

GERMINATION OF *TERMINALIA SERICEA* BUCH. EX DC SEEDS: THE EFFECTS OF TEMPERATURE REGIME, PHOTOPERIOD, GIBBERELLIC ACID AND POTASSIUM NITRATE.

Ezekiel Amri

Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, P. O. Box 2958, Dar es Salaam, Tanzania.

E-mail: ezekielamri@yahoo.com

ABSTRACT : In an effort to improve and promote the propagation of *Terminalia sericea*, the effects of temperature, photoperiod and growth regulators on seed germination were investigated. Seeds were tested with different temperature regime (10, 15, 20, 25, 30, 35 and 40°C) and in photoperiod (4/20, 8/16, 12/12, 16/8 light/dark hrs and 24 hours continuous dark). Pre-treatments with growth regulators were done with solutions of gibberellic acid (GA₃) at (50, 100, 200, 400 ppm) and potassium nitrate (KNO₃) at (2000, 4000, 6000, 8000 ppm). The effects of temperature regime, photoperiod and gibberellic acid were significant (p< 0.001). Optimum temperature regime was found at 25°C with germination 35% while photoperiod of 12/12 light/dark hr had relatively high germination 33%. Highest germination 67% was obtained with pre treatment of GA₃ at 400 ppm. Pre treatments with KNO₃ had insignificant effect and generally had the lowest percentage of seed germination. These results have significant implication on the best methods to be used in improving seed germination of *T. sericea*.

Key words: Terminalia sericea, seed germination, Temperature regime, Gibberellic acid

INTRODUCTION

Terminalia sericea Burch. ex DC is a common shrub or tree of 6 to 9 m, but individual trees may reach 23 m in height, the species belongs to the family Combretaceae (Palgrave, 1988). *T. sericea* is scattered in open woodlands, or as a dominant or co-dominant in mixed deciduous forests. It thrives in a range of soil types, moisture conditions and drainage conditions as long as light is not a limiting factor (Pohjonen, 1992). As a multipurpose species, uses of *T. sericea* ranges from land improvements to medicinal plant. The tree improves sites by draining waterlogged soils, shading out weeds, enriching impoverished soils and also used for erosion control (Eckman and Deborah, 1993). For medicinal uses, roots of *T. sericea* are used to treat bilharzia, colic, pneumonia and diarrhea while leaves are used for stomach disorders (Pohjonen, 1992). The species is also used for carvings, fencing posts, charcoal, fuel wood, building material and tool handles (Eckman and Deborah, 1993).

Because of its importance in providing many uses and services, efforts aimed at planting this miombo tree species have been unsuccessful due to the low germination rate under natural conditions (IITO, 2003). Besides, there is an urgent need for domestication of the species in order to reduce pressure from the natural forests (Malimbwi and Mugasha, 2001). Artificial regeneration and domestication of miombo tree species requires knowledge on their seed biology (Maghembe *et al.*, 1994). Seed germination of tropical species is influenced by several biological factors such species, seed viability, seed size (Flores and Briones, 2001; Rojas-archiga *et al.*, 2001; Barrera and Nobel, 2003) and plant growth regulators through actions as germination stimulator (Karam, and Al-salem, 2001; Chen *et al.*, 2008).

ISSN 0976-4550

Environmental factors like temperature, relative humidity, light intensity and duration also have influence on seed germination (Furuya and Kim, 2000; Benitez-rodriguez *et al.*, 2004).

Though few studies have been conducted on different aspects of seed germination of *T. sericea* (Msanga, 1998; Mugasha *et al.*, 2004; Likoswe *et al.*, 2008), currently no information is available on the effect of temperature regime, photoperiod and presoaking treatments of plant growth regulators. The aim of the present study was therefore to investigate the effects of temperature regime, photoperiod, and plant growth regulators such as gibberellic acid (GA₃) and potassium nitrate (KNO₃) on seed germination of *T. sericea*.

MATERIALS AND METHODS

Seed collection and processing

Seeds of *T. sericea* were collected from Mkundi ($6^{0}40^{\circ}$ S; $37^{0}39^{\circ}E$) at an altitude of 475 m a.s.l. Seed samples were collected from randomly selected fruiting branches from as many plants as possible in healthy looking populations. Seeds were mechanically nicked using secateur then surface sterilized with 1% sodium hypochlorite prior to any experimental usage.

Effects of temperature regime and photoperiod

The effect of the temperature on seed germination was investigated by exposing the seeds to constant temperatures of 10, 15, 20, 25, 30, 35 and 40°C under photoperiod of 12 light/dark hours. To determine the effect of different photoperiod, treatments were conducted in 4/20, 8/16, 12/12, 16/8 light/dark hours photoperiod and 24 hours continuous dark, seeds were incubated at constant temperature of $25 \pm 1^{\circ}$ C for 30 consecutive days in the seed germinator. Daily photoperiod treatments were regulated by removal and placement of the petri dishes into black carbon paper. Germination trials were conducted in 10 cm diameter Petri dishes lined with filter papers and moistened with sterile distilled water to ensure adequate moisture for the seeds. Seed germinators were equipped with cool-white fluorescent lamps that provided a photosynthetic photon flux of 40 µmol.m⁻²s⁻¹.

Effects of pre-treatment with plant growth regulators

Seeds were first sterilized with 1% sodium hypochlorite, washed thoroughly with double distilled water, and dipped in first various pre-treatment solutions of gibberellic acid (GA₃); (50, 100, 200, 400 ppm). The second pre- treatment involved soaking seeds with solution of potassium nitrate (KNO₃) at (2000, 4000, 6000, 8000 ppm) for period of 12 hr at A constant temperature of $25 \pm 1^{\circ}$ C. Control was maintained using double distilled water. After treatments, seeds were removed and washed with distilled water three times and immediately sown into 10 cm diameter Petri dishes on a single layer of Whatman No. 1 filter paper with about 5 ml of distilled water. The moisture levels of filter paper were maintained by adding distilled water as required.

Experimental design

Treatments were arranged in a randomized complete block with four replicates of 25 seeds each. Daily observations were-taken for the germination experiment for a period of two months from the date of sowing and seeds were considered germinated when the radicle was about 2 mm long and cotyledons had emerged from the seed coat indicating the seedling was likely to be successfully established. Results were expressed as germination percentage which was the percentage of live seeds that had germinated at the end of test.

Data analysis

Results of the germination studies were subjected to an analysis of variance (ANOVA) using GenStat Discovery Edition 3 Release 7.22 DE computer software package (GENSTAT, 2008). Prior to statistical analysis daily germination and cumulative percentages data were transformed into arc sine values to bring data to normality. For significant treatments revealed by Analysis of Variance (ANOVA), means were separated by Duncan Multiple Range Test (DMRT).

International Journal of Applied Biology and Pharmaceutical Technology Page: 105 Available online at <u>www.ijabpt.com</u>

RESULTS

The effect of temperature regime and photoperiod

The effect of temperature regime on seed germination of *T. sericea* was significant (p< 0.001). Seeds of *T. sericea* germinated in a wide range of temperature from 15 to 35°C. However, highest germination 35% was found at 25°C indicating the optimum temperature was 25°C (Fig. 1). No significant differences for percentage germination were found in the temperature range of 20 to 30°C, but differed significantly from other tested temperatures (p < 0.05 by DMRT test). The results indicated that the species has a wide range of temperature requirement for germination. The minimum temperature of germination is between 10 to 15 °C and the maximum between 35 to 40°C under photoperiod of 12 light/dark hours (Fig. 1).

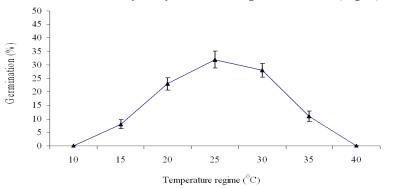


Fig. 1: The effect of temperature regime on cumulative germination of *T. sericea* Bar graph with the same letter indicate no significant difference at p<0.05 (DMRT).

The effect of photoperiod on seed germination was significant (p < 0.001). Among different photoperiods, 12/12 light/dark hr duration was found optimum for germination with percentage germination of 33 % (Fig. 2). No significant difference were observed between photoperiod of 8/16 light/dark and 12/12 hr light/dark duration. Increasing photoperiods from 16/8 light/dark significantly decreased germination, and at photoperiod of 24 hours dark no seed germination was recorded (Fig. 2).

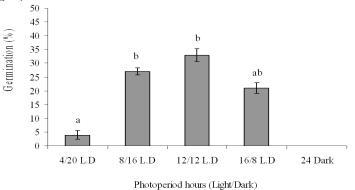
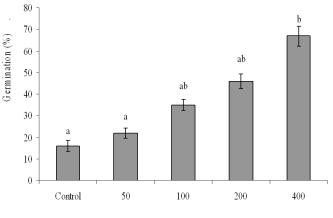
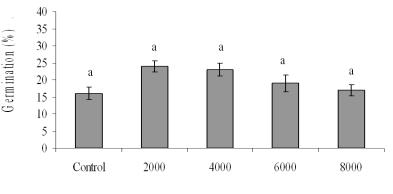
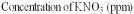


Fig. 2: The effect of photoperiod on cumulative germination of *T. sericea* Bar graph with the same letter indicate no significant difference at p<0.05 (DMRT).

International Journal of Applied Biology and Pharmaceutical Technology Page: 106 Available online at <u>www.ijabpt.com</u>

Effects of pre-treatment with plant growth regulators

The effect of pre-treatment with solutions of gibberellic acid (GA₃) on seed germination of *T. sericea* was significant (p < 0.001). All concentrations of GA₃ had higher germination than control and at highest concentration (400 ppm) was the most effective with seed germination of 67% (Fig. 3). Differences among responses of different GA₃ concentrations were statistically significant (p < 0.05) and seeds treated with GA₃ began germinating sooner and germination was completed earlier than control treatment.

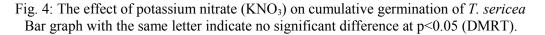


Fig. 3: The effect of gibberellic acid (GA₃) on cumulative germination of *T. sericea* Bar graph with the same letter indicate no significant difference at p<0.05 (DMRT).

The effect of pre-treatment with solutions of potassium nitrate (KNO₃) on seed germination *T. sericea* was not significant. Evidence from the result showed that insignificant differences exist in the effect of the soaking regime of different concentrations of KNO₃ on percentage seed germination of *T. sericea* (Fig. 4). The percent germination decreased as the concentration increased.

International Journal of Applied Biology and Pharmaceutical Technology Page: 107 Available online at <u>www.ijabpt.com</u>

UABPT

ISSN 0976-4550

DISCUSSION

The optimum temperature range where seeds of *T. sericea* germinated was the same as for several tropical species (Everham *et al.*, 1996; Valio and Scarpa, 2001). Sensitivity of seeds to the environmental conditions such as temperature results in the high probability of seed germination with high seedling survival (Ramirez-Padilla and Valverde, 2005). High temperature prevented seed germination in *T. sericea*. High temperature is well known to prevent radicle and shoot elongation by inhibiting synthesis of protein and nucleic acid (Sivaramakrishnan *et al.*, 1990).

Plants have the capacity to monitor light quality and fluency, direction and duration and to adjust their development and reproduction to seasonal and daily changes. That capacity is due to the present phytochrome system as natural process which is responsible for induction of seed germination and seedling developmental processes (Furuya and Kim, 2000; Takaki, 2001; Godoi and Takaki, 2004). Light-controlled germination has been associated with phytochrome, modulating seed responses to signals that can terminate dormancy and initiate germination (Benech-Arnold *et al.*, 2000).

Generally, photoperiod of 8 to 12 hr day light is necessary for maximum germination and growth in forest trees (Everham *et al.*, 1996), which correspond to the findings of the present study which revealed high seed germination for 8/16 to 12/12 hr (light/dark) photoperiod. Similar photoperiod was found optimum for seed germination and seedling growth. A similar effect has been reported for other species (Cirak *et al.*, 2004; Faravani and Bakar, 2007). Seeds of *T. sericea* subjected to 24 hr dark photoperiod did not germinate. In general, absence of light has a negative effect on germination in several species (Cirak *et al.*, 2004; Sugahara and Takaki, 2004).

The application of gibberellic acid (GA₃) enhanced seed germination in *T. sericea*. Several studies from recent years have shown that gibberellin is an effective germination stimulator in several species (Giba *et al.*, 1993; Karam and Al-salem, 2001; Çetinbaş and Koyuncu, 2006; Chen *et al.*, 2008). Gibberellic acid increased germination significantly depending on doses. Similar results were obtained from the studies carried on other species such as *Sesamum indicum* (Kyauk *et al.*, 1995).

Seed dormancy in seeds is closely related to the growth regulators especially gibberellins (Hartmann *et al.*, 1997). Application of gibberellic acid can induce rapid and uniform germination or this can overcome seed dormancy due to a deficit of endogenous gibberellins (Çetinbaş and Koyuncu, 2006). Applied exogenous gibberellic acid (GA₃) solution is known to modify the influence of cytokinins on transport across membranes and is thus able to initiate the biochemical processes necessary for germination to occur (Chen *et al.*, 2008). The cytokinin probably penetrates the testa and neutralizes the inhibitors present in the embryo, thus enabling the embryo to rupture the seed coats (Çetinbaş and Koyuncu, 2006). Gibberellic acid also increases synthesis of hydrolytic enzymes located under aleuron layer. Synthesized enzymes are transported to endosperm and are used for decomposing of stored food to supply energy required for germination (Chen *et al.*, 2008).

Potassium nitrate (KNO3), a growth regulating and germination stimulating substance can both stimulate and inhibit seed germination in some species. Several workers have reported that KNO3 improved the seed germination of many plants (Cirak, *et al.*, 2004; Puppala and Fowler, 2003). In this study, however, exposure of *T. sericea* seeds to different concentration levels of KNO₃ had adverse results. Similar results have also been reported for many other tree species (Msanga and Maghembe, 1993).

The reason might be the sensitivity of *T. sericea* seeds to KNO_3 concentrations which as it has reported that higher concentrations exert decreasing effects on seed germination by causing death of cells and ultimately result in loss of seed viability (Nascimento, 2003).

Conclusion

Seeds of *T. sericea* could be successfully germinated when using appropriate temperature regime, photoperiod and pre soaking treatments of growth substances. The optimum temperature at 25° C and photoperiod of 12/12 hr is required to trigger seed germination in *T. sericea*. The treatment with gibberellic acid (GA₃) with 400 ppm gave the best results with 67% of germination. For the purpose of domestication the use of these treatments is recommended. As a miombo species, this plant has the potential of being a continuous source of supply of raw material for carvings, charcoal industry, building material and phytomedicine industry.

REFERENCES

- Barrera, E. and Nobel, P.S. (2003). Physiological ecology of germination for the columnar cactus *Stenocerus queretaroensis.* J. Arid Environ. 53(3):297-306.
- Benech-Arnold, R.L; Sa'nchez, R.A,; Forcella, F.; Kruk, B.C and Ghersa C.M.(2000). Environmental control of dormancy in weed banks in soil. Field Crops Research 67: 105–122.
- Benitez-rodriguez, J.L.; Orozco-segovia, A. and and Rojas arechiga, M. (2004). Light effect on seed germination of four *Mammillaria* species from the Tehuacan-Cuicatlan Valley, central Mexico. Southwest Nat. 49(1):11-17
- Çetinbaş, M. and Koyuncu, F. (2006). Improving germination of *Prunus avium* L. seeds by gibberellic acid, potassium nitrate and thiourea. Hort. Sci. (3): 119-123
- Chen, S.Y.; Kuo, S.R. and Chien, <u>C.T.</u> (2008). Roles of gibberellins and abscisic acid in dormancy and germination of red bayberry (*Myrica rubra*) seeds. Tree Physiol 28(9):1431-9
- Cirak, C., Ayan A. K. and Kevseroglu, K. (2004). The effect of light and some presoaking treatments on germination rate of St. John's worth (Hypericum perforatum L.) seeds. Pakstan J. Biol Sci. 7(2): 182-186
- Eckman, K. H and Deborah, A. (1993). '*Terminalia sericea*'. Indigenous multipurpose trees of Tanzania: uses and economic benefits for people. FAO Forestry Department. http://www.fao.org/docrep/X5327e/x5327e1o.htm. Retrieved 2010-03-02
- Everham, E. M.; Myster R. W. and Vandegennachte, E. (1996). Effects of light, moisture, and litter on the regeneration of five tree species in the tropical montane wet forest of Puerto Rico. American J. Bot., 83: 1063-1068
- Faravani, M. and Bakar, B.B.(2007). Effects of light on seed germination, growth pattern of straits *Rhododendron (Melastoma malabathricum* L.). J. Agric. and Biol. Sci. 2-3:1-5.
- Flores, J. and Briones, O. (2001). Plant life-form and germination in a Mexican inter-tropical desert: effects of soil water potential and temperature. J. Arid Environ. 47(4):485-497
- Furuya, M. and Kim, C. B. (2000). Do phytochromes interact with diverse partners? Trends Plant. Sci. 5: 87-89.
- GENSTAT, (2008). GENSTAT Release 7.23DE, Discovery Edition 3, VSN International Ltd. Lawes Agricultural Trust, Rothamsted Experimental Station
- Giba Z.; Grubisic D. and Konjevic, R. (1993). The effect of white light, growth regulators and temperature on the germination of blueberry (*Vaccinium myrtillus* L.) seeds. Seed Sci and Technol. 21: 521–529.
- Godoi, S. and Takaki, M. (2004). Effects of light and temperature on seed germination in *Cecropia hololeuca* Miq. (Cecropiaceae). Braz. Arch. Biol. Technol. 47(2):185-191
- Hartmann, H. T.; Kester, D. E.; Davies Jr. F. T. and Geneve, R. L. (1997). Plant Propagation, Principles and Practices, 6th Edn. Prentice-Hall, Inc. Upper Saddle River, New Jersy, 770 pp.

International Journal of Applied Biology and Pharmaceutical Technology Page: 109 Available online at <u>www.ijabpt.com</u>

International Tropical Timber Organisation, (IITO), (2003). Forestry Research News: Indicators and Tools for Restoration & Sustainable Management. Issue 3: 3-8.

- Karam, N.S.and Al-salem, M.M.(2001). Breaking dormancy in *Arbutus andrachne* L. seeds by stratification and gibberellic acid. Seed Sci. and Technol. 29: 51–56.
- Kyauk, H.; Hopper N.W. and Brigham, R.D. (1995). Effects of temperature and presoaking on germination, root length and shoot length of sesame (*Sesamum indicum* L). Envir. and Exper. Botany, 35: 345-351
- Likoswe, M. G.; Njoloma, J.P.; Mwase, W. F. and Chilima, C.Z. (2008). Effect of seed collection times and pretreatment methods on germination of *Terminalia sericea* Burch. ex DC. Afr. J. Biotechnol. 7(16): 2840-2846
- Maghembe, J.A.; Kwesiga, F.; Ngulube, M.; Prins, H. and Malaya, F.M. (1994). Domestication potential of indigenous fruit trees of the miombo woodlands of southern Africa. In: Leakey, R.R.B. & Newton, A.C. (Editors). Tropical trees: the potential for domestication and the rebuilding of forest resources. Proceedings of a conference held at Heriot-Watt University, Edinburgh, on 23–28 August 1992. HMSO, London, United Kingdom. pp. 220–229.
- Malimbwi, R.E. and Mugasha, A.G.(2001). Inventory Report of Kitulangalo Forest Resrve in Morogoro, Tanzania. Forest and Beekeeping Division, Dar es Salaam, 46 pp.
- Msanga, H.P. (1998). Seed germination of indigenous trees in Tanzania. Including notes on seed processing, storage and plant uses. Natural Resources Canada, Canadian Forest Service, Northern Forest Centre, Edmonton. 292 pp.
- Msanga, H.P. and Maghembe, J.A. (1993). Germination Of Woodland Mahogany (*Trichilia Emetica*) Following Manual Seed Coat Scarification And Potassium Nitrate Treatments. J.Tropical For. Sci, 5(4):518-527.
- Mugasha, A.G.; Chamshama S.A.O. and Gerald, V.V.K. (2004). Germination, Nursery and Phenology Studies of Selected Miombo Tree Species in Kitulangalo, Morogoro, Tanzania. I-TOO working paper No. 26
- Nascimento, W.M.(2003). Musk melon seed germination and seedling development in response to seed priming. Scient. Agricola., 60(1): 71-75
- Palgrave, K.C. (1988). Trees of Southern Africa, Revised Edition. C. Struik Publishers, Cape Town/Johannesburg.
- Pohjonen, V. M. (1992). Terminalia sericea: Northern Namibia's Hardy Pioneer. Agroforestry Today, 4:1.
- Puppala, N. and Fowler, J.L. (2003). Lesquerella seed pretreatment to improve germination, Industrial Crops and Products, 17(1): 61-69
- Ramirez-Padilla, C. A. and Valverde, L. (2005). Germination responses of three congeneric cactus species (*Neobuxbaumia*) with differing degrees of rarity. J. Arid Environ., **61**: 333-343
- Rojas-archiga, M.; Casa, A. and Vazquez-yanes, C.(2001). Seed germination of wild and cultivated Stenocereus stellatus (Cactaceae) from the Tehuacan-Cuicatlan Valley, Central Mexico. J. Arid Environ. 49(2):279-287
- Sivaramakrishnan, S.; Patel, V.Z.and Soman, P. (1990). Heat shock proteins of sorghum (Sorghum bicolour (L.) Moench and pearl millet (Pennisetum glaucum (L.) cultivars with differing heat tolerance at seedling establishment stage. J. Experimental Bot. 41:249-254
- Sugahara, V.Y. and Takaki, M. (2004). Effect of light and temperature on seed germination in guava (*Psidium guajava* L. Myrtaceae). Seed Sci and Technol. 32(3):759-764.
- Takaki, M. (2001). New proposal of classification of seed based on forms of phytochrome instead of photoblastism. Rev Bras Fisiolo. Vegetal, 13: 103-107.
- Valio, I. F. M. and Scarpa, F.M.(2001). Germination of seeds of tropical pioneer species under controlled and natural conditions. Rev Bras. Bot. 24: 79-84

International Journal of Applied Biology and Pharmaceutical Technology Page: 110 Available online at <u>www.ijabpt.com</u>