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ABSTRACT : Despite of lacking the adaptive immunity that is found in higher vertebrates, insects are able to defend 
themselves from a large battery of  pathogens by multiple innate immune responses using molecular  mechanisms. 
These  defense  systems  are  strikingly  similar  to  the  innate  immune  responses  of  other  multi  cellular  organisms, 
including humans. In insect,  defense system relies on several  innate reactions including phagocytosis  of  bacteria, 
nodule  formation  and  encapsulation  with  the  immediate  onset  of  proteolytic  cascades  leading  to  localized  blood 
clotting, melanization and finally the production of antibacterial protein. These antibacterial proteins channelized a line 
of  innate  defense  system after  3hr  of  bacterial  infection  through different  signaling  pathways  like  Toll  and  Imd 
pathway.  This  review  summarizes  the  recent  studies  on  defense  system  in  different  insects  and  evaluates  the 
mechanism of such signaling pathways in Drosophila melanogaster.
Keywords: Adaptive, innate, antibacterial protein, fat bodies, mRNA.

INTRODUCTION
Insects  are  one  of  the  most  successful  groups  of  evolution  accounting  for  nearly  two  million  species  and  1018 

individuals [1].  They colonize all  ecological niches except for the, seas. Consequently,  they are confronted by an 
extremely large variety of potentially harmful microorganisms. During evolution, insects developed a complex and 
effective  innate  immune  system,  which  apparently  differs  from  the  adaptive  immune  system  of  vertebrates. 
Vertebrates, including the human have both innate and adaptive immunity with ‘immunological memory’,  whereas 
insects do not possess the ability to produce antibodies. 
Innate defense systems in insect
Innate defense systems in insect haemocoel are comprised of cellular and humoral components [2]. These two immune 
systems cooperatively function in clearance of invading pathogenic microbes from the hemolymph. Hence, defensive 
arsenals of insects, like that of man contain both passive structural barriers against infection and a cascade of active 
responses to organisms that gain access to the haemocoel following injury to integument. The frontline of insect host 
defense is epithelial tissues such as the epidermis and trachea, which are not only act as mechanical barriers but also 
produce anti-microbial peptides.
Cellular defense system
The cellular defense of insects against pathogens and endoparasite is the prevention of infection via structural barriers 
such as rigid cuticle and peritrophic membrane that protects the mid gut. Even after this, if the bacteria persist in the 
system  then  initial  hemolymph  response  is  mediated  by  circulating  hemocytes  by  the  process  of  phagocytosis, 
nodulisation and encapsulation. However, if this innate mechanism of wiping out the antigen fails, synthesis of several 
bactericidal proteins occurs including lysozyme by the means of acquired immune system.
Phagocytosis 
Cells  with  phagocytic  activity  usually  represent  a  subpopulation  of  insect  hemocytes.  Both  granulocytes  and 
plasmatocytes  are  supposed  to  be  primarily  responsible  for  phagocytosis.  Cell  surface  molecules  described  on 
phagocytic hemocytes exhibit striking similarities to the receptors found on mammalian phagocytic cells. 
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Insect proteins Malvolio and dSR-CI show homology to mouse natural resistance-associated macrophage protein-1 
(NRAMP-1) and mammalian class-A macrophage specific scavenger receptors respectively [3, 4]. Croquemort is a 
member  of  the CD36 superfamily,  mediates the recognition of apoptotic cells  [5].  In  Drosophila,  another protein 
named  peroxidasin  is  supposed  to  participate  in  the  phagocytic  breakdown of  apoptotic  cells  [6].  Peroxidasin  is 
homologous to mammalian macrophage peroxidases and contains four immunoglobulin-like C2 domains including a 
single IgA1 hinge region.
Nodule formation 
Insect hemocytes aggregate to entrap bacteria during nodule formation. An insect lectin, named scolexin was found to 
be involved in the formation of nodules in the tobacco hornworm (Manduca sexta). Scolexin is produced by epidermal 
and mid gut cells upon wounding or bacterial infection [7]. In the medfly (Ceratitis capitata),a protein with molecular 
mass of 47kDa is secreted by hemocytes after lipo-polysaccharides (LPS) stimulation and aggregates E.  coli cells by 
the presence of tyrosine and tyrosinase [8].
Encapsulation 
Encapsulation is a multicellular defense mechanism where a capsule of overlapping layers of hemocytes is formed 
around protozoans, nematodes and eggs or larvae of parasitic insects. Encapsulation does not induce the expression of 
antimicrobial genes [9] but it may associate with melanization which contributes to the killing of the invader [10]. It is 
still  unclear  whether  the  reaction is  mediated by a  given subset  of  hemocytes  or  through an interaction between 
different  subpopulations  of  immune  cells  [11,  12].  In  both cases  adhesion molecules  are  essential  to  the  capsule 
formation. By analogy to vertebrates, the existence of various integrins in Drosophila raises the possibility that these 
molecules can participate in the cellular reactions of insects [13]. Moreover, the encapsulation response of the moth 
Pseudoplusia includens  was found to involve an RGD (Arg-Gly-Asp)-dependent cell adhesion mechanism which is 
typical for integrins [14]. Parasites have developed various mechanisms to circumvent the encapsulation reaction of 
host insect. During oviposition endoparasitic wasps inject polydnaviruses which suppress the immune system of the 
host,  thus  ensuring  successful  development  of  the  immature  endoparasite  [15,16].  In  the  genome  of  mosquitoes, 
quantitative trait loci (QTLs) involved in encapsulation process have been localized [17, 18].
Humoral defense system
Many species of insects possess an inducible humoral immune system, which is distinct from the system in vertebrate 
animals [19, 20].  The humoral responses depend on primary and secondary responses.  The primary system involves 
reactions including activation of cascades of constitutive proteins present in the hemolymph,  such as those in the 
prophenoloxidase (PPO) cascade [21], leading to melanization (deposition of melanin pigments onto pathogens and the 
wounded  sites)  which  is  believed  to  function  in  wound  healing.  The  secondary  humoral  response  requires  the 
coagulation cascade, and the activation of intracellular signaling tissues and cells. These signaling activates gene for 
producing defense proteins such as anti-microbial peptides in the fat bodies, the immune tissue of insect which is 
functional equivalent of the mammalian liver. The reaction is usually linked to the induced synthesis of antimicrobial 
peptides and the stimulation of cellular immune responses such as nodule formation and encapsulation [6, 22]. 
PPO cascade and melanization
Primary humoral immune response initiated with the activation of PPO cascade leading to melanization. The process is 
induced by the cleavage of PPO to phenol oxidase (PO) by a serine protease, PPO-activating enzyme (PPAE). PO is an 
essential  enzyme  for  the  cellular  immune  responses  but  is  also  involved  in  other  developmental  and  defensive 
processes  such  as  wound  healing  and  sclerotization  [23,  24].The  inactive  proenzyme, PPO is  synthesized  in  the 
hemocytes  and after  releasing by cell  rupture it  is either actively transported into the cuticle or  deposited around 
wounds and encapsulated parasites [25,26]. The insect PPO enzyme contains a sequence with similarity to the thiol-
ester region of the vertebrate complement component proteins C3 and C4 [27]. Hence, insect PPO cascade systems 
appear to be similar to the complement system of mammals.  Several hemolymph proteins have been described as 
activators of PPO cascades in a variety of insects. Some of these proteins have been reported to play dual functions in 
hemolymph. 
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For instance, two hemolymph proteins, isolated from the wax moth (Galleria mellonella), ApoLp-III and Gm protein-
24 have been tested on the insect humoral immunity and found that ApoLp-III enhanced the activity of antibacterial 
peptide such as cecropin however Gm protein-24 showed no effect on cecropin activity. Gm protein-24 and ApoLp-III, 
both involved in the activation of PPO cascade,  which has been regarded as a critical  immune  reaction in insect 
hemolymph. On the other hand ApoLp-III which is a hemolymph protein plays a role in lipid metabolism in insects 
[28]. ApoLp-III participates in immune reactions as an LPS-binding protein (LBP) or as a potentiator of bacteriolytic 
activity  of  hemolymph  other  than  lipid  transport  [29,  30]. LBP  isolated  from the  hemolymph  of  Bombyx  mori, 
Manduca sexta, Drosophila melanogaster and Periplaneta americana have been well characterized as immune factors 
to prevent infection by gram-negative bacteria [31, 32].
Signaling cascades
The  secondary  humoral  immune  process  of  insects’  defense  against  the  microbial  infection  is  an  evolutionarily 
conserved defense mechanism. The hallmark of the Drosophila humoral immune response is the rapid production of 
antimicrobial peptides in the fat body and their release into the circulation.  Toll and Imd signaling cascades are two 
recognition and signaling cascades regulate expression of these antimicrobial peptide genes.
Toll and Imd signaling cascades regulating humoral and cellular responses in Drosophila
The fruit fly (Drosophila melanogaster) has been used to studying the basic principles of innate immunity because of 
the  evolutionary conservation  of  innate  immunity  genes,  pathways,  effector  mechanisms  and the  well-established 
techniques for manipulating its genetics. Drosophila is devoid of an adaptive immune system and relies only on innate 
immune reactions for its defense. 
The  microbial  recognition  and  induction  of  anti-microbial  peptides  is  mediated  by  the  Toll  and  Imd  (immune 
deficiency) pathways in Drosophila, which regulates antimicrobial peptide (AMP) expression in the fat body. Toll and 
Imd are pivotal molecules, mechanistically similar to the mammalian Toll like receptor (TLR) signaling pathway and 
tumor  necrosis  factor  α  receptor  (TNFR)  signaling  pathways  respectively  [33,2]. The  Toll  pathway is  activated 
primarily in response to fungal and some Gram-positive bacterial infections, whereas the Imd pathway is activated 
predominantly  in  response  to  Gram-negative  bacterial  infections  [34].  Stimulation  of  the  Toll  pathway  leads  to 
activation of two NF-κB-like factors, Dorsal and Dorsal-related immunity factor (Dif), while the Imd pathway brings 
about the activation and nuclear translocation of the NF-κB-like factors [35-37].
Toll signaling cascade
In Drosophila Toll pathway is involved both in immunity and developmental processes [38]. In contrast to mammalian 
Toll like receptors (TLRs), Drosophila Toll controls the dorsal-ventral (DV) patterning in embryos and upon binding 
with ligand Spatzle (Spz) it activates genes of antimicrobial proteins through the Toll-Dorsal signaling pathway [36]. 
Drosophila  Toll  does not  appear to interact  directly with pathogen-associated molecular patterns (PAMPs),  but is 
activated  by  Spz,  via  a  proteolytic  cascade.  Therefore,  Drosophila possesses  specific  mechanisms  to  distinguish 
different pathogens.
Spatzle activation
In  innate  immunity,  conserved molecular  patterns  of  pathogens are  thought  to  be  identified by so-called pattern-
recognition protein or receptors (PRPs) of the host defense systems (39). These proteins are produced in the fat body 
and secreted into the caterpillar’s hemolymph such as peptidoglycan recognition protein (PGRP) was identified as a 
Gram-positive-binding protein followed by identification of the Gram-negative binding protein (GNBP), which binds 
to LPS and β-1, 3-glucan (40,41). The Drosophila  genome contains 13genes encoding PGRP family proteins, and 3 
encoding GNBP family proteins. Seven of the PGRPs are small (~20 kDa) extracellular polypeptides, whereas others 
are larger (30 to 90kDa) and either intercellular or membrane-spanning. GNBPs are 50 kDa proteins containing an N-
terminal β-1, 3-glucan binding domain and a C-terminal β-glucanase-like domain [41, 42]. 
The recognition of the Gram-positive bacterial  lysine-type peptidoglycan or the β-glucan from fungal cell walls is 
mediated by extracellular recognition factors. GNBP3 is responsible for yeast recognition [43]. The other identified 
factors, namely GNBP1, PGRP-SA, and PGRP-SD, appear to mainly recognize Gram-positive bacteria. 
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Upon Gram-positive bacterial recognition, PGRP-SA and GNBP1 physically interact and form a complex [44, 45]. 
Thereafter,  activated  GNBP1  hydrolyzes  the  Lys-type  PGN and  produces  new glycan  reducing  ends,  which  are 
presented to PGRP-SA [46]. In contrast, Buchon et al. [47] showed that full-length GNBP1 had no enzymatic activity. 
They suggested a role for GNBP1 as a linker between PGRP-SA and modular serine protease (ModSP). PGRP-SD 
functions as a receptor for Gram-positive bacteria with partial redundancy to the PGRP-SA–GNBP1 complex [48]. It is 
reported  that  PGRP-SD can  also  recognize  diaminopimelic  acid  (DAP)-type  PGNs  from Gram-negative  bacteria, 
thereby activating the Toll pathway [49].
Drosophila  Toll,  the  first  identified  Toll  family  member,  consists  of  an  extracellular  leucine-rich  repeat  and 
intracellular signaling domains [50].  Spz, the ligand for Toll,  is a secreted protein that is activated by proteolytic 
cleavage  by a  serine  protease  [51,  52].  In  microbe  recognition,  Spz  processing  enzyme  (SPE)  is  responsible  for 
extracellular  Spz cleavage [53].  Activation of  SPE contains  three  upstream cascades  depending on the  activating 
microorganism (Figure 1). Two protease cascades leading to the activation of Gram-positive specific serine protease 
(Grass) are initiated by cell wall components of both fungi (β-glucan) and Gram positive bacteria (Lysine-type PG) 
[54]. Grass was originally identified to be specifically involved in the recognition of Gram-positive bacteria [55], but 
was later shown to be important also for the recognition of fungal components [54]. In addition, three other serine 
proteases, namely spirit, spheroide, and sphinx1/2, were identified in response to both fungi and Gram-positive bacteria 
[55]. Upstream of Grass, a ModSP, conserved in insect immune reactions, plays an essential role in integrating signals 
from the recognition molecules  GNBP 3 and PGRP-SA to the  Grass-SPE-Spatzle  cascade [47].  A third protease 
cascade leading to the activation of SPE is mediated by the protease Persephone, which is proteolytically matured by 
the secreted fungal virulence factor PR1 [43] and Gram-positive bacterial  virulence factors [54].  Similar detection 
mechanisms have been suggested to occur in mammals, in which TLRs or Nod-like receptors directly detect virulence 
factors or endogenous proteins released by damaged cells [56, 57].
Activation of Spz induces proteolysis, which causes a conformational change exposing determinants that are critical 
for binding of the Toll receptor [58]. Interestingly, the pro domain remains associated with the C terminus and are only 
released  when  the  Toll  extracellular  domain  binds  to  the  complex  [59].  Upon  proteolytical  processing,  the  Spz 
prodomain is cleaved, exposing the C-terminal Spz parts critical for binding of Toll. Spz binding to the Toll receptor 
initiates intracellular signaling.
After binding the processed Spz, the activated Toll receptor binds to the adaptor protein MyD88 via intracellular TIR 
domains [60, 61]. Upon this interaction, an adaptor protein, Tube, and the kinase Pelle are recruited to form a MyD88-
Tube-Pelle heterotrimeric complex through death domain (DD)-mediated interactions. From the oligomeric MyD88-
Tube-Pelle complex, the signal proceeds to the phosphorylation and degradation of the Drosophila IκB factor Cactus. 
In non signaling conditions,  Cactus is  bound to the NF-κB transcription factor(s)  Dorsal  and/or Dif  in a context-
dependent manner, inhibiting their activity and nuclear localization. So, the nuclear translocation of both Dorsal and 
Dif requires Cactus degradation [62]. After phosphorylation, nuclear translocation of Dorsal/Dif leads to activation of 
the transcription of several sets of target genes. This NF-κB like sites controls the synthesis of antimicrobial peptides in 
response to the presence of bacterial cell wall components in the insect blood. 
The other role of Toll signaling like in early embryogenesis, the protease cascade gastrulation defective snake activates 
the protease easter, which cleaves full length Spz into its active C-106 form by a serine protease cascade [63, 64]. In 
addition, sulfotransferase Pipe is required independently of the protease cascade to activate easter.

Negative regulation in the Toll pathway
Toll pathway is repressed by an intracellular negative feedback loop. WntD (Wnt inhibitor of Dorsal) is a member of 
the wnt family of ligands. Activation of the Toll pathway leads to the transcription of wntD [65, 66]. WntD is able to 
block  the  translocation  of  Dorsal  in  cactus  mutants.  Therefore,  WntD  blocks  nuclear  translocation  of  Dorsal 
downstream of, or in parallel to Cactus. In addition to its role in embryonic patterning, WntD also regulates the Toll 
pathway in the context of immunity. For example, wntD mutants induce higher levels of some antimicrobial peptide 
genes. WntD mutants are also more sensitive to infection with Listeria monocytogens. It is hypothesized that WntD 
mutants have a higher mortality following infection due to the hyperactivation of Dorsal target genes [66].
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Fig. 1 Schematic representation of the Toll pathway including the three microbial recognition systems and the 
intracellular signaling cascade, while the black dark arrows and red triangle highlight the negative regulators 

and their likely targets.
Imd signaling cascade
Bacterial  PG  is  a  polymer  consisting  of  glycan  strands  of  alternating  N-acetylglucosamine  (GlcNAc)  and  N-
acetylmuramic acid (MurNAc) that are cross-linked to each other by short peptide bridges. PGs from Gram-negative 
bacteria  and  Bacillus  species  differ  from  other  Gram-positive  PGs  in  that  lysine  (Lys)  is  replaced  with  meso-
diaminopimelic acid (DAP) at the third amino acid in the peptide chain.
The Imd pathway regulates  the response to  Gram-negative  bacteria  infection (Figure  2).  Gram negative bacteria-
derived DAP-type peptidoglycan is recognized by upstream receptors called PGRP-LC and PGRP-LE [67-70]. The 
recognition leads to activation of the cytoplasmic adaptor protein Imd, a homologue of the mammalian TNF receptor-
interacting protein RIP [71, 72] which then activates the PPO cascade upstream of PPAE. Dimerise and multimerise 
receptor proteins activate other downstream adaptor protein of the Imd pathway include the DFADD (BG4) along with 
the caspase 8 orthologue DREDD [72-75]. Meanwhile, the Ser/Thr MAPK kinase, TAK1 and its partner TAB2 are 
activated possibly through the IAP2: Bendless (BEN):UEV1 a ubiquitin E3 ligase complex. 
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TAK1  and  TAB2,  in  turn  phosphorylate  the  IKKβ  orthologue  IRD5.  Activated  IRD5,  in  complex  with  IKKγ 
orthologue Kenny (KEY), phosphorylates the NF-κB orthologue Relish (REL). REL consists of an N-terminal nuclear 
factor containing domain (REL-68) and an inhibitory C-terminal domain (REL-49) responsible for anchoring REL in 
the cytoplasm. REL is then proteolytically cleaved by the caspase, DREDD, releasing the N-terminal domain REL-68. 
This translocates to the nucleus where it is able to activate transcription of genes encoding antimicrobial peptides such 
as Diptericin and Attacin A [76, 77].
Negative regulation in the Imd pathway
Tsuda et al. (2006) showed that plenty of SH3 (POSH) regulates the termination of Imd-JNK signaling.  POSH mutant 
flies exhibit increased mortality following E. coli infection, possibly because of hyperactive immune responses [78]. 
POSH  contains  a  RING  finger,  a  signature  ubiquitin  E3-ligase  motif,  and  is  auto-ubiquitinated.  Also,  POSH 
immuneprecipitates with TAK1 and overexpression of POSH reduces the stability of TAK1. Thus, it is hypothesized 
that  POSH  negatively  regulates  the  Imd  -JNK  pathway  by  regulating  the  stability  of  TAK1  via  the  ubiquitin/ 
proteosome  degradation  pathway.  On  the  other  hand,  JNK signaling  also  inhibits  Relish-mediated  transcriptional 
activation, via the recruitment of a 'repressosome' to AMP genes [79, 80].
The Imd pathway may also be inhibited by another E3 protein, known as Dnr1, a conserved protein with an N-terminal 
ezrin/radixin/moesin domain and a C-terminal RING finger. Dnr1 appears to have a complex relationship with the 
caspase DREDD. Another negative regulator of Imd signaling is Caspar. Interestingly, Caspar is homologous to human 
Fas associated factor 1 (hFAF1), which associates with various components of the TNF/ NF-κB pathway such as FAS, 
FADD, caspase-8 and NF-κB [81, 82]. Over expression of Caspar inhibits AMP gene induction and causes decreased 
viability after  infection with these  same  mildly pathogenic  bacteria.  It  is  hypothesized  that  Caspar  blocks  Relish 
cleavage by interfering with DREDD.
Other Signals and receptors
The innate immune processes of insects are triggered by a great variety of signals. Microbia, microbial substances, 
mitogens (arachidonic acid, phorbol esters and phytohemagglutinin [83] and the injury of the cuticle are exogen factors 
leading to the activation of both humoral and cellular defense mechanisms. Among microbial substances, LPS of gram 
negative bacteria,

Fig. 2 Schematic representation of the Imd pathway while black dark arrows and red triangle highlight the 
negative regulators and their likely targets.
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laminarin, 1, 3-β- D-glucans of fungi, PG of gram positive bacteria, zymosan and flagellin have been found to induce 
immune reactions in insects [84-87]. Hormones are best candidates for being the main modulators of these processes 
like  20-hydroxyecdysone  enhances  phagocytic  activity  of  Drosophila  melanogaster  hemocytes  in  vitro [88]. 
Drosophila  hemocytes  synthesize  the  glycoprotein  DS47  which  is  homologous  to  mammalian  secretory  proteins 
produced by activated macrophages [89]. The hemocytes of the silkworm release LPS during phagocytosis which leads 
to the activation of genes coding for antibacterial proteins [90]. Similarly to vertebrates, biogenic amines, cytokine-like 
factors (hemokines) eicosanoids and H2O2 can modulate insect cellular immune responses [91-93]. The hemocytes and 
fat body of the giant silk moth secrete a protein named hemolin that binds to the surface of bacteria and hemocytes and 
subsequently activates a signaling pathway involving protein kinase C and protein tyrosine phosphorylation [94, 95]. 
Hemolin is a member  of the immunoglobulin superfamily and participates in a protein complex formation on the 
bacterial  surface that is likely to initiate phagocytosis.  The GNBP of insects shows serological cross-reaction and 
sequence similarity to  the  mammalian  LPS receptor,  CD14 [96,  97].  In  insects,  LPS binding proteins  have been 
isolated  from the  hemolymph  of  the  American  cockroach  [98]  and  of  medfly  [8].  The  LPS  binding  protein  of 
cockroach contains a carbohydrate- recognition domain of C-type animal lectins and acts as an opsonin [99, 100]. The 
receptors,  hemomucin and FKBP39 of  Drosophila  bind  Helix pomatia  lectin (activator of T-lymphocytes)  and the 
immunosuppressive drug FK506, respectively [101,102]. The membrane bound receptors for 5-hydroxytryptamine and 
LPS  activate  signal  transduction  events  through  adenylate  cyclase  and  tyrosine  phosphorylation,  respectively 
[103,104]. 
Antibacterial proteins
All above signaling pathways lead to produce antibacterial protein. These antibacterial peptides were initially isolated 
in  the  1980s  from insect  hemolymph  after  challenging  Cecropia  pupae  with  live  bacteria  [105].  More  than  150 
different antibacterial peptides and proteins have now been purified from different insect species [106-108]. These 
molecules are generally low molecular weight compound and mainly produced by the fat body and their mRNAs are 
detected simultaneously as early as 3hr after injection of bacteria [109].It is therefore thought that these molecules play 
a critical role in early immune defense against bacterial infection. It is reported that failure of early induction of these 
molecules may cause serious infection in insects [110]. On the basis of response to microbial infections, anti-microbial 
peptides in insects may be classified into five major groups: Lysozyme, Cecropin, Attacin, Defensin and Proline rich 
peptide; for eg. Morocin, Lobocin, Viresin, Diptericin, Drosocin, Drosomycin and Metchnikowin [111].  Lysozyme 
(EC 3.2.1.17) which is effective for Gram positive bacterial infection, includes higher molecular weight proteins and 
was first purified by Powning and Davidson, (1973) [112]. Cecropin is the family of small basic proteins, which were 
first isolated from the Cecropia silk moth in 1979 [113].  Cecropin may be induced in various kinds of insects by 
bacterial infection or simple injury [114]. Antibacterial proteins of this type have molecular weights of 4 to 5 kDa and 
show high bactericidal activity toward a wide variety of Gram-positive and Gram-negative bacteria. 
Attacin which is nominated as third group, include proteins of larger molecular weights ranging from of 20 ~23 kDa. 
Attacin were firstly isolated from  Hyalophora cecropia  and showed activity against a few Gram-negative bacteria 
[115]. 
Defensin  are  highly  effective  against  Gram-positive  bacteria,  including  human  pathogenic  bacteria  such  as 
Staphylococcus  aureus,  however  they  do  not  exhibit  strong  activity  against  Gram-negative  bacteria.  Contrary  to 
cecropins,  defensins  are  more  common  in insects  and  have been  isolated from several  orders  of  insects  such  as 
dipteran, hymenopteran, coleopteran, trichopteran, and hemipteran. There are a total 6 AMPs that are found in the 
honey bee Defensin1 and Defensin 2 have been identified from a variety of insect species, whereas Apisimin and 
Hymenoptaecin have been reported only in the honey bee. All types of the antibacterial proteins have been reported in 
lepidopteran insects [116].  These peptides are secreted into the hemolymph  from the fat body with different anti-
microbial specificities [111].
Some antimicrobial peptides like Drosomycin,  Metchnikowin and Cecropin are active against fungi,  Defensin and 
Metchnikowin against Gram-positive bacteria and Attacin, Cecropin, Diptericin and Drosocin against Gram negative 
bacteria [117,118]. Diptericin and Drosocin induction is highly defective in Imd pathways mutants,  Drosomycin and 
IM1 induction is highly defective in Toll pathway mutants, Attacin A, Cecropin A and Defensin induction is defective 
to different degrees in either Toll or Imd pathway mutants. 
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CONCLUSION
Toll and Imd provides homologs in several insect species such as an IKKβ homolog in an oyster and Rel homologs in 
dipteran insects but  there  are  no molecular  information on innate immune  signaling found in other invertebrates. 
Drosophila host defense has paved the way for the search of homologs in mammalian innate immune responses. They 
offer unique opportunities to get closer to the roots of the mammalian innate immunity.  As a result of the precise 
description of the innate immune system we may understand what makes an antigen immunogenic. Purification 
and Identification of such antibacterial proteins may permit the development of more effective vaccines and therapies 
for autoimmunity, tumors and infectious diseases in the future. 
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