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ABSTRACT: Even if RNA-seq high-throughput sequencing technology has been nowadays adopted by many 
researchers in their genomic and transcriptomic studies, microarrays technologies remained capable tool assessing 
gene expression differential analysis because of their well established bioinformatics and biostatistics methods as 
well as their wide usage in transcriptomic and molecular diagnosis process. The purpose of this article in contrast 
to other’s is to assess the relationship between custom microarrays gene expression manufactures and their 
oligonucleotide probe set design strategies discriminating accurately significantly differentially expressed genes 
(DEGs) by high-throughput sequencing RNA-seq approach performing Receiver Operating Characteristics (ROC) 
curve analysis exclusively. For the present study, our previous developed microarray design strategies based on 
long and/or short single (unique replicate) and/or multiple oligonucleotide probes per gene model transcripts have 
been recycled. Indeed, the aptitude of analysed microarrays calling DEGs has been measured through ROC curve 
analysis exclusively assuming RNA-seq as reference because of their high performance and high dynamic range in 
gene expression profiling survey. Then, ROC curve analyse evidenced microarray manufactures based on short 
probes size as sturdily influenced by the sort of array probe set design strategy with respect to those based on long 
oligonucleotide probes per gene model transcript (p-value ≤0.05). Moreover, our findings showed that optimizing 
and monitoring type I statistical error (monitoring false discovery rate parameter; FDR≤0.01) of microarray 
platforms detecting significantly modulated genes, allowed to improve the specificity of the latter’s (microarray 
probe set design) calling truly DEGs candidates especially for microarray design strategies based on multiple 
probes per gene unit. In conclusion, the present study suggested (i) high heterogeneity of microarray manufactures 
based on short oligonucleotide probes in gene expression differential survey as opposed to those based on long 
oligonucleotides, and (ii) showed that disregarding microarray platforms as well as oligonucleotide probes size, 
microarray manufactures based on multiple probes per gene model transcript exhibited better genes signal 
detection as well as high agreement with RNA-seq discriminating significantly DEGs reducing false discovery rate 
(FDR) ratio, suggesting the latter as satisfactory parameter integrating both microarrays and RNA-seq tools 
transcriptomic data in gene expression profiling survey. 
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INTRODUCTION 
Microarrays are a powerful tools for monitoring gene expression change under various conditions and have been 
widely used for genome wide transcriptional analysis (De Risi J.L et al, 1997; Gao H.Y et al, 2004; Wan X. et al, 
2004; Wodicka L et al, 1997), discovery of gene function (Hughes T.R et al, 2000), cancer study (Ochs M.F et al, 
2003; Petricoin E. F et al, 2002), neuroscience (Luo Z. and Geschwind D.H, 2001), discovery of drug target and 
environmental studies (Rhee S.K et al.2004; Taroncher-Oldedburg et al, 2003; Tiquia S.M et al, 2004). While the 
multiplicity of microarray platforms offered an opportunity to expand the use of the methodology and make it 
more easily available to different laboratories, the comparison and integration of data sets obtained with different 
microarray platforms as well as with other genes expression measurement tools like high throughput sequencing 
(RNA-seq) technology has been partially solved (MAQC, 2006; Nalpas N.C et al, 2013; SEQC/MAQC-III 
consortium, 2014). Sources of diversity arise from the technology features intrinsic to chip and/or platform 
manufacturing, from the protocols used for sample processing, from detection systems, as well as from approaches 
applied to data analysis. On one hand, the combined use of multiple platforms can overcome the inherent biases of 
each approach, and may represent an alternative that is complementary to RT-PCR for identification of the more 
robust changes in the gene expression profiles on the other hand, the comparison of data generated using different 
platforms may represent a significant challenge, particularly when considering very different systems (i.e. 
microarray and RNA-seq). Indeed, publication of studies with dissimilar or altogether contradictory results, 
obtained using different microarray platforms as well as different gene expression approaches to analyze identical 
RNA sample, has raised concerns about of the reliability of these technology. The Microarray Quality Control 
(MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues 
generating a rich data set that, when appropriately analyzed, reveals promising result regarding the consistency of 
microarray data between laboratories and cross platforms especially measuring gene expression level between the 
latter and RNA-seq (SEQC/MAQC-III consortium, 2014). Moreover, searching for determinants of a phenotype 
using gene expression levels requires suitable exposure of the genome coupled with reasonable reproducibility, 
accuracy and sensitivity in the technology employed. These limitations matter less if microarrays are used for 
screening because changes in gene expression can be verified independently. However, the stakes were raised 
when microarrays were suggested as a diagnostic tool in molecular disease classification (Wang Y. et al, 2005) 
because regulatory agencies, such as the Food and Drug Administration (FDA), require solid, empirically 
supported data about the accuracy, sensitivity, specificity, reproducibility and reliability of diagnostic techniques. 
An ideally precise technique would have all measurements exactly equal (zero variance). Accuracy and precision 
are completely independent. A technique can be accurate but not precise (the mean of several measurements is 
close to the actual value but the individual measurements vary considerably), precise but not accurate (the 
individual measurements are close to each other but their mean is far from the actual value) neither or both. If a 
result is both accurate and precise, it is valid. Then, specificity in the context of DNA microarrays, refers to the 
ability of a probe to bind to a unique target sequence. A specific probe will provide a signal that is proportional to 
the amount of the target sequence only. A non-specific probe or probe set will provide a signal that is influenced 
by the presence of other molecules. The specificity of a probe (probe set) can be diminished by cross-
hybridization, a phenomenon in which sequences that are not strictly complementary according to the Watson 
Crick rules bind to each other. Microarray experiment generally depend on the hybridization intensity 
measurement for an individual probe to infer a transcript abundance level for a specific gene. This relationship 
raises several difficult issues, including which gene correspond to which probe or probe set, and how sensitive and 
specific is the probe or the probe set. The Receiver Operating Characteristics (ROC) graphs are a useful technique 
for organizing classifiers and visualizing microarray probe performance (Dago N., 2012; Dago D.N et al, 2014a). 
ROC graphs were commonly used in medical decision making and in recent years have been increasingly adopted 
in the machine learning and data mining research communities. Moreover, they have long been used in signal 
detection theory to depict the tradeoff between hit rates and false alarm rates of classifiers (Egan, 1975, Swets et al, 
2000). It is noteworthy to underline that ROC analysis have been extended for use in visualizing and analyzing the 
behavior of diagnostic and molecular biology systems (Swets, 1988) allowing medical decision making community 
having an extensive literature on the use of ROC graphs for diagnostic testing (Zou, 2002). Swets, Dawes and 
Monahan (2000) brought ROC curves to the attention of the wider public with their Scientific American article. 
So, a common method applying ROC analysis is to calculate the area under the ROC curve, abbreviated AUC 
(Bradley, 1997; Hanley and McNeil, 1982). Since the AUC is a portion of the area of the unit square, its value will 
always be between 0 and 1. However, because random guessing produces the diagonal line between (0; 0) and (1; 
1), which has an area of 0.5, no realistic classifier should have an AUC less than 0.5. The AUC has an important 
statistical property since is equivalent to the probability that the classifier will rank a randomly chosen positive 
instance higher than a randomly chosen negative instance. Indeed, this is equivalent to the Wilcoxon test of ranks 
(Hanley and McNeil, 1982).  
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Taking together and considering our previous investigative results comparing both RNA-seq and microarrays 
approaches measuring transcript expression level in gene expression profiling analysis (Dago D.N et al, 2014a), we 
assessed microarray oligonucleotide probes size and probe set design strategies influencing accurate calling of 
statistically significantly DEGs candidates by using ROC curve survey analysis exclusively, paying attention 
setting false discovery rate (FDR) statistical parameter threshold setting since traditional transcriptomic approaches 
studies testing many hypotheses use this estimation for inference, and often for classification technique that have 
thousands of transcript. 
 
MATERIAL and METHODS 
The same samples of Zenoni S. et al (2010) were used for microarray and RNA-seq experiments, corresponding of 
grapevine (Vitis vinifera) berry tissue at veraison and ripening stages. Results of differential analysis from each 
microarray manufactures were then compared with the results obtained from high throughput RNA-seq by ROC 
curve analysis exclusively assessing microarray probe set behaviors calling accurately DEGs since ROC graphs are 
a very useful tool for visualizing and evaluating classifiers. They are able to provide a richer measure of 
classification performance than scalar measures such as accuracy, error rate or error cost. Because they decouple 
classifier performance from class skew and error costs, they have advantages over other evaluation measures such 
as precision-recall graphs and lift curves (Tom F. 2005). 
RNA Preparation. 
Sample of Vitis vinifera at the development stages of veraison and ripening were collected as reported in Zenoni et 
al (2010) and total RNA has been extracted as described in Zamboni A. et al (2008). RNA amount and integrity 
were essayed by Nanodrop 2000 instrument (Thermo Scientific) and a Bio-analyzer Chip RNA 6000 (Agilent), 
respectively.   
Microarray Design Strategies and Hybridization Experiment.  
Grape microarray (Custom-Array) design strategies based on short (35-40bp) and long (60bp) probe per gene 
model transcript and hybridization experiment process have been reported by Dago Noel (2012). 
Microarray Data Preprocessing.  
Data preprocessing comprises computer methods to adjust for the ambient intensity (background subtraction) 
across the array and to remove sources of variation between arrays of non-biological origin (data normalization). 
Microarray data were preprocessed using (i) Normexp background subtraction method and (ii) quantile data 
normalizing method available in the library package limma version 3.10.3 (Smyth, G 2004). Expression (i.e. 
intensity) values of each gene were expressed applying mean values of the probe set signals of the same gene 
across each microarray platform. 
RNA-seq Experiment. 
RNA-Seq data used in this study was generated during Sara Zenoni et al (2010) study. To summarize, two 
technical replicates each for both ripening and veraison grape development stages were prepared and sequenced 
using an Illumina Genome analyzer II machine yielding more than 59 million reads of average length 36 bp. Reads 
were aligned onto the 12x grape genome assembly (8.4 fold draft sequence of the Pinot Noir 40024 genome) and 
then analyzed to measure gene expression levels. Here, read count was performed using the packages RSEM 
V1.1.21 (Li B, 2011). Differential expression analysis was conducted using the computer package DESeq (Version 
1.6.1, http://bioconductor.org/packages/release/bioc/html/DESeq.Html). RNA-seq raw data are available at 
SRA009962 (or data can also be accessed on Genome Browser at URL http: //ddlab.sci.univr.it/cgi-
bin/gbrowse/grape). 
Differential Gene Expression Analysis. 
Differential expression analysis between 2 grape development stages was performed by comparing arrays. This 
analysis were conducted by applying linear models on the log-expression values and then an empirical Bayes 
moderated t-statistics on each gene by using both lmFit and eBayes functions of limma  package (Smyth, G 2004) 
from R software (version 3.10.3). The False Discovery Rate (FDR) suggested by Benjamini and Hochberg (1995) 
was adopted to control the FDR since multiple comparisons were computed. A gene was considered as 
differentially expressed when showing a mean difference of the expression value greater than or equal to two folds 
between the 2 considered berry development stages at a FDR≤0.05. Only genes shared among all platforms 
(microarrays and RNA-seq) were processed by the present ROC curve analysis evaluating microarray probe set 
designs performance discriminating accurately DEGs by RNA-seq approach. 
Microarray Oligonucleotide Probes Specificity and Sensitivity Analysis (ROC Analysis) 
We estimated the accuracy, the sensibility and the specificity of each analysed microarray manufactures probe 
detecting DEGs in gene expression differential analysis assuming RNA seq gene expression data as reference 
(Dago N, 2012). Then, we summarized the scheme of this examination and/or analysis in Table 1.  In statistics, 
a receiver operating characteristic (ROC), or ROC curve, is a graphical plot that illustrates the performance of 
a binary classifier system as its discrimination threshold is varied.  
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The curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at various 
threshold settings. The true-positive rate is also known as sensitivity, or recall in machine learning. The false-
positive rate is also known as the fall-out and can be calculated as (1 - specificity). Hence, we reported both 
sensitivity and specificity mathematical explanation as following: (i) Sensitivity: measures the proportion of actual 
positives which are correctly identified as such. Sensitivity= Number of true positive ÷ (Number of true positives + 
Number of false negatives); (ii) Specificity: measures the proportion of negatives which are correctly identified. 
Specificity=Number of true negatives ÷ (Number of true negatives + Number of false positives). 
  
RESULTS 
Comparison between microarrays designs based on short oligonucleotide probes and RNA-Seq in 
gene expression differential survey. 
In total 17674 genes were analysed between microarrays and high throughput sequencing RNA-seq platforms. 
Statistically significantly DEGs have been discriminated at a FDR≤0.05 assessing genes fold change between both 
repining and veraison grape development stages (see material and methods chapter). Microarray design based on 
single short oligonucleotides per gene model transcript, detected 1.46 fold more DEGs as opposed to the same 
manufacture based on multiple short probes per gene model transcripts (Figure 1). Furthermore, disregarding 
microarray design strategies used, Venn diagram suggested a high agreement between microarrays and RNA-seq 
platforms instead of between above mentioned microarray platforms. Although, microarray manufacture with 
probe set design strategy based on single replicate oligonucleotide per gene unit discriminated more DEGs in 
comparison to microarray design strategy based on multiple short probes per gene model transcript. However, the 
same analysis showed that microarray manufacture with multiple short probes per gene model transcript exhibited 
better agreement with RNA-seq calling DEGs candidates (Figure 1). Moreover, the number of DEGs discriminated 
exclusively by microarray based on single short replicate oligonucleotide probe per gene unit, resulted 8.86 fold 
more than those detected by the same manufacture with multiple oligonucleotide probes (Figure.1). Taking 
together, these results suggested heterogeneous replies of above mentioned and analysed microarray probe set 
design strategies in gene expression differential profiling analysis.  
Comparison between microarrays manufactures based on long oligonucleotide probes and RNA-
seq in gene expression differential profiling analysis. 
The present analysis showed that microarray design strategy with multiple long oligonucleotide probes per gene 
model transcript detected 1.77 fold more DEGs than the same manufacture with single probe per gene unit (Figure 
2). It is interesting to underline that the present scheme and/or situation contrast with the previous one (see Figure 
1). Generally, microarray design with long probe set per gene unit called more DEGs candidates in comparison 
with microarray manufacture based on short oligonucleotide (Figures 1 and 2).These results suggested and 
confirmed high sensitivity of long probes with respect to short oligonucleotide probes measuring gene expression 
intensity. Even if microarray manufacture based on multiple long oligonucleotide probes per gene model transcript 
discriminated more DEGs as previously mentioned, it is noteworthy to discern that around 25% of these detected 
DEGs were not recognized as such by RNA-seq approach (reference), against 16% for the same array manufacture 
with single long replicate oligonucleotide probe per gene unit (Figure 2). This result supposed high sensitivity as 
well as low specificity of the latter in gene expression profiling analysis.    
ROC Curve analysis assessing the aptitude of microarray designs with short oligonucleotide probes 
calling DEGs by RNA-seq. 
We were interested to evaluate the capacity of microarray design strategies based on short oligo, calling accurately 
DEGs through RNA-seq approach. So, combining both specificity and sensitivity parameters of these microarray 
manufactures, we showed that probe set exhibiting multiple oligonucleotide probes detected better DEGs signal in 
agreement with high throughput sequencing approach as opposed to microarray design strategy with probe set that 
based on single replicate oligonucleotide per gene model transcript. Indeed, area under curve (AUC) assessing the 
ability of microarray manufactures based on short probes per gene unit detecting right gene expression signal, was 
higher for design strategy with multiple oligonucleotide probes per gene model transcript (Figure 3). In other word 
microarray manufacture with short multiple oligonucleotide probes, exhibited high specificity with respect to 
microarray design strategy based on short single replicate probe per gene model transcript. Then, merging the 
present results with the previous one (Figure 1), we showed that (i) microarray design strategy that exhibited single 
replicate probe set per gene unit displayed a good sensibility (low specificity) while (ii) microarray manufacture 
with multiple short oligonucleotide probes per gene unit tend to display high specificity (low sensitivity).These 
results confirmed the strong inconstant performance of these two microarray design strategies and/or manufactures 
in gene expression profiling analysis (Figure 1 and 3).    
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ROC Curve analysis weighing the propensity of array manufactures based on long probes calling 
DEGs by RNA-Seq. 
ROC curve analysis based on area under curve (AUC) parameter evidenced weak difference between the two 
analysed microarrays manufactures based on long oligonucleotide probes per gene model transcript. In fact 
microarray design strategy based on multiple long oligonucleotide probe set resulted 0.81/0.75 ~1 fold more 
specific than those displaying single long replicate probe set per gene model transcript (Figure 4), while the same 
ratio estimation comparing the two microarray manufactures with short oligonucleotide probes was 0.70/0.57 
~1.32 (Figure 3). Considering as a whole, the present results showed that microarrays with long oligonucleotide 
probe set were weakly influenced by the nature of microarray design strategy. However, microarray manufacture 
based on multiple long probes per gene model transcript exhibited a discrete high specificity with respect to those 
based on single long replicate probe per gene model transcript (p-value≥0.05). Integrating these results with 
previous one (Figure 2), it is emerged that microarray design and/or manufacture with multiple long 
oligonucleotide probes per gene unit exhibited, high sensitivity (p-value≤0.05) as well as relative high specificity 

(p-value≥0.05) than the same array with single replicate probe set per transcript. Furthermore, these results 
highlighted the substantial difference between microarray platforms based on both (i) long and (ii) short 
oligonucleotide probes assessing DEGs proportion in gene expression profiling analysis.    
Relationship between detected DEGs False Discovery Rate parameters and gene expression levels 
and ROC area under curve (AUC) ratio. 
Our previous analysis highlighted the relationship between gene expression level and microarray aptitude 
discriminating DEGs recognized as such by RNA-seq. Here we investigated the relationship between (i) gene 
expression levels, (ii) statistical inference survey calling DEGs by monitoring FDR parameter and (iii) area under 
curve (AUC) from ROC curve analysis, aiming to evaluate the ability of microarray probe set design manufactures 
in gene expression profiling analysis. Our results showed that all analysed microarrays probe set design strategies 
displayed a descent agreement with RNA-seq technology at lower false discovery rate ratio (Table 2). This result 
suggested that adjustment of statistical parameter processing gene expression differential analysis can help 
obtaining high true positive ratio as well as reducing false positive signal calling DEGs candidates. Moreover, we 
evidenced that stringent adjustment of type I statistical error probability value resulting in a FDR value threshold ≤ 

0.00001 (arbitrary value) allowed all analysed microarray probe design strategies to exhibit a quite similar 
performance with RNA-seq calling accurately DEGs candidates displaying an AUC mean value ≥0.90 (Table 
2).Taking together, these results suggested microarrays as valuable tool performing gene expression profiling 
analysis suggesting that adequate false discovery rate interval threshold setting can help and improve both 
microarray and RNA-seq data integration in gene expression survey. 
Performance assessment of microarray oligonucleotides size calling DEGs handling statistical False 
Discovery Rate parameter. 
Next we were interested to assess analysed microarray manufactures performance in gene expression differential 
analysis monitoring DEGs false discovery rate parameter. Then, for this purpose and basing on previous results 
(Table 2), we arbitrary choose FDR ≤0.001 as parameter threshold assessing microarray ability calling accurately 
DEGs. As previously mentioned, disregarding considered microarrays manufacture as well as oligonucleotide size, 
all analysed microarrays displayed a good agreement with RNA-seq high throughput sequencing approach 
rejecting DEGs targeted as false positive (Table 2 and Fig. 5). Both panel B and D in figure 5 suggested that 
microarray designs based on multiple long and/or short oligonucleotide probes per gene model transcript, at FDR ≤ 
0.001 (probability committing type I error ≤0.001) exhibited the same performance than RNA-seq platform 
discriminating DEGs. These results suggested highest true positive rate and/or sensitivity (~1) as well as lowest 
false positive rate and/or specificity (~ 0) of microarray manufactures with probe set including multiple 
oligonucleotide probes per gene unit. Moreover, it is interesting to note that AUC ratio values between microarray 
manufactures based on (i) long (~1) and (ii) short (~ 1.32) oligonucleotide probe set remained unchanged 
committing type I error at 1‰ (FDR≤0.001), when compared with previous results where FDR thresholds were set 
at 0.05 (see Figure 3 and 4; FDR ≤0.05).This result supported that stringency of statistical parameters in 
microarray gene expression analysis cannot improve as well as influence the former’s intra platform gene 
expression analysis results. In other words, the present analysis highlighted and confirmed the heterogeneous 
behaviours of microarray manufacture based on short oligonucleotide in gene expression profiling analysis as 
opposed to those established on long oligonucleotide probe. 
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Figure 1. Venn diagram comparing the number of DEGs between microarray manufacture with short probe 
size per gene model transcript and RNA-seq approach at a FDR ≤ 0.05 in gene expression profiling survey. 

 
 
 

 
Figure 2. Venn diagram comparing the number of DEGs between microarray manufacture based on long 

oligonucleotide probes per gene model transcript and RNA-seq methodology at a FDR≤ 0.05in gene 

expression differentially profiling analysis. 
 
 
 
 

International Journal of Applied Biology and Pharmaceutical Technology          Page: 135                         
Available online at www.ijabpt.com 

http://www.ijabpt.com/


 

Dago Dougba Noel et al                                                                    Copyrights@2016, ISSN: 0976-4550                              

 

 
Figure 3. Panel A and B: ROC Curve graph of microarray manufactures based on single and multiple short 

probe(s) per gene unit discriminating statistically significantly differentially expressed genes (FDR ≤0.05 

and log2 Fold Change value≥1) respectively. 
 

 
Figure 4. Panel A and B represent ROC Curve graphs of both microarray manufactures based on single and 

multiple long probe(s) per gene model transcript discriminating statistically significantly differentially 
expressed genes (FDR ≤0.05 and log2 Fold Change value≥1) respectively. 
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Figure 5. Area under curve (AUC) identified by Microarray designs with short unique replicate (A), short 

multiple (B), long unique replicate (C) and long multiple (D) probes detecting DEGs at False Discovery Rate 
(FDR) ≤0.01 with |log2-Fold Change| ≥1. 

 
 

Table 1. 2x2 contingency table and/or confusion matrix assessing microarray probe set designs performance 
selecting DEGs by next generation sequencing RNA-seq approach. 

 
Number of differentially expressed genes 

(DEGs) called by RNA-seq approach 
True False 

Number of differentially expressed genes 
(DEGs) detected by analysed microarray probe 

set design strategies (test outcome). 

True True positive False positive 

False False negative True negative 
 
Table 2. Relationship between measured gene expression levels, false discovery rate probability (probability 

committing type I statistical error calling DEGs) and ROC curve analysis area under curve (AUC) 
parameters. 

* Log 2 fold change parameter has not been considered calculating AUC mean value as opposed to in Figure 5. 
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DEGs at  False Discovery 
Rate (FDR) 

[0.01;0.05] ]0.01;0.001] ]0.001;0.0001] ]0.0001;0.00001] <0.00001 

Gene Expression Level 
assessed by reads count 

sequence mean from 
RNA-seq Deseq analysis 

 
 

9.26 

 
 

20.26 

 
 

26.21 

 
 

33.31 

 
 

>33.31 

All Microarray ROC 
curve AUC mean* 

0.73 0.81 0.86 0.87 >0.90 

Number of Expressed 
Gene by RNA-seq 

3422 2464 2673 1741 7374 
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DISCUSSION 
In this paper we have illustrated a feature selection method using a combination of standard area under curve 
(AUC) parameter from Receiver Operating Characteristics (ROC) curve analysis with several microarray’s gene 

expression analysis manufacture assessing the impact of the latter’s oligonucleotide probe set design strategies 
discriminating accurately statistically significantly differentially expressed genes (DEGs) by RNA-seq, since high 
throughput sequencing approach provides a powerful tool for transcriptome-based applications beyond the 
limitations of microarrays paying attention committing statistical type I error (Dago DN et al, 2014b). Moreover, 
several studies demonstrated that RNA-seq outperforms microarrays in determining the transcriptomic 
characteristics (i.e. in cancer study), while RNA-seq and microarray based models perform similarly in clinical 
endpoint prediction (Zhao S. et al, 2014; Zhang W et al, 2015). Though, considering the vast amount of additional 
information provided by RNA-seq in comparison to microarrays, it is tempting to speculate that RNA-seq may 
outperform microarray; a comprehensive comparison of RNA-seq and microarray based predictive models is 
requested considering the fact that both technologies are widely used in genomics and/or transcriptomics studies as 
well as molecular diagnostic process nowadays (Song L et al, 2011; Zhang W. et al, 2015). In this predisposition, 
we proposed here to assess the agreement threshold between these two technologies by using receiver operating 
characteristics (ROC) curve analysis highlighting their similarity and/or dissimilarity evaluating DEGs calling 
event ratio monitoring false discovery rate (type I statistical error). For this purpose, we considered our previous 
developed microarray design manufactures based either on long and/or short single replicate and/or multiple 
oligonucleotide probe set per gene model transcript (Dago N. 2012). Then, we compared these microarray 
manufactures with RNA-seq by processing two Vitis vinifera grape development stage samples in gene expression 
profiling analysis basing exclusively on ROC curve analysis assessing FDR factor aiming to provide accurate 
statistical parameter threshold integrating both array and RNA-seq next generation sequencing data. Our analysis 
revealed strong heterogeneous behaviours amongst microarray manufactures based on short single and multiple 
oligonucleotide probes per gene unit discriminating DEGs as opposed to microarray design strategies with long 
single oligonucleotide probe set (Figures 1 and 2). Moreover, the good performance of microarray manufactures 
with long oligonucleotide probes per gene model transcript detecting right gene expression level in expression 
survey has been suggested by performed ROC curve analysis (Noel DD et al., 2016). These results are in 
agreement with Chung Chou (2004) investigation supporting that accurate gene expression measurement can be 
achieved with multiple probes per gene unit and fewer probes are needed if longer probes rather than shorter 
probes are used. Moreover the present results confirmed Roman J. et al (2013) results, suggesting that differences 
in the nucleotide composition of probes and high distances between their target sites in a transcript sequence are 
the main reasons for very high intra-probe set signal variance.Then, while microarrays design strategies based on 
long (single and multiple) oligonucleotide probes per gene model transcript exhibited a moderate accurate 
performance in detecting DEGs, microarray manufactures based on short (single and multiple) probes per gene 
model transcript resulted strongly influenced (p-value≤0.05) by the sort of microarray design strategies (Figures 3 
and 4). Moreover, it is interesting to underline that our investigation revealed that analysed microarrays gene 
expression differential analysis results can be improved by rigorous statistical analysis reducing DEGs false 
discovery as well as avoiding committing type I statistical error without compromise differential analysis final 
results among analysed gene expression platforms. Also, we were able to show that disregarding applied 
microarray manufactures as well as microarray design strategies, all analysed microarray platforms based on short 
and/or long single replicate and/or multiple probes per gene unit exhibited a good agreement with RNA-seq 
approach detecting true positive DEGs at lowest false discovery rate values (Table 2). In other word, improvement 
of microarray’s specificity calling true positive rate of DEGs candidates by RNA-seq needed stringent false 
discovery rate statistical parameters. In other word microarray probe set heterogeneity measuring gene expression 
level can be adjusted by a good monitoring of false discovery rate statistical parameter. Then, we showed that good 
predictive model based on microarray’s manufacture required rigorous statistic parameter reducing and preventing 
false discovery rate events in gene expression differential profiling analysis. In the same tendency, our findings 
through area under curve by ROC curve survey evidenced strongest agreement between both microarrays and 
RNA-seq, assessing microarrays probe set performance calling accurately DEGs at a false discovery rate 10-3 
(FDR ≤0.001) exhibiting these values as reasonable threshold avoiding committing type I error, comparing and 
integrating both microarray and RNA-seq differential gene expression analysis data and results (Table 2). Taking 
together, though all analysed microarray’s displayed a good performances calling DEGs applying stringent FDR 
value, the present analysis suggested (i) best agreement between microarray manufactures based on multiple 
oligonucleotide probes per gene unit and RNA-seq measuring gene expression signal intensity as opposed to 
microarrays with probe set design strategy based on single replicate probe per gene model transcript (Figure 5); 
and (ii) microarray design based on long oligonucleotides were weakly influenced by the sort of array design with 
respect to microarray manufacture with short oligonucleotide probes per gene model transcript (Chen-Chung Chou 
et al., 2004).  
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This study, as our knowledge exhibited a particularity, since emphasized microarray oligonucleotide probe design 
strategies sensitivity and/or specificity executing differential analysis evaluating the risk committing statistical type 
I error when the former’s were compared with RNA-seq gene expression approach in gene expression differential 
survey. However, despite the superior benefits of RNA-seq, microarrays are still the more common choice of 
researchers when conducting transcriptional profiling experiments. This is likely because RNA-seq sequencing 
technology is new to most researchers, relatively more expensive than microarray, data storage is more challenging 
and analysis is more complex. We expect that once these barriers are overcome, the RNA-seq platform will 
become the predominant tool for transcriptome analysis (Song L. et al, 2011). 
 
CONCLUSION 
Numerous studies evidenced microarray limits in gene expression profiling analysis as opposed to RNA-seq, 
neglecting their complementary aspects. We provided through the present study a methodology monitoring 
microarrays probes design strategies calling accurately DEGs in gene expression differential survey by using ROC 
curve enquiry exclusively, showing that microarray design strategies based on short oligonucleotide probe set 
(either single replicate or multiple probes) per gene model transcript exhibited strong dissimilar replies selecting 
correctly DEGs as opposed to microarray manufactures with long probe set per gene unit. The present study also 
suggested that despite their high heterogeneous responses in expression profiling analysis, microarrays could 
exhibit equal performance with respect to RNA-seq by an adequate monitoring of false discovery rate statistical 
parameter, suggesting a potential high complementary between above mentioned gene expression profiling 
technologies calling true positive event in transcriptomic survey. Finally these results as well as observations, 
combined with previous studies (Zhao S.et al, 2014), suggested that microarray and RNA-seq gene expression data 
integration were possible and needed an adequate statistical parameters setting aiming to reduce type I statistical 
error since the complementarity among these technologies could reinforce their widely used in transcriptomic and 
genomic analysis helping to accurate molecular diagnostic decision. Finally the present study highlighting the 
variableness of microarray probe set response in differential analysis as opposed to others studies provided a 
statistical guideline to overcome this limit exploiting next generation sequencing data performance.  
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