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Abstract
Single-cell transcriptome profiling has transformed our understanding 

of cellular heterogeneity. However, single-cell data with poor quality can 
impede proper identification of distinct cell populations and subsequent 
biological interpretations. In this study, we present a customized 
computational approach to control the quality and reduce contaminations 
in single-cell transcriptome profiling of retinal ganglion cells (RGCs). We 
leverage domain knowledge and statistical methods to effectively eliminate 
various sources of contaminants for identification of RGC types and 
subtypes. We show that our end-to-end computational pipeline improves 
the accuracy and reliability of single-cell transcriptome profiling of RGCs 
and enhances the biological interpretations. To show the effectiveness of 
our pipeline, we use 5,994 RGCs captured from retinas of mouse using 
Fluidigm technology as a benchmark dataset and compare with widely 
used quality control tools. Further, we introduce seven candidate F-RGC 
subtype markers that we identified after applying our introduced pipeline 
on the benchmark dataset. Our customized quality control pipeline could 
enable retinal single RGC probing with more granularity, leading to new 
insights into RGC-related visual diseases and development of therapeutic 
approaches.

Keywords: Single Cell RNA Sequencing (scRNA-seq); Retinal Ganglion 
Cell (RGC); Quality Control; Contamination; Computational Models.

Introduction
Recent progress in single cell RNA sequencing (scRNA-seq) have led to 

identification of various cell types, subtypes, and their function [1-3]. 

One of the most challenging aspects of single-cell transcriptome profiling 
is to control the quality and deal with contamination. Single cell contamination 
comes from a variety of sources, including environmental RNA, cell 
doublets, cross-contamination (during sample handling). Such sources of 
contamination could adversely impact the accuracy and biological relevance 
of the downstream analysis [4]. Single-RGCs are challenging to capture, and 
various sources of contamination reach to the final data generation steps. 

To control the quality of the scRNA-seq data and to mitigate the effect 
of contamination, researchers have developed several computational 
methodologies [5, 6]. Available tools for QC and mitigating the effect of 
contamination are as follows: 1) Cell Ranger [7] is a widely used software 
application developed by 10x Genomics for the processing and analysis of 
scRNA-seq data. It has built-in QC measures to eliminate poor-quality cells 
based on parameters such as the number of detected genes, total counts, 
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and mitochondrial gene content; 2) Seurat [8] is a popular 
R package for analyzing scRNA-seq data. In terms of QC, 
Seurat can identify cells based on various parameters of the 
expressed genes, total counts, and mitochondrial level as 
well as identifying highly variable genes and determining 
the batch effects and outliers; 3) Scrublet [9] is a program 
that can find doublets in scRNA-seq data, or cells that were 
incorrectly counted as two different cells during droplet-based 
single-cell library preparation; 4) scater [10] is an R package 
that performs a number of QC tasks, such as calculating QC 
metrics, generating QC graphs, and discarding cells with 
quality scores below a specified threshold; 5) Scran [11] is 
a QC program for R that implements approaches to perform 
low-level processing in scRNA-seq data, such as cell cycle 
phase assignment and variance modeling; 6) Linnorm [12] 
is an R package focused on normalizing approaches that can 
assist in addressing potential technical biases in single-cell 
data; 7) ZINB-WaVE [13] is intended to deal with zero-
inflated data by employing a zero-inflated negative binomial 
model to improve the quality of the downstream scRNA-seq 
data analysis; 8) Monocle [14] is an R program developed 
for analyzing single-cell trajectories by QC procedures that 
seek for and eliminate any cells of poor quality; 9) scvis 
[15] is a data visualization program that helps finding and 
investigating patterns in scRNA-seq data. Users can spot 
problems or contradictions in the data by visually analyzing 
the quality of the clustering; and 10) scPipe [16] pipeline 
detects low-quality cells and possible batch effects through 
QC procedures. 

 Researchers have used some of these techniques or 
various combination of these QC techniques for analyzing 

single-RGC RNA-seq data. Rheaume et al. [2] used Seurat to 
implement QC and cell filtering to minimize contamination 
by excluding low-quality cells and those with poor 
sequencing metrics, ensuring that the analysis focused on 
high-quality data and minimizing contamination effect on the 
results. In order to reduce the amount contaminations, Tran 
et al. [17] removed cells based on the number of genes and 
employed Scrublet for removing doublet. Li et al. [3] used 
Seurat to sift through genes expressed in cells, total reads 
per cell, and the level of mitochondrial genes. To further 
reduce contamination and include RGCs only, they required 
expression of at least one out of seven pan-RGC markers and 
no (or low) expression of Pten.

Materials and Methods
Benchmark datasets; RGC sampling, isolation, and 
single-cell transcriptome profiling technology

Six DBA/2J or D2.Cg-Tg (thyl-CFP) 23 Jrs/Sj mice aged 
130-180 days and four DBA/2J-Gpnmb mice aged 120-140 
days were anesthetized and their retinas were extracted in 
one piece (Figure 1). The optic nerve was removed, and the 
harvested retinas were separated into two tubes. The pooled 
retinas were given a quick spin to gather the tissue at the 
bottom of the tubes after which they were mechanically 
separated using trituration. To collect the cell suspension and 
the pre-wetted contents, a short spin was given to each cell 
strainer. Placing the cell suspension on a Plurifilter with a 
pore size of 10 µm allowed cells smaller than 10 µm to pass 
through while cells larger than 10 µm are retained on the filter. 
To eliminate cells larger than 30 µm, a second Plurifilter was 
added to the system. Then, THY1 antibody-coated beads were 

Figure 1: The experimental workflow of creating single-RGC RNA-seq from mice retinas by utilizing Fluidigm technology. Six 
DBA/2j glaucoma mice and four DBA/2J-Gpnmb non-glaucoma mice were used to generate 5,994 retina cells through HiSeq 3000 
and SMART-Seq v4 technologies.
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used to enrich RGCs. With the use of SMART-Seq v4 [18], 
full-length polyA-positive mRNAs were isolated and used 
to generate scRNA-seq libraries. We sequenced 5,994 cells 
from eight plates by using a HiSeq 3000 and 150 nucleotide 
pair-end reads. 5,194 cells in seven plates were captured from 
DBA/2J mice suspected of glaucoma, and 800 cells in one 
plate were taken from DBA/2J-Gpnmb mice which were used 
as control samples. To generate gene expressions data, we 
used R1 reads to de-multiplex barcode rows and R2 reads to 
time and align to a reference genome [19].

Data preprocessing and quality control
We utilized Seurat and employed other tools that were 

customized to create a QC pipeline to reduce contamination 
in single-cell transcriptome profiling of RGCs.  The main 
steps in proposed QC pipeline are as follows: 1) load scRNA-
seq count data; 2) exclude duplicate genes; 3) filter cells 
(based on the number of reads per cell, number of genes 
per cell, mitochondrial level, and ribosomal level); 4) filter 
genes (based on the number of cells expressing genes and 
genes with zero expression); 5) find doublets; and 6) exclude 
non-RGC clusters (based on known retinal cell markers). 
Overview of proposed QC pipeline is illustrated in Figure 
2A. Below, we have outlined assessment of the proposed QC 
pipeline. scRNA-seq count data was loaded into R software. 
We merged scRNA-seq data from seven plates (C, D, E, F, H, 
I, and M) collected from DBA/2J. Plate N included scRNA-
seq data from control mice. The scRNA-seq data from the 
glaucoma mice included 5,994 cells with 43,320 transcripts. 
All plates were combined based on unique gene names and 
duplicated gene names were removed (we kept the transcripts 
with a greater number of non-zero expressions across 5,994 
cells). This step generated 25,394 transcripts. In the two next 
steps, we excluded some of the cells and genes. For cell-level 
filtering, we assessed various metrics such as cell counts, 
unique molecular identifier (UMI) counts (transcripts) per 
cell, number of genes detected per cell, mitochondrial counts 
ratio, and ribosomal counts ratio and excluded cells that did 
not met our criteria (Fig. 2B). Specifically, we filtered cells 
with fewer than 250,000 UMIs, 900 genes, mitochondrial 
counts ratio higher than 0.6, or ribosomal counts ratio lower 
than 0.02. The size of count matrix after cell-level filtering was 
[25,394 transcript * 4,661 cells]. For gene-level filtering, we 
removed genes with zero expression in all cells and excluded 
genes that had not been expressed in at least five cells. The 
size of count matrix after gene-level filtering was [15,754 
transcript * 4,661 cells]. We then utilized DoubletFinder() 
function to identify doublets formed from cells with identical 
single nucleotide polymorphisms (SNP) profiles and 
removed them from the downstream analysis. The count data 
size after doublet removal was [15,754 transcript * 4,475 
cells]. Finally, we used graph-based clustering method and 
identified 32 different clusters (Figure 2C). We then excluded 
non-RGC clusters based on pan-RGC markers (Rbpms, Thy1, 

Slc17a6, Pou4f2, Pou4f3)  and non-RGC markers (Tfap2a, 
Gad1, Lhx1, Onecut1, Vsx2, Otx2, Rho, Rlbp1, Aqp4, Fcrls, 
P2ry12) (Figure 2D-E) [17]. The final count data size was 
[15,754 transcript * 516 cells].

Identification of specific markers for different RGC 
subtypes

After excluding various potential sources of contamination, 
we re-clustered the remaining cells. Our aim of re-clustering 
is to group different putative RGCs into distinct subtypes. 
We thus normalized the data based on Fragments Per 
Kilobase Million (FPKM) values then converted the values 
to log2 scale using Seurat functions [20]. We then used 
principal component analysis (PCA) to linearly reduce the 
dimensionality while maintaining the primary structures in 
the data.

Determining how many PCs are optimal for the 
downstream analysis is crucial to ensure that most of the 
variation in the dataset is captured. We thus examined the 
optimal number of PCs and selected top ranked PCs that 
retained most of the variability in the data. We then used 
graph-based clustering method to identify RGC subtypes 
(clusters) and visualized the outcome in the uniform 
manifold approximation and projection (UMAP) [21] space. 
Applying graph-based clustering on UMAP will identify 
cells with similar patterns of gene expression, and thus 
similar PCs and UMAP scores, and will group these cells 
into non-overlapping clusters objectively (Figure 3A). In 
the UMAP space, cells that are close to each other and have 
many neighbors are typically grouped together using graph-
based clustering, while cells that are too far apart and lay 
alone are considered outliers. After clustering, we identified 
differentially expressed markers for each cluster, which 
enabled us to find the biological identity of each cluster. We 
used FindAllMarkers() function in Seurat for this purpose. 
Our customized QC pipeline for single-RGCs and our 
scRNA-seq dataset were made publicly available in https://
github.com/DM2LL/QC_RGCs and https://genenetwork.
org/, respectively.

Results and Discussion 
Single RGC clustering and RGC subtype-specific 
unique markers 

A total of 20 PCs retained over 85% variability in the 
data. We selected UMAP in two dimensions to visualize the 
data.  To partition the cells in the UMAP space, we set the 
reachability distance parameter (eps) to 1, which provided 
four clusters (Figure 3A). Using the FindAllMarkers() 
function in Seurat, we compared each cluster to every other 
cluster to look for candidate marker genes. The cells within 
each cluster were considered replicates, and the Wilcoxon 
Rank Sum test was used to assess differences in gene 
expression between groups. We selected the top 30 genes by 
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Figure 2: Overview of data preprocessing and quality control (QC) pipeline.

(A)	Different stages of QC of scRNA-seq data and the total size of count matrix in each step.
(B)	The cell level filtering step of QC for scRNA-seq data shows the thresholds of number of genes detected per cell (nGene), the total reads 

per cell (nUMI), the percentage of mitochondrial genes (mitoRatio), and the percentage of ribosomal genes (riboRatio).
(C)	Uniform Manifold Approximation and Projection (UMAP) visualization of 4,475 retinal cells by computing both nearest neighbor graph 

and shared nearest neighbor (SNN). Cells are colored by cluster assignments.
(D)	Dotplot shows the expression patterns of marker genes (columns) specific to different retinal types for RGC and non-RGC clusters. Our 

identified clusters are shown in rows. The size of each circle represents the percentage of cells expressing the gene; the color represents the 
average normalized transcript count in expressing cells. The average expressions of RGC markers in comparison to non-RGC markers are 
higher in clusters 2, 26, 28, and 31, so they are kept for the following process.

(E)	UMAP visualization of 4,475 retinal cells which are colored by cell-type assignments. 516 RGCs are shown in green color.
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Figure 3:  Single RGC clustering and RGC subtype-specific unique markers. 
(A)	UMAP visualization of 516 RGCs which are colored by cell-type assignments. 
(B)	Dotplot display of the expression patterns of marker RGC sub-types (columns). 
The size of each circle represents the percentage of cells expressing the gene; the color represents the average normalized transcript count in 
expressing cells. Clusters 0, 1, 2, and 3 are identified as New, N-RGC, F-RGC, and New sub-types, respectively.

average fold change across clusters for downstream analysis. 
Further, we identified RGC subtypes based on RGC marker 
genes provided in the Tran et al. study [17]. Specifically, we 
discovered two new RGC subtypes (clusters 0 and 3), one 
N-RGC subtype (cluster 1), and one F-RGC subtype (cluster 
2) Two known RGC subtypes and corresponding  marker 
genes in our dataset were N-RGCs (Satb2) and F-RGCs 
(Foxp2) [17].

Highly and differentially expressed genes
Highly expressed genes play a crucial role in cell function 

and often define cell type-specific characteristics. Identifying 
these genes is important for understanding cellular processes 
and identifying key regulators. We found that some RGC 
genes are enriched in several subtypes whereas others are 

Figure 4:  Top expressed genes in each cluster. 
(A)	 Heatmap displaying the top genes differentially expressed in each cluster across all RGCs. As shown at the top of the graph, the cells 

are arranged based on their corresponding cluster. On the y axis, differentially expressed genes are displayed. Yellow color represents 
heigh expression.

(B)	 Violin plots show nine samples differentially expressed RGC genes for cluster 2.
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Figure 5:  Heatmap displaying top genes expressed in each cluster based on the Seurat pipeline.

 X axis represents clusters of cells and y axis presents genes. Differentially expressed genes (top markers) corresponding to each cluster is 
shown in yellow. 
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subtype specific. Figure 4A shows Heatmap of the top genes 
differentially expressed in each cluster across all RGCs. As 
shown at the top of the graph, cells are sorted based on cluster 
identity. Differential expression genes show significant 
changes in expression between different cell populations 
or conditions. These genes are uniquely expressed or 
differentially regulated, providing insights into cell type 
diversity and functional differences. Figure 4B demonstrates 
Violin plots of nine differentially expressed RGC genes for 
cluster 2. We anticipate that Igfbp7, Gng11, Rhoj, Plac9b, 
S100a16, S100a6, Snord123, and Sncg RGC genes in cluster 
2 are likely F-RGC subtype markers due to the expression of 
F-RGC subtype marker, Foxp2, in cluster 2.

Comparison between highly and differentially 
expressed genes with/without using proposed method

In this section, we compare top expressed RGC genes in 
final clusters based on our customized pipeline and if we use 
Seurat [22] only for QC. The objective metric for comparing 
our customized pipeline and Seurat pipeline is the number 
of RGC related genes at the end of the downstream analysis.

Figures 4 and 5 show heatmap corresponding to the top 
genes expressed in each cluster using our customized QC 
pipeline and Seurat package, respectively. Cells were sorted 
based on cluster identity as shown on top of the plot.  As can 
be seen, using our customized pipeline led to differentially 
expressed genes primarily corresponding to RGCs (Figs. 4A 
and 4B) suggesting contamination has optimally reduced 
while using Seurat, most of identified differentially expressed 
gens correspond to non-RGC retinal cells indicating a 
significant level of the contamination in the data has yet 
remained (Figure 5).

Conclusions
In this study, we generated 5,994 single RGCs from 

mouse retina using Fluidigm technology, focusing on retinal 
ganglion cells (RGCs) by employing THY1 antibody-coated 
beads. We used SMART-seq v4 to generate scRNA-seq 
libraries with very deep phenotype. We then developed a 
customized computational QC pipeline to reduce various 
sources of contamination in single RGCs to enhance 
downstream biological interpretations.  We applied our 
pipeline on the scRNA-seq data and compared our customized 
pipeline with widely used Seurat package and showed that 
our pipeline generated clusters with significantly greater 
number of known RGC markers compared to Seurat. We also 
identified several previously unknown markers for F-RGC 
subtype. Lastly, we made our customized QC pipeline for 
single RGCs and our scRNA-seq dataset publicly available to 
the research community for the advancement of open science. 
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