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ABSTRACT: The frequent administration of glatiramer acetate in the treatment of subcutaneous multiple sclerosis 
causes undesirable local reactions. This study suggests this drug incorporation in liposomes so that certain benefits may be 
achieved. Three types of liposomes were developed:  
(1) With lipid dipalmitoyl phosphatidylglycerol (DPPG) 
(2) With the lipid palmitoil phosphatidylglycerol (POPG)  
(3) With a mixture of these lipids (DPPG/POPG) 
The physicochemical characterization was performed. An atomic force microscopy revealed that the liposome with DPPG 
showed well-defined oval and irregular vesicles while the liposome with POPG presented vesicle fusion and film 
formation on the surface of mica. The liposome with DPPG/POPG was opaque, with an intense aggregation of vesicles. 
The diameter analysis showed that all liposomes formed large multilamellar vesicles. The polydispersity of all types of 
liposomes showed high values, while the zeta potential was negative. The encapsulation efficiency was greater for the 
liposome GLAM + DPPG/POPG, followed by GLAM+DPPG and less for GLAM+POPG. Based on the results obtained in 
our work, it is believed that the liposome produced from DPPG had promising results, representing a new possibility to be 
explored. It might improve quality of life and consequently treatment compliance by glatiramer acetate users. 
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INTRODUCTION 
The first case of multiple sclerosis (MS) was described by Jean Charcot Martin in 1868. However, only after 122 years the 
first drugs to treat specific disease were created (Piehl F, 2014). 
 
Multiple sclerosis is a chronic inflammatory, demyelinating, autoimmune, neurodegenerative neurological disease, defined 
by repeated episodes of neurological dysfunction remission variable (Costa CCR, et al., 2005; Noseworthy JH, et al., 
2000). In addition, multiple sclerosis may affect the mental life of the patient, being depression very common (Mendes 
MF, et al., 2003) due to adverse reactions to the most common treatment drugs (Moreira MA, et al., 2002) (glatiramer 
acetate, (Saguil A, et al., 2014; Ben-Nun A, et al., 2014; Soares Almeida LM, et al., 2006; Lebrun C, et al., 2011) 
interferon beta (Piehl F, 2014; Saguil A, et al., 2014) and glucocorticoids such as methylprednisolone). 
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Glatiramer acetate (GLA) appeared in 1996. It was indicated for cases of relapsed MS outbreaks, administered 
subcutaneously with daily doses. In addition, GLA is one of the most widely used drugs for the treatment of MS. It also 
has a therapeutic potential for the treatment of other autoimmune diseases such as rheumatoid arthritis and Crohn's disease 
(an inflammatory bowel disease) (Ben-Nun A, et al., 2014). The continued use of GLA subcutaneously usually causes 
undesirable local reactions that affect about 60% of drug users (Soares Almeida LM, et al., 2006; Lebrun C, et al., 2011), 
the most common being localized lipoatrophy (Lebrun C, et al., 2011; Soos N, et al., 2004). The formation of on-site 
nodules, bruises and abscesses may occur (Soares Almeida LM, et al., 2006; Beer K, et al., 2011). Another common 
reaction is contact dermatitis caused by the drug and, depending on its intensity, it may be necessary to discontinue 
treatment (Haltmeier S, et al., 2011). 
 
Faced with all difficulties mentioned, the pain of every application is one of the main reasons for discontinuation treatment 
(Beer K, et al., 2011; Devonshire V, et al., 2011, Jongen PJ, et al., 2011). Although GLA is a very effective drug, 
adherence to treatment may be impaired by the existence of these undesirable effects. In an attempt to solve this problem, 
many studies are being developed such those regarding the reduction in the administration volume; (Anderson G, et al., 
2010) development of pharmaceutical formulations that allow an oral (Teitelbaum D, et al., 2004, Croxford JL, et al., 
2009, Teitelbaum D, et al., 1999, Maron R, et al., 2002) or nasal administration (Graça JS, et al., 2015); devices facilitating 
self-injection (Maron R, et al., 2002, Bayas A, 2013, Gross Y, et al., 2013); and reduction in the frequency of applications 
(Achiron A, 2009; Comi G, et al., 2011, Khan O, et al., 2012, Teva, 2013). Of all cited studies, only two presented 
promising results (Haltmeier S, et al., 2011, Anderson G, et al., 2010). One considered nasal (Duchi S, et al., 2013) 
administration and the other is the reduction of the frequency of administrations (Teitelbaum D, et al., 2004). 
 
Although there are many attempts to improve the formulations, in all studies the drug was used in its free form, that is, no 
Nano encapsulation technique was used. In the database Web of Science, there is only one study on glatiramer acetate 
encapsulation in Nano carriers - incorporation in Nanolipodendrosome (Afzal E, et al., 2013) and the filing of a patent on 
the microencapsulation of the drug (Wang B, et al., 2013). Thus, the incorporation of GLA in a Nano carrier, such as 
liposomes, is an alternative to be explored and may offer a new perspective. Some benefits can be achieved, such as a 
reduction in the frequency of administration or the possibility of administration by an alternate route such as oral, nasal or 
intradermal. 
Liposomes are a type of Nano carriers consisting of spherical vesicles from 25 to 2,500 nanometers (Khan O, et al., 2012) 
comprised of natural or synthetic phospholipids (Vemuri S, et al., 1995; Sharma A, et al., 1997). They are able to 
incorporate lipophilic, hydrophilic and amphiphilic drugs (Torchilin VP, 2006). Liposomes are very similar to biological 
membranes (Graça JS, et al., 2015), which have a lipid bilayer. The similarity with biological membranes provides 
liposomes with biomimetic characteristics (Xiang TX, et al., 2006) that facilitate the permeation and the transport of drugs 
through the cell membrane, and protect the drug from degradation by the reticuloendothelial system (Gregoriadis G, 1995). 
 
One of the major advantages of Nano systems used for treatment and diagnosis of disorders of the central nervous system 
(CNS) is the possibility of allowing the drug to surpass the blood-brain barrier (BBB). BBB serves as a protective barrier 
to the CNS, preventing the passage of pathogens such as viruses and bacteria (Kanwar JR, et al., 2012). These functions 
act as a selective membrane allowing only lipophilic molecules or molecules with a molecular weight below 400-600 Da. 
The high selectivity and efficiency in protecting CNS prevents that many drugs surpass it, limiting the diagnosis and the 
treatment of CNS disorders (Kanwar JR, et al., 2012). With nanotechnology, it is possible to encapsulate a drug or a 
diagnostic agent that typically would not exceed the BBB, making it possible for this drug to reach the CNS (Nance EA, et 
al., 2012; Modi G, et al., 2009). Nanoneurobiophysics is an area of research which studies mechanisms of demyelinating 
and neurodegenerative diseases and development of new methods based on nanotechnology for development of diagnosis 
and treatment of these diseases, thus, the development of liposomes containing glatiramer acetate is in this area of research 
(Leite FL, et al., 2015). 
 
In this context, studies on the use of liposomes for the treatment of CNS diseases such as MS showed a higher 
bioavailability of the drug and reduced inflammatory infiltration and preservation of the myelin sheath (Avnir Y, et al., 
2016; Linker RA, et al., 2008). The association with certain substances, such as glutathione or transferrin, may guide the 
delivery in the CNS, favoring the passage through the BBB (Gaillard PJ, et al., 2012). In addition to pharmacokinetic 
improvements, in some cases encapsulation in liposomes may offer some pharmacological advantages, such as an 
increased solubility and a consequent reduction in the administration volume (when the drug becomes more soluble, a 
lower volume of solvent is needed to solubilize it).  
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Some drugs, such as Doxil, used in the treatment of ovarian cancer, are already incorporated in liposomes. They are sold in 
the market and there are many studies on the incorporation of this drug into a release system (Modi G, et al., 2009, Teli 
MK, et al., 2010, Devalapally H, et al., 2007, Patlak M, 2010, Re F, et al., 2012). Regarding the incorporation of peptides, 
liposomes represent an extensive area of research that has been developed for parenteral, oral, intranasal, transdermal and 
ocular administration (Du AW, et al., 2014). However, there are not many studies on the incorporation of GLA in 
liposomes. 
GLA has a similar structure to the myelin sheath (Ben-Nun A, et al., 2014; Teitelba D, et al., 1971; Schrempf W, et al., 
2007; Aharoni R, 2013). It comprises a random mixture of synthetic polypeptides, which consists of four amino acids: L-
alanine, L-lysine, L-glutamine and L-tyrosine in the ratios 4.2: 3.4: 1.4: 1, respectively (Teitelba D, et al., 1971; Schrempf 
W, et al., 2007; Aharoni R, 2013). The average molecular mass is between 5 and 9 kDa. The acetate group on the molecule 
ensures the solubility of the drug in water. Due to complexity and variability of the polypeptide mixture, the mechanism of 
action is still not sufficiently explained, i.e., the random mixture of amino acids seems to provide multiple forms of action 
(Avnir Y, et al., 2016). The main objective of this work was to develop a nano carrier for glatiramer acetate seeking to 
offer better conditions for patient adherence to the treatment of MS.  
 

EXPERIMENTAL 

Drug 

The Teva laboratory provided the product (a mixture of glatiramer acetate, water and mannitol) in 28 pre-filled syringes, 
each containing water for injection (1 mL), mannitol (40 mg) and glatiramer acetate (20 mg). The syringes were put in a 
plastic tube, with a total volume of approximately 28 mL of solution. 
Lyophilization 

The total sample volume (glatiramer acetate, water and mannitol) remained for 24 hours in a freezing process. It was then 
freezed for 32 hours and the water was removed. In this process, 1.33 g of a white powder was obtained. Its composition 
was glatiramer acetate (33.33%) and the mannitol excipient (66.67%). This mixture was called "GLAM". 
Characterization of glatiramer acetate (GLA) by UV-vis and fluorescence 

The tyrosine in the glatiramer acetate molecule was used as a parameter to characterize the drug. A scanning between 200 
and 290 nm in buffered solutions containing GLA was performed at different concentrations, since tyrosine is within this 
absorbance range (Brasil, 2010). All samples were analyzed in duplicate. These solutions were analyzed by a UV-vis 
spectrophotometer Genesis 6 to determine the maximum absorbance value of tyrosine in GLA. The absorbance value 
observed in the UV-vis was used for excitation in a spectrofluorimeter Shimadzu RF-5301PC equipped with a xenon lamp 
and a quartz cuvette, optical path 10 nm. The experimental parameters were spectrofluorimeter λEX = 275 nm, λEM = 

280-400 nm and 1.5 nm slit. 
Liposome preparation containing a GLAM mixture 

The preparation of liposomes was made according to the hydration of the lipid film described by Lima et al. (Lima EM, et 
al., 2002) The chosen lipids were DPPG (dipalmitoyl phosphatidylglycerol - CAS 200880-41-7) and POPG (palmitoil 
phosphatidylglycerol glycerol - CAS268550-95-4), with transition temperatures 41°C and -2°C, respectively, and both 
negatively charged (Avanti-Polar-Lipids, 2014). They were acquired from Avanti Polar Lipids. 
Three liposome formulations were prepared from the mixture of phospholipids with GLAM: (1) GLAM + DPPG, (2) 
GLAM + POPG, and (3) GLAM + DPPG/POPG in the ratio 1:1. The phospholipids were weighed and each dissolved in a 
round bottom flask at a concentration of 1.0 mmol.L-1 in chloroform and methanol.  
The volatile phase was extracted by evaporation with nitrogen gas in a rotary motion to form a thin lipid film on the walls 
of the flasks. The films were hydrated with a PBS buffer solution at 0.1 mol.L-1 (pH 7.4) containing GLAM in a 
concentration of approximately 0.05 mg.L-1 of glatiramer acetate. Then, the flasks were subjected to an ultrasound bath 
(Unique MAXCLEAN model 750), under a frequency of 25 KHz for 2 hours to form the vesicles. The heating was not 
turned on and the temperature was monitored throughout the procedure, with a variation from 20°C at the beginning of the 
process to 47°C at the end of the process. 
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Liposomes Characterization techniques 
Fluorescence Spectroscopy 
Three liposome formulations were subjected to analysis by fluorescence spectroscopy to verify whether encapsulation in 
the vesicles affected the tyrosine fluorescence band. 
Atomic Force Microscopy (AFM) 
The morphology and diameter of the vesicles were assessed by atomic force microscopy (AFM) using a Bruker V Nano 
scope with an AN-CSG01 tip. The samples (in triplicate) were placed on the surface of muscovite mica. Micas were 
cleaved and 40 µL of each liposomal formulation were deposited in it. The samples were left resting exposed to air for 24 
hours to partially dry the formulations. After this period, we proceeded to read the samples in "Tapping" to avoid damage 
to the vesicles. 
Dynamic light scattering 
The size distribution and the loading of liposomes were verified by dynamic light scattering and zeta potential 
measurements in a Nano Trac 252 (Micro Trac Inc.). This assay aimed to evaluate the size of the vesicles obtained in the 
production of liposomes, the zeta potential and the polydispersity of these vesicles. 
 
Encapsulation efficiency (%EE) 
The three liposomal formulations (concentration of approximately 0.05 mg.L-1 of glatiramer acetate) were subjected to an 
encapsulation efficiency test in order to determine the percentage of encapsulated/adsorbed drug on the surface of the 
vesicles. The initial fluorescence characterization of formulations was performed and then 2 mL of each formulation were 
added in Amicom Ultra filter - 4 Millipore devices with a porosity of 100 kDa. The devices containing the samples were 
centrifuged in a Sorvall Biofuge ultra Stratos at 5,000 G for 20 minutes at 10°C. The liquid resulting from this 
centrifugation was analyzed and the free drug was quantified. The percentage of incorporated GLA was calculated from 
the equation below: (Ohlweiler OA, 1976) 

 

%EE= 
T0 – F0 

T0 x 100 

 
Where: 
 
%EE = encapsulation efficiency of GLA in percentage  
T0 = fluorescence intensity drug present in the initial formulation (spectrofluorimeter reading) 
F0 = free drug fluorescence intensity detected in the supernatant collected in centrifuge tubes (spectrofluorimeter reading) 
 
RESULTS AND DISCUSSION 
Buffered solutions with different concentrations of GLAM were analyzed by UV-vis spectroscopy. The analysis by UV-
vis spectroscopy is a widely used technique for quantification, because there is a wide variety of organic and inorganic 
species capable of absorbing energy in the UV and Vis regions. Those that do not have this characteristic may be 
converted by appropriate chemical treatments (Sun LM, et al., 2012). The method enables choosing a wavelength range in 
which only the considered species acts as an absorbent. This makes the technique specific and precise. The tyrosine 
present in the GLA molecule was used as a parameter for drug characterization. According to the literature, the maximum 
tyrosine absorbance occurs at 280 nm (Brasil, 2010). In the GLAM mixture, there was a band at 275 nm (Figure 1), which 
was assigned to the tyrosine present in the glatiramer acetate. This offset for the band is stated in the Lambert-Beer law 
and may occur because of an interaction between the compounds of mannitol and the glatiramer acetate mixture, or by 
tyrosine linked to other amino acids of the molecule (Sun LM, et al., 2012). The spectroscopy obtained in this analysis is 
characteristic of compounds that present transition electrons n to the excited state *, which generally have a higher 
absorbance (200-700 nm) (Cueva EA, 2005, Cienfuegos F, et al., 2000). 
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Figure 1: UV-vis spectroscopy of GLAM in different concentrations, Tyrosine at 275 nm. 

 
 
Based on the tyrosine absorbance band shown in Figure 1, the choice of the excitation wavelength used in the 
spectrofluorometer was 275 nm. In the literature, the emission band is at 310 nm (Azevedo JCRD, et al., 2008). In the 
samples, a band was observed at 313 nm (Figure 2). The shift of the emission band from 310 to 313 nm may be justified 
because it is a mixture of two compounds (mannitol and glatiramer acetate) and because tyrosine is linked to other amino 
acids present in the drug molecule (alanine, lysine and glutamine) suffering interactions resulting in changes in 
fluorescence measurements (Sun LM, et al., 2012). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Fluorescence spectroscopy of GLAM at different concentrations, Tyrosine at 313 nm. 
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Fluorescence spectra of liposomes showed an increase in band intensity compared to the buffered solution of free GLAM 
(Figure 3, black curve). This is because the liposome when encapsulated offers a protected microenvironment where the 
molecules are distant from each other, with the deactivation of energy transfer between molecules. The loss of power 
provides a higher probability of energy decay in electrons, from an excited state to a flat state. This is reflected in the 
increase in fluorescence intensity (Farrapo Xavier AC, et al., 2013). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Fluorescence spectra of liposome formulations and GLA solution of 0.05 mg L-1. 
 
After the 24-hour period of drying in air, the liposome samples GLAM+DPPG, POPG+GLAM and GLAM+DPPG/POPG 
were analyzed with AFM. The AFM technique was widely used to evaluate nano carrier because can reveal the 
morphology and providing the diameter of these nano systems. The DPPG liposomes showed oval and irregular vesicles 
(Figure 4A and 4B) with a diameter of 350 ± 50 nm (Figure 4C).  

 
 

Figure 4: AFM images of liposomes produced with GLAM+DPPG (A, B and C), GLAM+POPG (D and E) and 
GLAM+DPPG/POPG (F, G and H). 
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The POPG liposomes had film formation on the surface of mica (Figure 4D and 4E) due to the fusion of vesicles because 
the transition phospholipid temperature (-2°C) (Avanti-Polar-Lipids, 2014) is lower than that of the sample temperature 
(25°C). Because of the formation of film, it was not possible to obtain the diameter of these vesicles by AFM. On the other 
hand, the images obtained from GLAM+POPG/DPPG liposomes showed the formation of large liposomes with an intense 
aggregation of the vesicles (Figure 4F and 4G) and diameter 500 ± 80 nm (Figure 4H). The larger diameter may be due to 
aggregation of the vesicles, which was observed in AFM images and subsequently confirmed by the DLS test. 
The DLS test provides important information on vesicle diameter, polydispersity and zeta potential of systems. The 
diameter of vesicles may be influenced by interactions between the encapsulated substance and the phospholipid, and by 
the technique used for the production of the vesicles. Size and number of bilayers influence the release profile of drug from 
liposomes. For example, size influences half-life time, whereas number of bilayers may determine the quantity of drug to 
be incorporated (Akbarzadeh A, et al., 2013; Patil YP, et al., 2014). 
The results obtained for the diameter of the vesicles showed that all liposomal formulations were larger than 100 nm, being 
therefore large vesicles (Table 1). As the preparation technique (lipid film hydration) favors the formation of multiple 
layers (Akbarzadeh A, et al., 2013; Patil YP, et al., 2014), liposomes obtained were probably from the type "MLV" 
(multilamellar vesicles). The diameter values presented by the liposome formulations GLAM+DPPG and 
GLAM+DPPG/POPG in the DLS test were similar to values found in the analysis with AFM (Figure 4C, 4H and Table 1). 
With regard to the polydispersity, values inferior or equal to 0.3 represent ideal measurement conditions, which correspond 
to a homogeneous suspension of particles with a low agglomeration rate and with only one size distribution (Malvern-
Instrument Easier, 2007; Dos Santos EP, et al., 2013; Kuelkamp IC, et al., 2009). The high values presented in this assay 
(Table 1) indicate agglomeration or heterogeneity in vesicle size. 
The zeta potential is used to detect the magnitude of repulsive interactions among colloidal particles and to determine 
colloid stability (Casals E, et al., 2003). It can be defined as the charge existing between a single particle and its associated 
ions in a surface. Negative zeta potential values found in this assay (Table 1) demonstrate negatively charged 
phospholipids that were used in the production of liposomes (Florence AT, et al., 2003). 

Table 1: DLS measurements of liposomal formulations (n=3). 
 Diameter 

(nm) 
Polydispersity 
P/d 

Zeta Potential 
PZ (mV) 

GLAM+DPPG 403.0 ± 27.8 0.6 ± 0.1 -32.5 ± 0.9 
GLAM+POPG 242.5 ± 34.4 0.5 ± 0.3 -19.2 ± 0.5 
GLAM+DPPG/POPG 738.9 ± 136.3 0.6 ± 0.1 -24.0 ± 8.3 

 
The encapsulation efficiency was the mechanical separation of the free drug (5-9 kDa) from drug encapsulated by 
centrifugation (Ankley GT, et al., 2009) with the support of a membrane with 100 kDa pores. 
From the quantification of the drug by fluorescence spectra, from collected supernatants, the encapsulation efficiency of 
each formulation was determined (Figure 5). The highest efficiency (85.2%) was obtained by formulating 
GLAM+DPPG/POPG. Then, 81.7% of the liposomes produced from the mixture GLAM+DPPG. A lower encapsulation 
efficiency was obtained (73.2%) from GLAM+POPG liposomes. 

 
Figure 5: Encapsulation efficiency of GLA in GLAM+DPPG, GLAM+DPPG/POPG and GLAM+POPG liposomes. 
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Encapsulation efficiency values presented may be explained by two reasons. The first is related to the diameter of vesicles. 
Liposomes produced with GLAM+DPPG/POPG presented a larger diameter (738.9 nm) if compared to other formulations 
(GLAM+POPG=242.4 nm and DPPG+GLAM=403.0 nm). It is therefore capable of storing larger amounts of drug. 
Another plausible explanation for this result is based on the transition temperature of the phospholipid (42°C for DPPG 
and -2°C for POPG). Since the assay was performed at 10°C, DPPG was still in the solid-crystalline form, whereas POPG 
had reached the transition temperature, initiating the release of the drug during the spin cycle. Therefore, the high 
transition temperature of DPPG (42°C) provided these liposomes with a greater temperature stability in which the tests 
were performed. 
 
CONCLUSION 
The results presented in our study are promising, since the liposome produced from DPPG has oval and well-designed 
vesicles, a suitable diameter and high encapsulation efficiency, leading to believe that further studies on the production of 
liposomes could be conducted. It is noteworthy that the only study published to date on the production nano carriers 
containing glatiramer acetate was in 2013 by Afzal et al. Thus, the use of liposomes for encapsulation of this drug is still in 
an exploratory stage and intense research on the development and characterization of liposomes containing glatiramer 
acetate are needed to improve conditions and patient compliance in the treatment of MS. 
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