of nitrification would be reduced when pH was 
below 40 g m-3. Gujer.W and Boller.M, (1986) according that in nitrifying biofilters utilized in municipal waste 
water treatment, an alkalinity level of at least 75 mg L-1 (g m-3 or 1.5 meq/L) was needed to maintain maximum 
nitrification rate. Considering possible stratification of alkalinity and pH in a biofilm, a better alkalinity 
concentration of 200 mg L-1 is suggested especially for the applications wherever the water exchange rate was 
minimum. 
 
Salinity 
Less information is available regarding the effect of salinity on nitrification kinetics. There are discrepancies within 
the reports, most likely due to different experimental conditions. Nijhof.M and Bovendeur.J, (1990) compared the 
nitrification characteristics of salt water with that of fresh water systems. The results indicated that the maximum 
nitrification capacity within the salt water systems was significantly less than in fresh water systems. At 24 oC, a 
maximum ammonia removal rate of 0.28 g m-2 day-1 NH4

+ - N was determined versus 0.69 g m-2 day-1 NH4
+ - N in 

comparable fresh water systems. During a separate laboratory study, Saucier.B, (1999) was able to get a sufficient 
nitrification rate that is comparable with the reported result in fresh water systems under similar conditions 
considered by Zhu.S and Chen.S, (2002). 
Turbulence 
The significance of the impact of turbulence on nitrification rate has been demonstrated by different researchers. 
Kugaprasatham.S, et al., (1991) studied the impact of hydraulic conditions on nitrifying biofilm grown under a low 
ammonia nitrogen concentration (about 1 gm-3) in a cylindrical reactor. When turbulence intensity was changed 
and kept at the new value for many days, filamentous – type biofilm with higher substrate flux was determined at 
high turbulent intensities, but colony – type biofilm under low turbulent intensities showed reduced mass transfer 
(Kugaprasatham.S, et al., 1991). Additionally, Chen.G.H and HuangJ.C, (1996) found that chemical oxygen 
demand reported higher nitrification rates in biofilters with high turbulence levels. These results are important for 
the design and optimal operation of biofilters, as they suggest that the nitrification rate could also be significantly 
improved through increasing turbulence. 
Rasool.K, et al. (2014) reported the high removal efficiencies of organic matter of about 97% as total COD and 
more than 99% removal of ammonia-nitrogen with Synthetic wastewater with average loading rates of 0.53 
kgCOD/m3.d and 0.067 kgNH4

+-N/m3.d was fed to the reactor system at hydraulic residence times (HRT) of 24 and 
18 h and operated for 100 days in a bench-scale anoxic–oxic activated sludge system for integrated removal of COD 
and nitrogen Wan.C, et al. (2014) reported on the partial nitrification performances for granules as nitrite 
accumulation rate >95% and chemical oxygen demand (COD) removal at >85% at salt concentration up to 50 g.L-1 

using aerobic granules to conduct partial nitrification reactions for wastewater with high NaCl concentrations in a 
continuous-flow reactor. Wang.L et al. (2014) reported that the results indicate partial  nitrification  of  landfill  
leachate  could  be  successfully  achieved  under  the  1.0-2.0  mg.L-1 dissolved  oxygen  (DO)  condition  after  118  
d  long-term  operation,  and  that  the  effluent  is  suitable  for an  Anammox  reactor. Further  decreasing  or  
increasing  the  DO  concentration,  however,  would  lead  to  a decay  of  nitrification  performance on a  coupled  
system  of  partial  nitrification  and  anaerobic  ammonium  oxidation  (Anammox)  is  efficient in  nitrogen  
removal  from  wastewater.  Wang.B et al. (2012) reported that the removal rates of COD, NH4

+-N and TN were 
88.2%, 95.7% and 86.4% respectively in a novel four-stage step-feed wastewater treatment system combined with a 
fluidized bed laboratory bioreactor to investigate on chemical oxygen demand (COD), NH4

+-N and total nitrogen 
(TN) removal performance. Dong.Y, et al. (2011) reported on the effects of environmental changes, such as 
temperature, dissolved oxygen (DO) concentration and pH, on nitrification characteristics under conditions of low 
ammonia concentrations using Suspended and waterborne polyurethane immobilized nitrifying bacteria. They stated 
that rate of nitrification increases with increasing pH, DO and temperature.  
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Simultaneous Nitrification and Denitrification process: 
Many researchers have put much attention to this process and drawn many valuable conclusions (Larrea.L, et.al., 
2001; Zhu.G.B, et.al., 2005). Moreover, nitrogen loss and simultaneous nitrification and denitrification is step 
feeding process were also reported by researchers (Gorgun.E, et.al., 1996; Zhu.G.B, et.al., 2007). Simultaneous 
nitrification and denitrification (SND) implies that nitrification and denitrification occur concurrently in the same 
reaction vessel under identical overall operating conditions. SND is of particular interest in saving anoxic volume 
and in treatment wastewater with low C:N ratio (Zhu.G.B, et.al., 2008). The mechanism and explanation for SND 
can be divided into two broad categories. The physical and conventional explanation is that SND occurs as a 
consequence of DO concentration gradients within microbial flocs or biofilms due to diffusional limitations. The 
biological explanations for SND are in contrast to the traditional “engineering” conception of nitrification and 
denitrification. Microbiologists have reported the existence of aerobic denitrifiers as well as heterotrophic nitrifiers 
(Kim.J.K, et.al., 2005; Zhu.G.B, et.al., 2008).  Radhika.K, et al. (2013) reported that around 98.9% ammonia 
removal was achieved with ammonia loading rate 0.35kgNH4

+-N/m3.day in the presence of 46.6 mg/LCOD at 2.31 
days hydraulic retention time and ambient temperature of 30 oC in a simultaneous partial nitrification, anammox and 
denitrification (SNAD) process for the treatment of ammonia effluent of a fertilizer industry. 
Heterotrophic Nitrification 
Mainly autotrophic nitrifiers are suitable to be responsible for nitrification process. However, nitrification was also 
employed during heterotrophic growth of some bacteria, such as Thiosphaera pantotropha, Alcaligenes faecalis, 
Pseudomonas stutzeri, Diaphorobacter sp. and Bacillus sp. (Su.J.J, et.al., 2001; Joo.H.S, et.al., 2005; Kim.J.K, 
et.al., 2005; Khardenavis.A.A, et.al., 2007). Heterotrophic nitrification was thought to be performed in a similar 
way to the autotrophic process: NH4

+ is firstly converted to NH2OH by the enzyme ammonia monooxygenase, and 
followed by NH2OH oxidation to NO2

- by the enzyme hydroxylamine oxidoreductase (HAO), and then NO2
- is 

further oxidized to NO3
-. The coupling of heterotrophic nitrification and aerobic nitrite/nitrate denitrification has 

been widely accepted as the result of nitrogenous gas production under aerobic conditions. (Kim.J.K, et.al., 2005; 
Khardenavis.A.A, et.al., 2007; Wan.C, et.al., 2011; Zhang,J, et.al., 2011). Recent studies showed that most 
heterotrophic-nitrifying bacteria are capable of aerobic denitrification, including Alcaligenes faecalis (Joo.H.S, 
et.al., 2007), Pseudomonas stutzeri (Su.J.J, et.al., 2001), Microvirgula aerodenitrificans (Patureau.D, et.al., 2001), 
P. putida (Kim.M, et.al., 2008), Acinetobacter calcoaceticus (Zhao.B, et.al., 2010a,b) and Rhodococcus species 
(Zhang.G, et.al., 2003). Bacteria capable of combined heterotrophic nitrification and aerobic denitrification have 
drawn increasing attention for their potential application in biological nitrogen removal system. 

By considering all parameters a brief review of operating conditions is given in table 1.  

Table 1: A brief review of operating conditions for the nitrification process 
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CONCLUSION 
In the present paper a brief review on biological nitrification was reported. Many industries particularly fertilizer, 
coking, refining, food processing and organic chemicals generate wastes containing high concentrations of 
ammonium compounds along with  varying concentrations of  arsenic, chromium and fluoride. To reduce the high 
ammonium concentrations in nitrogenous wastewater to ecologically acceptable levels, biological nitrification is a 
well established method.   Biological aerobic or anoxic treatment processes are much simpler and cheaper than a 
sequence of combined chemical-physical treatments. However, they could not achieve high and reliable ammonium 
and COD removal efficiencies. Aerobic treatment processes are used for reduction of BOD and COD as well as 
nitrification. As observed from above review biological nitrification is seen to be an economical and ecofriendly 
process for removing ammonium from wastewater and treated wastewater can be used for many industries as inlet 
water for many purposes. 
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