INTERNATIONAL JOURNAL OF APPLIED BIOLOGY AND PHARMACEUTICAL TECHNOLOGY

www.ijabpt.com Volume-7, Issue-4, Oct-Dec-2016 CodenIJABFP-CAS-USA Received: 18th June 2016 Revised: 2nd July 2016 DOI: 10.21276/Iiabpt, http://dx.doi.org/10.21276/iiabptResearch article ISSN: 0976-4550

Copyrights@2016 Accepted: 2nd July 2016

SEQUENTIAL PHYLOGENETIC CHARACTERIZATION OF ZAIRE EBOLA VIRUS MATRIX PROTEIN VP40: AN *IN SILICO* ANALYSIS

Prashant Ranjan¹, Tanmoy Sarkar¹ and Parimal Das^{1*}

¹Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi-221005, India

ABSTRACT:*In silico* analysis of EBOV VP40 matrix protein revealed that VP40 contains hydrophilic segment with three potential phosphorylation sites and two sites for N-Glycosylation. Nine best active sites (Ligand binding site), 13 antigenic sites and 10 different catalytic domains were detected in that. Along with those several RNA binding residues viz. Lysine at position 225, 221, 275, 274, 279 and 274; Asparagines at 200 and 280; Serine at 222; Threonine at 277; Prolines at 50, 165 and 196; Leucine at 51 and Aspartic acid at 296 were detected during the analysis. MSA (Multiple Sequence Alignment) of all five species of EBOV matrix protein including Marburg VP40 shows that the length of peptide and VP40 domain are quite similar in all species than Marburg VP40. Conserve motif sequence analysis indicates that VP40 of Marburg virus has only two conserved motifs sequence while other species of EBOV possess 7 conserved motifs. The Phylogenetic analysis showed that VP40 EBOV out of 16 other negative sense RNA virus matrix proteins is orthologous to Marburg virus VP40 and seven best conserve motifs sequence found in all 17 negative strand RNA virus matrix protein. Novel observations thus made in this study could rationally be used for better and effective drug designing and help study protein function, their interaction and regulatory pathways.

Key words: EBOV, VP40, Insilico study, Phylogenetic analysis

*Corresponding author: ParimalDas, Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi-221005, IndiaEmail: parimal@bhu.ac.in

Copyright: ©2016 Parimal Das. This is an open-access article distributed under the terms of the Creative Commons Attribution License , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Abbreviations

UABE

EBOV, Ebola virus; ZEBOV, Zaire Ebolavirus; SEBOV, Sudan Ebolavirus; REBOV, Reston Ebolavirus; BEBOV, BundibugyoEbolavirus; VLPs, Virus Like Particles; NCBI, National Centre for Biotechnology Information; GRAVY, Grand Average of Hydropathicity; MEGA, Molecular Evolutionary Genetic Analysis; NLS, Nuclear Localization Signals; MEME, Multiple EM for Motif Elicitation; NJ,Neighbor-Joining method; CASTp, Computed Atlas of Surface Topography of Protein.

INTRODUCTION

Patients are dying by EBOV due to hyper secretion of cytokines, chemokines and growth factors which influenced the breakdown of vascular epithelium and multiorgan failure (Silva. L.P, et.al., 2012) Still now, there is no standard vaccine and remedy for treatment of EBOV. The EBOV genome contains seven genes viz., NP, VP35, V30, VP40, VP24, GP and L, which encodes seven viral structural proteins, those are NP (major nucleoprotein), VP35 (phosphoprotein), VP30 (minor nucleoprotein), VP40 (matrix protein), VP24 (secondary matrix protein), GP (glycoprotein) and L (RNA-dependent RNA polymerase (Nanbo. A, et. al., 2013). The matrix protein (VP40) is *located just beneath the viral membrane, which is most abundant protein in virions*.

International Journal of Applied Biology and Pharmaceutical Technology Page: 14 Available online at www.ijabpt.com

Main role of matrix protein is in virus assembly and budding of virus like particles (VLPs), which takes place at the plasma membrane (Noda. T, et al., 2002) and also plays a key role in viral and host RNA metabolism for the duration of its replications (Xavier. F, et. al., 2003). VP40 protein expressed in mammalian cells, which induces the formation of VLPs. VP30, VP35 and VP40 have ability to suppress RNA silencing (Fabozzi. G, et. al., 2011). VP40 has Late-budding domains (L-domains) that mediate interactions with host proteins to release of VLPs and virus. ISG15 of human inhibits budding of Ebola VP40 VLPs by blocking the ligase activity of Nedd4 (Okumura. A, et. al., 2008).

Here we report the findings of active sites, RNA binding sites, antigenic determinants, Catalytic domains, motifs distribution, phosphorylation and N-Glycosylation sites of EBOV VP40 matrix protein using bioinformatics tools. Active sites, RNA binding sites and antigenic sites is well thought-out as effective drug target sites for molecular based drug designing. Catalytic domains, motifs distribution, phosphorylation and N-Glycosylation sites helps to understand the molecular, cellular and evolutionary role of VP40

MATERIALS AND METHODS

Sequence retrieval

A sequence of VP40 matrix protein of Zaire EBOV (accession ID: AAG40166) was retrieved in Fasta format from NCBI (http://www.ncbi.nlm.nih.gov/) database and crystal structure of VP40 was downloaded from Protein Data Bank (PDB ID- 4LDD).

Physicochemical parameter analysis

The total number of amino acid (a.a) Molecular weight (Mw), theoretical isoelectric point (pI), GRAVY, number of positively charge (+R) and negatively charge (-R) residues, aliphatic index (AI) and instability index (II) was calculated by Protparam tool (http://web.expasy.org/protparam/) (Gasteiger. E, et. al., 2005).

Prediction of Phosphorylation, N-Glycosylation site

Netphos 2.0 server (www.cbs.dtu.dk/services/NetPhos/) (Gupta. R, et. al. 2004) was used to predict the serine, threonine and tyrosinephosphorylation sites whereas N-Glycosylation 1.0 server (<u>http://www.cbs.dtu.dk/</u>services/NetNGlyc/) (Blom. N, et. al., 1999) was used to predict the N-Glycosylation site.

Functional annotation

Functional enrichment of VP40 protein at molecular, biological and cellular level were analyzed with high confidence function prediction by PFP (Protein Function Prediction) tool (http://kiharalab.org/web/pfp.php)

Identifications of Active site, RNA binding site and Antigenic site

Active site prediction was done with the help of CASTp from the crystal structure (Dundas. J, et. al., 2006). Active site is the important analysis for docking studies. RNA binding interface prediction was done from crystal structure of protein by KYG (http://cib.cf.ocha.ac.jp/KYG/)(Kim. O.T.P, et. al., 2006) (http://cib.cf.ocha.ac.jp/KYG/). Antigenic site of protein sequence that is likely to be antigenic by eliciting an antibody response. Antigenic sites are determined using the method of Kolaskar and Tongaonkar. Predictions are based on a table that reflects the occurrence of amino acid residues in experimentally known segmental epitopes (http://imed.med.ucm.es/Tools/antigenic.pl).

Prediction of catalytic domains and motifs analysis

Catalytic domains of Zaire EBOV VP40 were identified using Motif scan (myhits.isb-sib.ch/cgi-bin/ motif scan) (Sigrist. C. J, et. al., 2010). MEME (Multiple Expectation-Maximization for Motif Elicitation) 4.6.0 was useful to show presence of different motifs of conserved sequences in EBOV and Marburg VP40 (Bailey. T.L, et. al., 2006).

Identification of nuclear and subcellular localization

Subcellular localization was done by WoLF PSORT program (Horton. P, et. al., 2007) (Jia. F, et al., 2013) and nuclear localization signal (NLS) was done by NLStradamus software (Nguyen. B.A.N, et. al., 2009).

Secondary structure prediction

Secondary structural properties of protein such as alpha helix, 310 helix, Pi helix, beta bridge, extended strand, beta turns, bend region, random coil, ambiguous states and other states of the protein was predicted through SOPMA program (Self-Optimized Prediction Method), the program which determined individual role of amino acid for building the secondary structure with their positions (http:// npsapbil.ibcp.fr/cgibin/npsa_automat.pl?page =/NPSA /npsa_sopma.html) (Geourjon. C, and Deléage. G, et. al.,1995).

International Journal of Applied Biology and Pharmaceutical Technology Page: 15 Available online at www.ijabpt.com

Multiple Sequence Alignment.

The Clustal X offline software (Larkin, M.A, et. al., 2007) were used for multiple sequence alignment of VP40 matrix protein of all group of EBOV including Marburg virus.

Phylogenetic Analysis

VP40 is activated as octameric and hexameric form which is liable for virus replication. So phylogenetic analysis of VP40 may gave better evidence for better drug designing. VP40 protein was analyzed to study the evolutionary relationship with other 16 viral matrix proteins of negative-sense RNA. Along with, evolutionary analysis of all proteins (NP, VP35, V30, VP40, VP24, GP and L, proteins) of five types of EBOV and Marburg virus proteins was carried out based on multiple sequence alignments (MSA) and neighbor joining method using Molecular evolutionary Genetic analysis (MEGA5.1) software (Tamura. K, et. al., 2011). Bootstrap analysis of 1,000 replicates was performed to provide confidence estimates for the tree topologies.

RESULTS AND DISCUSSION

Physicochemical parameter analysis.

The physiochemical parameter showed the stability of the protein about its functions. The isoelectric point of VP 40 is 8.76 at this point; it is least soluble in nature. The extinction coefficient indicates that how much light absorbed by a protein at 280 nm in water. II of vp40 is 40.39, which indicates instability of protein. II estimate the stability and instability of protein in test tube and it should be less than 40 for stability of protein. Aliphatic index of protein is the relative volume of a protein occupied by aliphatic side chains (Alanine, Valine, Isoleucine and Leucine) of vp40 protein. It showed a positive factor for the increase of thermo stability of globular proteins. GRAVY value is the sum of hydropathy value of all amino acids, divided by the number of residues in the sequence. Increasing positive score indicates greater hydrophobicity and vice versa. The GRAVY value with Mw 35182.8 of VP 40 is -0.052, indicating better interaction with water hence is hydrophilic protein. There are 26 negative charge residues and 29 positive charge residues and due to large number of positive residues the attribute of protein becomes acidic.

Prediction of Phosphorylation and N-Glycosylation site.

N-glycosylation occurs in asparagine amino acid residues present in asn/Xaa-Ser/Thr stretches where Xaa can be any amino acid except proline. This consensus tripeptide is referred as N-glycosylation sites. VP40 protein contains one serine, one threonine and two tyrosine phosphorylation sites and two N-Glycosylation potential sites (Figure 1.). The potential crossing, the threshold of 0.5 represents a predicted phosphorylated site and N-Glycosylation site. Protein phosphorylation at serine, thereonine or tyrosine residue affects multitude of cellular signaling process. N-Glycosylated proteins would increase the performance of network such as protein interaction, protein folding.

Functional annotation.

The functions of VP40 protein at molecular, biological and cellular level under study were predicted by PFP from Kihara Bioinformatics Laboratory (Purdue University, USA) which uses references from Gene Ontology (Table1.). Function of protein predicted on the basis of topology similarity to structures with known function, geometric and residue similarity of predicted functional sites to regions of known structures and sequence homology to functionally annotated sequences.

Identifications of Active, Antigenic and RNA binding sites.

Active site, Antigenic site and RNA binding site prediction helps in description of cellular activities, drug target and whole cell engineering and also play an important role in function and structural organization of a cell. Determination of the active site residues (Figure 2) for the binding of ligand for inhibiting the activity of the function of target protein. In this study we get total nine best active sits positioned in between 44 and 326 amino acid residues. The largest active site has an area of 704.4 Å and volume of 869.3 Å. Antigenic determinant program predicts antigenic segment within a protein sequence that are to be expected antigenic against antibody response. There were total 13 antigenic sites determined using method of Kolaskar and Tongaonkar (Table2.). KYG (Kim. O.T.P, et. al., 2006) was used to determine the RNA interface residues on a protein surface (Wass. M. N, et. al., 2009). The susceptibility of residue occurrence in the interface of protein and RNA molecules observed in protein-RNA complex structures. The RNA binding interface residue prediction reveals that residues Lysine (at position 225, 221, 275, 274, 279 and 274) Asparagine (position at 200 and 280), Serine (position at 222), Threonine (position at 277), Proline (position at 50,165, 196), Leucine (51) and Asparagine (296) are RNA binding site (Figure-3).

International Journal of Applied Biology and Pharmaceutical Technology Page: 16

Available online at www.ijabpt.com

Prediction of catalytic domains and motifs analysis

Motif scan tool scan all known motifs that present in a sequence. There are number of motifs present in one domain and it decides the function of protein. Motif scan predicted 11 different catalytic domains with their position in sequence and each motif has different function (Table3.).Motifs distribution in EBOV species and Marburg matrix protein shows in Figure 5b. There are seven motifs sequence obtained and out of seven only two motifs sequence similar in VP40 (motifs 1 (AAIMLASYTITHFGKTSNPLVRINRLGPGIPDHPLRLLRIGNQAFLQEFV)& 2 (DHPSHTPNSVASAFILEAMVNVISGPKVLMKOIPIWLPLGVSDOKTYSFD) of Marburg as compared to other species of EBOV matrix protein (all seven motifs present). In case of all 17 negative sense RNA virus matrix proteins revealed that there is no motifs distribution in Zaire EBOV and Rabies VP40. Moreover, motif 3 (LVHRLTGKKITTKNGOPIIPILLPKYIGMDPISOGDLTMVITODCDTCHS) is common in all negative sense RNA virus matrix proteins except Zaire, Rabies and turkey VP40 (Fig6 b&c.). Motifs distributions in Ebola virus proteins (including all five species) along with Marburg virus proteins indicates the presence of total seven best possible motifs and motif 3 (VRRTAGLNEKLVFYNNTPLTLLTPWRKVLTTGSVFNANOVCNAVNLIPLD) of Zaire. Bundbugyo and Sudan **EBOV** motif is common in all proteins and 3(VRRTAGLNEKLVFYNNTPLTLLTPWRKVLTTGSVFNANQVCNAVNLIPLD) is common in all proteins of Reston EBOV except GP and VP30.

Same as Reston, motif 3 is common in Tai EBOV proteins except GP and L. In case of Marburg motif3 is uncommon in VP35, VP40 and GP (Fig7 b & c.). These conserved motifs could be the important elements determining the molecular function among different matrix protein species.

Identification of nuclear localization signal or sequence and sub cellular localization

Activity of protein depends on localization of protein because posttranslational modification occurs on the basis of localization of protein in the cell. Interaction of protein differs due to posttranslational modification. Nuclear and sub-cellular localization analysis revealed that VP40 proteins of EBOV were distributed in mitochondria, cytoplasm, and peroxisome as well as in nucleus.

Molecular Function	Biological Function	Cellular Component		
RNA binding	Viral release from host cell	Virion membrane		
Nucleic acid binding	Virus-host interaction	Host cell plasma membrane		
Binding	Interaction with host	Host cell endomembrane system		
	Viral reproduction	Host cell membrane		
	Symbiosis, encompassing	Ribonucleoprotein complex		
	mutualism through parasitism	Kibolideleoprotein complex		
	Interspecies interaction between	Other organism membrane		
	organisms	Outer organishi memorane		

Table-1: Function prediction of VP40 protein using PFP tool.

 Table-2: Antigenic sites prediction: There were 11 antigenic sites determined at the different position of amino acid residues.

S.No	Start Position	Sequence			
1	14	MEAIYPVRS	22		
2	60	DHASHTPGSVSSAFILEAMVNVISGPKVLMKQIPIWLPLGVAD	102		
3	113	AAIMLASYTI	122		
4	129	TNPLVRVNR	137		
5	142	IPDHPLRLLRI	152		
6	154	NQAFLQEFVLPPVQLPQYFTFDLTALKLITQPLPA	188		
7	203	LRPGISFHPKLRPILLP	219		
8	244	LQDFKIVPI	252		
9	259	MGIEVPETLVHK	270		
10	282	QPIIPVLLPKYIGLDPVAP	300		
11	302	DLTMVITQDCDTCHSPASLP	321		

International Journal of Applied Biology and Pharmaceutical Technology Page: 17 Available online at www.ijabpt.com

Secondary structure prediction

SOPMA is a secondary structure prediction program (self optimized prediction method) that uses multiple alignments methods aimed at predicting protein structure and function. The results of this analysis are depicted that it contains of 17.18 % alpha helix, 25.77% extended strand, 6.75% and 50.35% β -turn and random coil (Figure-4.).

Table-3: Catalytic arrangement in deduced amino acid sequence of VP40 protein using motif scan.

Catalytic Domain	Position	Function		
Amidation	222-225, 272-275	Receptor recognition and signal transduction		
Asn_Glycosyltion	23-26, 220-223	Post translational modification		
CAMP_Phospho_site	274-277	Glycogen, sugar and lipid metabolism in cell.		
Ck2_Phospho_site	190-193, 232-235, 243-246	Phosphorylates the acidic protein.		
Myristyl	29-34, 67-72, 198-203	Plays vital role in membrane targeting and signal transduction.		
PKC_Phospho_site	222-224, 272-274, 277-279	Receptor desensitization and regulating transcription.		
Multiheme_cytc	306-320	It helps in transcription regulation		
PFTA(Protein prenyltransferases)	1-11	Formation of stable complex		
DUF1602	39-53	Unknown		
Dak2(dihydroacetone kinase)	66-180	Glycerone kinase activity, cellular response to toxic substance		
Vp40	1-295	It plays an important role in replication of EBOV		

NetPhos 2.0: predicted phosphorylation sites in Sequence

(b)

Figure-2: Indicates information about active sites using CasTp. (a) Green color showed the active site area from 44 to 326 with the beta-sheet and alpha sheet in between them. (b.) The 3D structure of best active site, which shown in green color.

International Journal of Applied Biology and Pharmaceutical Technology Page: 19 Available online at www.ijabpt.com

Figure-3: RNA interface residue prediction: The protein is color coded residue-wise as shown above. Red color showed highly likely to be an interface, light blue color showed unlikely to be an interface and deep blue color showed buried residue (not considered as an interface residue). Above structure rotate by 180° for showing the other surface area of structure.

10	20	30	40	50	60	70
1	1	1	1	1	1	1
MRRVILPTAPPEYM	EAIYPVRSNS	TIARGGNSNT	GFLTPESVNG	DTPSNPLRPI	ADDTIDHASH	TPGSVS
hceeccccchhhh	hheeeccttc	eeeetaaaaa	eeeccccccc		0000000000	cttccc
SAFILEAMVNVISG	PKVLMKQIPI	WLPLGVADQK	TYSFDSTTAA	IMLASYTITH	FGKATNPLVR	VNRLGP
hhhhhhhhhccc	cteeeeccce	eeeeecctto	eeeecchhhh	eeeeeeeec	occcccceee	eecccc
GIPDHPLRLLRIGN	QAFLQEFVLP	PVQLPQYFTF	DLTALKLITQ	PLPAATWTDD	TPTGSNGALR	PGISFH
cococceeeeetc	hhhhheccc	cococceeee	ehhhhheecc	0000000000	0000000000	tteecc
PKLRPILLPNKSGK	KGNSADLTSP	EKIQAIMTSL	QDFKIVPIDP	TKNIMGIEVP	ETLVHKLTGK	KVTSKN
ttoceeeeccoccc	cccceecccd	hhhhhhhhh	ttteeeecco	coceeeeccd	hhhhhhtto	eeectt
GQPIIPVLLPKYIG	LDPVAPGDLT	MVITQDCDTC	HSPASLPAVI	EK		
cocceeeccceee	addacttdee	eeeeccoccc	cccccchhhh	hh		

Figure- 4: Secondary structure of EBOV VP40 protein predicted using SOPMA: The secondary structure like helical structure (h) indicates in blue color, extended strand (t) showed with green color, β-sheet (e) depicted in red color and random coils (c) are in yellow color

International Journal of Applied Biology and Pharmaceutical Technology Page: 20 Available online at www.ijabpt.com

		10	20	30	40	50	60	70	80
				••••	• • • • • • • •				
VP40[Bundibugyo VP40[Tai	MRRAILI	TAPPEYIEA	VYPMRTVST	SINSTASCP	NFPAPDVMMS NVTTTGVMTN	DTPSNSLRPI DTPSNSLRPI	ADDNIDHPSHT	PTSVSSAFII	LEAMVNVIS
vp40[Zaire	MRRVILI	TAPPEYMEA	IYPVRSNST	IARGGNSNT	GFLTPESVNG	DTPSNPLRPI	ADDTIDHASHT	PGSVSSAFII	LEAMVNVIS
VP40[Reston	MRRGVLI	TAPPAYNDI	AYPMSILPT	RPSVIVNET.	KSDVLAVPGA	DVPSNSMRPV	ADDNIDHSSHT	PS <mark>GVA</mark> SAFII	LEATVNVIS
VP40[Sudan vp40[Marburg	MRRVTVI	TAPPAYADI	JYPMSMLPI	KSSRAVSGI	QQKQEVLPGN OLSN	DTPSNSMRPV	ADDNIDHTSHT	PNGVASAFII	LEATVNVIS
Clustal Consensus		: *:		Gringhtran	210M	.: : *		.*. ** *	*** ::: :
					140 	150	160		180
VP40[Bundibugyo	ADOKTYS	FDSTTAAIM	LASYTITHE	GKTSNPLVR	INRLGPGIPE	HPLRLLRIGN	QAFLQEFVLPP	VQLPQYFTFI	DLTALKLIT
VP40[Tai	SDOKTYS	FDSTTAAIM	LASYTITHF	GKTSNPLVR	INRLGPGIPE	HPLRLLRIGN	QAFLQEFVLPP	VQLPQYFTFI	OLTALKLIT
VP40[Zaire VP40[Reston	ADOKIYS	SFDSTTAAIM SFDSTTAAIM	LASYTVTHF	GKAINPLVR	VNRLGPGIPL VNRLGPGIPL	HPLRLLRLGN	IQAFLQEFVLPP IOAFLOEFVLPP	VOLPOYFTFL	OLTALKLIT
VP40[Sudan	ADOKTYS	FDSTTAAIM	LASYTITHF	GKANNPLVR	VNRLGQGIPI	HPLRLLRMGN	QAFLQ EFVL PP	VQLPQYFTFI	OLTALKLVT
vp40[Marburg	MSNFEYI	LAHTVAALL	r <mark>gsytitof</mark>	THNGQKFVR	VNRLGTGIPA	HPLRMLREGN	QAFIQNMVIPR	NFSTNQFTYN	NLTNLVLSV
					•	•			
	1	210	220	230	240	250	260	270	280
VP40[Bundibugyo	GILRPGI	SFHPKLRPI	LLPGKTGKR	GSSSDLTSP	DKIOAIMNFI	ODLKLVPIDP	AKNIMGIEVPE	LLVHRLTGK	CITTKNGOP
VP40[Tai	GTLRPG]	SFHPKLRPI	LLPGRAGKK	GSNSDLTSP	DKIQAIMNFI		TKNIMGIEVPE	LLVHRLTGK	TTTKNGOP
vp40[Zaire	GALRPGI	SFHPKLRPI	LLPNKSGKK	GNSADLTSP	EKIQAIMTSI	JODFKIVPIDP	TKNIMGIEVPE	TLVHKLTGK	VTSKNGOP
VP40[Rescon VP40[Sudan	GALRPGI	SFHPKLRPV	LLPGKTGKK	GHVSDLTAP	DKIQTIVNLM	MQDFKIVPIDP	AKSIIGIEVPE	LLVHKLTGK	KMSQKNGQP
vp40[Marburg	NTMHPAT	SIHPNLPPI	VLPTVKKQA	YRQHKNPNN	GPLLAISGII	HOLRVEKVPE	KTSLFRISLPA	DMFSVKEGM	KKRGENSP
Clustal Consensus	. ::*.:	*:**:* *:	:** :	• •	: :* :		**	:. *	:*
		310	320	330					
				···· ·					
VP40[Bundibugyo VP40[Tai	GDLTMVITQDCDTCHSPASLPPVSEK GDLTMVITQDCDSCHSPASLPPVNEK								
vp40[Zaire	GDLTMV1	TODCDTCHS	PASLPAVIE	K					
VP40 [Reston	GDLTMV1	TODCDSCHS	PASHPYHMD	KQNSYQ					
vp40[Sudan vp40[Marburg	ROVVLA	ANPTLSAV-	PASCSILSE	K					
Clustal Consensus	· · · · ·	: .							
				(a.)					
Name 🙎	p-value ? Mot	if Location 📍							
1. vp40[Zaire	8.52e-303								
2. vp40[Marburg	8.22e-61 —								
3. VP40[Bundibugyo	0.00e+0								
4. VP40[Reston	2.25e-292								
5. VP40[Sudan	7.29e-290								
6. VP40[Tai	0.00e+0								
				(b.)					

International Journal of Applied Biology and Pharmaceutical Technology Page: 21 Available online at www.ijabpt.com

Motifs	Conserve motifs sequence		
Motif1 💻	LCY LMDINEDLNRLLWRSRCKIVRIQAVLQ SV QEFRIYDDVIINDDQ		
Motif2 📃	FMV VGNFRRKKNEAYSADYCKMKIEKMGLVFALGGIGGTSL IRSTGKM		
Motif3	VRRTAGLNEKLVFYNNT LTLLT WRKVLTTGSVFNANQVCNAVNLI LD		
Motif4	EVYDFDQSSWYTKGSLA IL TTYPDGRLI QVRVIDPGLGDRKDECFMY		
Motif5	T QRFRVVYMSITRLSDNGYYTV RRMLEFRSVNAVAFNLLVTLRID		
Motif6	FLLGIVEDSDPLSPPRORTFGSLPLGVGKSTAK EELLKEV		
Motif7	EADQAITQARIA YAGLILIMTMNN KGIFKKLGAGMQVIVELG YVQAE		
(c.)			

Figure 5. Above information shows the result of MSA of EBOV and Marburg VP40 and conserve motifs analysis of matrix proteins. (a.) MSA of matrix protein revealed considerable variations around domain area however '*' shows residues in the column are identical in all sequence, ':' indicates conserve substitution, '.' represents semi conserved substitution and dashes between sequence shows deletion (b.) VP40 of Marburg virus has only two conserved motifs sequence (i.e. motif 1& 4) however, other species of EBOV shows 7 conserved motifs mentioned in table. (c.) Seven conserved motifs are found in all five.

International Journal of Applied Biology and Pharmaceutical Technology Page: 22 Available online at www.ijabpt.com

(C)

Figure 6. (a) Phylogenetic connection of VP40 matrix protein and their evolutionary relationship with 16 other viral matrix proteins of negative-sense RNA virus. This analysis revealed that VP40 matrix protein of EBOV is orthologous to Marburg VP40 matrix protein. The others 16 negative –sense RNA virus matrix protein was collected from NCBI database Accession Nos.: Hendra virus (AAB39504), Nipah virus (NP_112025), Measles virus (ACC86103), Newcastle virus (AAY78544), Siendai virus (AAB06280), Simian virus41 (Yp_138507), Tupaiaparamyxovirus (NP_054694), Human parainfluenza virus type I (AAA46861), Rabies virus (ADK90865), Avian metapneumo virus type C (AGB67520), Canine distemper virus (AAA87372), Bovine respiratory syncytial virus (AAC96305), Rinder pest virus (CAA53779), Mumps virus (BAA13025), Turkey rhinotracheitis virus (CAA41496), Marburg virus (CAA78116). (b) Figure represents conserve motifs analysis. (c) Seven best conserve motifs sequence found in all 17 negative strand RNA filamentous virus matrix protein.

Multiple Sequence Alignment.

The multiple sequence alignment of all the five species of EBOV matrix protein VP40 including Marburg virus revealed that the lengths of the peptide and the VP40 domains are quite similar in all species of EBOV VP40 than Marburg matrix protein; nevertheless, substantial variation was found in the mature peptide region of all matrix protein (Figure-6a).

International Journal of Applied Biology and Pharmaceutical Technology Page: 23 Available online at www.ijabpt.com

Phylogenetic Analysis

The Unrooted Phylogenetic tree of EBOV VP40 matrix protein along with other 16 negative sense RNA virus matrix proteins which showed that EBOV VP40 is orthologous to Marburg virus VP40 (Figure6a.). It also revealed that there are three major clusters and same VP40 matrix proteins are not grouped along with matrix protein of Hendra virus, Nipah virus, Measles virus, Newcastle virus, Siendai virus, Simian virus41, Tupaiaparamyxo virus, Human parainfluenza virus type I, Rabies virus, Avian metapneumo virus type C, Canine distemper virus, Bovine respiratory syncytial virus, Rinder pest virus, Mumps virus, and Turkey rhinotracheitis virus.

The statistical importance of evolutionary tree was determined by high bootstrap value. For the better understanding of evolutionary significance of EBOV protein, which showed probable homologous proteins with analogous functions from common ancestors, a broad Phylogenetic tree was reconstructed from the 49 EBOV proteins including all structural proteins of five species of EBOV along with 7 Marburg virus proteins (Figure7a.)

International Journal of Applied Biology and Pharmaceutical Technology Page: 24 Available online at www.ijabpt.com

(c).

Figure 7. (a.) Phylogenetic relationship of Ebola virus proteins (including all five species) along with Marburg virus proteins, which codes seven different structural proteins. The sequence of all seven different structural protein were retrieved from NCBI Entrez protein database and their accession number are as follows:- Zaire EBOV [NP (AAG40164), VP35 (AAQ55046), VP40 (AAG40166), GP (AAM76034), VP30 (AHX24670), VP24 (AAM76037), L (AER59721)], Bundibugyo EBOV [NP (AC128620), VP35 (AC128621), VP40 (AC128622), GP (AC128623), VP30 (AC128625), VP24 (AC128626), L (AC128627), Reston EBOV [NP (BAB69003), VP35 (BAB69004), VP40 (AAN04450), GP (BAB69007), VP30 (BAB69008), VP24 (BAB69009), L (Q8JPX5)],
Sudan EBOV [NP (ACR33187), VP35 (ABY75322), VP40 (Q5XX06), GP (Q7T9D9), VP30 (AGL50929), VP24 (AAU43889), L (Q5XX01)], Taiforest EBOV [NP (AC128635), L (Q66810)], Marburg EBOV [NP(AAR85460), VP35 (CAA78115), VP40 (CAA78116), GP (ADM72998), VP30 (CAA78118), VP24 (CAA78119), L (ABA87130)] (b.)
Best 7 conserve motifs presents in all EBOV along with Marburg virus. (c.) Representation of motifs analysis in Ebola virus proteins (including all five species) along with Marburg virus proteins.

International Journal of Applied Biology and Pharmaceutical Technology Page: 25 Available online at www.ijabpt.com

CONCLUSION

In this study we conclude that EBOV VP40 protein is hydrophilic in nature and its attribute is acidic. Presence of phosphorylation and N-Glycosylation sites indicates that it has role in interferon signaling, protein interaction and protein folding. Occurrence of several RNA binding sites is significant, which have role in various processes like cellular function, transport and localization. They may play essential role in post-transcriptional control of RNA such as polyadenylation, mRNA localization and translation. Evidently identification of the existence of active site and antigenic determinant in EBOV VP 40 protein will thus eventually help in effective drug designing in future. A total of 10 different catalytic domains were identified in this proteinwhich decide its function. The Phylogenetic analysis illustrates that VP40 EBOV out of 16 other negative sense RNA virus matrix proteins is orthologous to Marburg virus VP40.

ACKNOWLEDGEMENT

We are grateful for providing Internet facility from Centre for Genetic Disorders at Banaras Hindu University.

REFERENCES

- Blom N, Gammeltoft S. and Brunak S. (1999). Sequence and structure based prediction of eukaryotic protein phosphorylation sites. J MolBiol: Vol. 294, 5, 1351–1362.
- Bailey T.L, Williams N,Misleh C. and Li W.W. (2006). MEME: Discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research: Vol. 34, W369–W373.
- Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y. and Liang J. (2006). CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res: Vol. 34, 116–8.
- Fabozzi G, Nabel C.S, Dolan M.A. and Sullivan N.J. (2011). Ebola Virus Protein Suppress the effects of small interfering RNA by direct interaction with the mammalian RNA interference pathway. Journal of virology: Vol. 85, 6: 2512–2523.
- Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins M.R, Appel R.D. and Bairoch A. (2005). Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook. Humana Press, Totowa, NJ.
- Gupta R, Jung E. and Brunak S. (2004). Prediction of N-glycosylation sites in human proteins. Pac SympBiocomput: Vol. 7, 310–322.
- Geourjon C. and Deléage G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. ComputApplBiosci: Vol. 11, 6, 681-684.
- Hartman A.L, Towner J.S. and Nichol S.T. (2010).Ebola and Marburg hemorrhagic fever.Clin Lab Med: Vol. 30, 1, 161-177.
- Horton P, Park K, Obayashi T. and Nakai K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Res: Vol. 35, W585–W587.
- Jia F, Wu B, Li H, Huang J. and Zheng C. (2013). Genome-wide identification and characterization of F-box family in maize. Mol Genet Genomics: Vol. 288, 559–577.
- Kim O. T. P, Yura K. and Go N. (2006). Amino acid residue doublet propensity in the protein-RNA interface and its application to RNA interface prediction. Nuc. Acids Res: Vol. 34, 22, 6450-6460.
- Larkin M.A, Blackshields G, Brown N.P, Chenna R, McGettigan P.A, McWilliam H, Valentin F, Wallace I.M, Wilm A, Lopez R, Thompson J.D, Gibson T.J. and Higgins D.G. (2007). Clustal W and Clustal X version 2.0.Bioinformatics: Vol. 23, 21, 2947-2948.
- Leroy E.M, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska J.T, Gonzalez J.P. and Swanepoel R. (2005). Fruit bats as reservoirs of Ebola virus. Nature: Vol. 438, 575-576.
- Nanbo A, Watanabe S, Halfmann P. and Kawaoka Y. (2013). The spatio-temporal distribution dynamics of Ebola virus proteins and RNA in infected cells. Scientific Reports: Vol. 3, 1206.
- Noda T, Sagara H, Suzuki E, Takada A, Kida H. and Kawaoka Y. (2002). Ebola Virus VP40 Drives the Formation of Virus-Like Filamentous Particles Along with GP. Journal of virology: Vol. 76, 10, 4855-4865.

International Journal of Applied Biology and Pharmaceutical Technology Page: 26 Available online at www.ijabpt.com

- Nguyen B.A.N, Pogoutse A, Provart N. and Moses A.M. (2009). NLStrada-mus: a simple Hidden Markov Model for nuclear localization signal prediction. BMC Bioinf: Vol. 10, 202.
- Okumura A, Pitha P.M. and Harty R.N. (2008). ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. PNAS: Vol. 105, 10, 3974 3979
- Silva L.P, Vanzile M, Bavari S, Aman J. M. J. and Schriemer D.C. (2012). Assembly of Ebola Virus Matrix Protein VP40 Is Regulated by Latch-Like Properties of N and C Terminal Tails. PLoS One: Vol. 7, 7, 39978.
- Sigrist C. J, Cerutti L, de Castro E, Langendijk-Genevaux P.S, Bulliard V, Bairoch A. and Hulo N. (2010). PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res: Vol. 38, D161-6.
- Tamura K, Peterson D, Stecher G, Nei M. and Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. MolBiolEvol: Vol. 28, 10, 2731–2739.
- Wauquier N, Becquart P, Padilla C, Baize S. and Leroy E.M. (2010). Human Fatal Zaire Ebola Virus Infection Is Associated with an Aberrant Innate Immunity and with Massive Lymphocyte Apoptosis. PLoSNegl Trop Dis: Vol.4, 10, 837.
- Wass M. N. and Sternberg M. J. (2009).Prediction of ligand binding sites using homologueous structures and conservation at CASP8. Proteins: Vol 77, 9, 147-151.
- Xavier F. Gomis-Rüth, Dessen A, Timmins J, Bracher A, Kolesnikowa L, Becker S, Klenk H.D. and Weissenhorn W. (2003). The Matrix Protein VP40 from Ebola Virus Octamerizes into Pore-like Structures with Specific RNA Binding Properties. Structure: Vol. 11, 4, 423-433.