
Research Article	

Volume 7 • Issue 1 137

Accelerated Dynamic Time Warping on GPU for Selective Nanopore
Sequencing
Harisankar Sadasivan1*, Daniel Stiffler2, Ajay Tirumala2, Johnny Israeli2, Satish Narayanasamy1

Affiliation:
1Department of Computer Science and Engineering,
University of Michigan Ann Arbor, MI 48109, USA
2NVIDIA Corporation, Santa Clara, CA 95051, USA

*Corresponding author:
Harisankar Sadasivan, Department of Computer
Science and Engineering, University of Michigan
Ann Arbor, MI 48109, USA.

Citation: Harisankar Sadasivan, Daniel Stiffler,
Ajay Tirumala, Johnny Israeli, Satish Narayanasamy.
Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of
Biotechnology and Biomedicine. 7 (2024): 137-148.

Received: November 13, 2023
Accepted: November 22, 2023
Published: February 21, 2024

Abstract
The design and supply of RT-PCR primers for accurate virus testing

is a complex process. The MinION is a revolutionary portable nanopore
DNA sequencer that may be used to sequence the whole genome of a
target virus in a biological sample. Human samples have more than 99%
of non-target host DNA and Read Until is a protocol that enables the
MinION to selectively eject reads in real-time. However, the MinION
does not have any in-built compute power to select non-target reads.
SquiggleFilter is a prior work that identified the accuracy and throughput
challenges in performing Read Until using the state-of-the-art solution and
proposed a hardware-accelerated subsequence Dynamic Time Warping
(sDTW) based programmable filter on an ASIC. However, SquiggleFilter
does not work for genomes larger than 100Kb. We propose DTWax which
optimizes SquiggleFilter’s sDTW algorithm onto the more commonly
available GPUs. DTWax better uses tensor core pipes, 2X-SIMD FP16
computations and efficient data handling strategies using offline pre-
processing, coalesced global memory loads, warp shuffles and shared
memory buffering among other optimizations. DTWax enables Read Until
and yields 1.92X sequencing speedup (improvement in sequencing time)
and ∼3.64X compute speedup: costup (improvement in compute time
normalized to cloud access cost) over a sequencing workflow that does not
use Read Until.

Keywords: Read Until; Selective sequencing; DTW; MinION;
Metagenomics; Nanopore

Introduction
With SARS-CoV-2 evolving and adapting to its new environment [1] and

becoming immune-evasive [2], there is a possible threat from a variant that
can evade our current gold standard tests and fuel a surge in cases. Reverse
Transcription Polymerase Chain reaction (RT-PCR) is the current gold
standard [3] for SARS-CoV-2 diagnostic testing. Prior works have shown
that RT-PCR requires the design and manufacture of custom PCR primers
which is a complex, time-consuming, and error-prone process [4-6]. This
limits the utility of RT-PCR in the early stages of a pandemic. Insufficient
testing contributed to the uncontrolled spread of the virus early on. It took
half a year after the first SARS-CoV-2 genome was sequenced in January
2021 for the number of daily tests worldwide to even cross 1 million [4].
Dunn and Sadasivan et al. [4] developed SquiggleFilter, a portable virus
detector that could be re-programmed to speed up the sequencing of reads
from a viral target of interest. SquiggleFilter is an ASIC, envisioned to work
alongside Oxford Nanopore Technology’s (ONT) MinION MK1B (or simply
the MinION), a recent-to-market portable DNA sequencer that does not have

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 138

any compute built into it. However, SquiggleFilter can only
be programmed with references of size less than 100Kb and
it being an ASIC, is not easily scalable.

Additionally, GPUs are becoming a more common choice
for accelerated computing on sequencers ONT sequencers
GridION, PromethION, and MinION MK1C have GPUs built
into them [7]. GPUs are also widely available in workplaces
and on cloud platforms. While SquiggleFiter’s subsequence
Dynamic Time Warping (sDTW) algorithm was optimized to
work on an ASIC, we adapt and optimize it to work on the
more common GPUs.

Background
Nanopore Sequencing

Long-read sequencing technology is increasingly
becoming popular for rapid and accurate medical diagnosis
[8,9] with lower adoption costs, end-to-end sequencing times,
and improved portability and raw read accuracies. Long reads
are particularly useful for applications that include structural
variant calling and denovo assembly [8,10] as they, unlike
short reads, can span highly repetitive regions in the genome.
Oxford Nanopore Technology’s (ONT) MinION is a long-
read DNA sequencer that is low-cost, real-time, portable, and
can perform digital target enrichment using software instead
of time-consuming wet-lab based methods [4]. While prior
sequencing technology like Illumina relied on short accurate
DNA reads, nanopore sequencers introduced long and
noisy reads. ONT sequencers can produce very long reads
to help span the highly repetitive regions in the genome.
Nanopore senses the DNA molecule that passes through the
pore by measuring the characteristic disruptions in electric
current density. Decoding this noisy but characteristic
signal (squiggle) helps us understand the DNA base (A, G,
T, or C). MinION is an ideal candidate for viral detection
because of many factors [4]. MinION is portable, low-cost,
and capable of real-time DNA sequencing. Unlike RT-PCR
tests, where one has to perform enrichment of target DNA
in low-concentration specimens in the wet-lab, MinION
lets us save time and cost by digitally checking for targets
while sequencing. In real-time, MinION can be controlled to

selectively sequence just the target DNA strands and eject the
non-target strands by reversing the electrical potential across
the pore.

Selective Sequencing

Most human samples have a very high fraction of non-
target DNA (∼ 99.9% and most of it is human DNA) [11].
In order to save time and cost of sequencing, ONT has a
feature called Selective Sequencing (Read-Until) [12] which
lets us selectively sequence only the target DNA reads while
ejecting the non-target. As the read is sequenced, real-time
compute may be performed to classify the read as a target or
not. Non-targets are ejected by reversing the voltage in the
nanopore while targets are completely sequenced. The state-
of-the-art selective sequencing pipeline [12,13] uses Guppy-
fast (hereon referred to as Guppy)

for basecalling and Minimap2 for classifying the reads [13]
as shown in Figure 1. Guppy is a deep neural network-based
software that converts the raw signal output of the MinION
(noisy squiggles) to bases. However, Guppy has a two-fold
performance problem. Prior works have demonstrated how
Guppy is compute intensive [14-16] and does not have the
required throughput even on a high-end edge GPU to handle
the future throughput of the MinION [4] and SquiggleFilter
[4] pointed out how the increasing throughput of the MinION
amplifies this problem. We demonstrate the same problem
in Figure 2b. Figure 2b also points to the fact that the GPU
hardware is under-utilized when the prefix (query) lengths are
smaller which we confirmed by profiling the software using
NVIDIA Nsight Compute. Secondly, Guppy is unable to
accurately basecall small chunks of data. ∼40% of the bases
sequenced from a sample of average read length 2 Kbases
is unclassified with prefix lengths of 250 bases as shown in
Figure 2a because Guppy could not basecall these very short
fragments accurately [16]. Please note that in this context,
classification refers to mapping read prefixes to target
(microbe) or non-target (host). Additionally, we trim the
first 100 bases (or equivalent signal samples) to remove the
adapters from all our analysis.

Figure 1: State-of-the-art selective sequencing pipeline uses Guppy-fast for basecalling and Minimap2 for classifying the reads.

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 139

Hardware-accelerated SquiggleFilter [4] was proposed as a
replacement for the Read Until classification using Guppy followed
by Minimap2.

Prior Work
Since the MinION’s release in 2014, there has been

a few attempts in improving the benefits of Read Until [4,
12-17], of which only SquiggleFilter [4] has the optimal
combination of accuracy and throughput to keep up with a
future MinION. The softwares performing Read Until can
be broadly classified into two categories based on the inputs
they operate on- signal space and basecalled space. Softwares
operating in the signal space attempt to classify the input
squiggle as a target or non-target while softwares operating
in the basecalled space rely on the basecaller to transform
raw squiggles to bases in real-time which is computationally
expensive. We observe that the basecaller also basecalls
smaller signal chunks poorly. The basecalled read prefixes
may then be classified as a target or non-target. Readfish [13]
and RUBRIC [12] classify basecalled reads to detect targets
using mapping tools like Min- imap2. We show that ONT’s
proprietary basecaller Guppy suffers from not being able to
basecall smaller signal chunks correctly leading to ∼40%
of the sequenced bases being unclassified by Minimap2.
Addi- tionally, Guppy, a deep neural network, also suffers
from low throughput on high-end GPUs and cannot meet
the real-time compute requirements of a future MinION
[4]. Three of the signal space-based methods rely on event
segmentation- a pre-processing step where raw squiggles
are segmented into events to detect positions in the signal
where we are more likely to see a new base. The very first

attempt at Read Until [18], UNCALLED [14], and Sigmap
[15] use event segmentation as a pre-processing step. Loose
et al. [18] uses sDTW on python to perform Read Until from
events on a CPU. This yields sub-optimal performance.
UNCALLED follows up with FM-index look-ups and seed
clustering to find a target map. Although UNCALLED has
a good mapping accuracy for smaller genomes, We observe
that UNCALLED does not have the necessary throughput to
match the compute requirements of a future MinION. Sigmap
does seeding followed by Minimap2-style chaining on the
seeds to identify a target map. But we observe that Sigmap
needs a relatively long read prefix to identify a sufficient
number of seeds and this turns out to be 4000 raw samples.
Additionally, we observe that Sigmap has lower mapping
accuracy than UNCALLED.

SquiggleNet [19] is a convolutional neural network-
based software for classifying squiggles into target or non-
target. However, SquiggleNet [19] is slower than guppy
followed by Minimap2 and only achieves similar mapping
accuracy to Guppy followed by Minimap2. SquiggleFilter
[4] is a programmable ASIC that can match the throughput
of a future MinION and yield optimal Read Until benefits.
However, the initial cost of adoption is high as ASIC needs to
be economically manufactured at scale and shipped in order to
be deployed worldwide. GPUs on the other hand are already
widely available at workplaces, shipped along with some
of the sequencers, and also available on the cloud. DTWax
is our proposed software which optimizes SquiggleFilter’s
underlying sDTW algorithm on GPUs for Read Until. DTW has
been parallelized in the past for various different applications

Figure 2: Guppy basecalls smaller signal chunks poorly leaving a high percent of sequenced bases unclassified by Minimap2.
Guppy also has a throughput problem doing Read Until. (a) ∼40% of the bases sequenced are non-target in a 99.9: 0.1 non-target:
target mix with an average read length of 2 Kbases and a Read Until read-prefix length of 250 bases. Read prefix lengths used for
classification are color-coded. (b) Guppy followed by Minimap2 cannot match the throughput of a future MinION even on a high-
end cloud instance that uses an A100 GPU for basecalling (prefix length used is 250 bases per second).

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 140

on architectures including FPGAs [17, 20], Intel Xeon Phis
[21], big data clusters [22], customized fabrics [23] and even
GPUs [24,25]. HARU [17] is a recent work that implements
SquiggleFilter’s algorithm on a budget-constrained FPGA.
HARU cannot match the maximum throughput of the current
MinION and is not a solution that can match the planned 100X
throughput of the MinION. Crescent [26] is a recent closed-
source implementation of SquiggleFilter’s algorithm directly
on the GPU but ends up being 29.5X lower in throughput
than DTWax possibly because of several reasons including
not utilizing warp synchronized register shuffles for data
sharing between threads and fewer number of cells computed
per thread. cuDTW++ [27] is the best-performing prior work
on GPU which accelerates DTW. However, cuDTW++ is
∼2.6X slower than DTWax and is built for database querying
of very small queries and not for subsequence Dynamic Time
Warping that is required to perform Read Until. Additionally,
the normalization step is performed very inefficiently.

Subsequence Dynamic Time Warping

sDTW is a two-dimensional dynamic programming
algorithm tasked with finding the best map of the whole of
the input query squiggle in the longer target reference. In
sDTW’s output matrix computation, parallelism exists along
the off-diagonal of the matrix and therefore, the computation
happens in a wavefront parallel manner along this off-
diagonal. Diagonals are processed one after the other. If the
query is assumed to be along the vertical dimension of the
matrix and the target reference along the horizontal dimension,
the minimum score on the last row of the matrix will point to
the best possible map of the query to the reference. This score

may be compared to a threshold to figure out if the query is a
target or not. The sDTW cost function is defined as follows:

Squiggle Filter
While traditional RT-PCR tests rely on complex custom

primer design and time-consuming wet-lab processes for
target enrichment, MinION can be controlled to selectively
sequence only the target virus of interest using the Read Until
feature. Utilizing the Read Until feature requires making real-
time classifications during sequencing but the current MinION
does not have any compute power. Dunn and Sadasivan et
al. [4] demonstrated how basecalling is the bottleneck and
constitutes ∼88-96% of Read Until assembly and how this
problem was amplified with the projected 100X increase in
ONT’s sequencing throughput. Their solution, SquiggleFilter
[4], uses hardware accelerated subsequence Dynamic Time
Warping (sDTW) to perform Read Until.

SquiggleFilter addresses the compute bottlenecks in
portable virus detection and is designed to even handle the
higher throughput of a future MinION. SquiggleFilter is
programmable and offers better pandemic preparedness
apart from saving time and cost of sequencing and compute.
However, SquiggleFilter’s limited on-chip memory buffer
only lets it test for viral genomes smaller than 100Kb.
Additionally, SquiggleFilter uses a modified version of
sDTW algorithm where the accuracy dip from various
hardware-efficiency focussed optimizations are overcome
with the match bonus [4]. Match bonus is a solution to a
problem on the ASIC and performing this on the GPU can
introduce branch divergence. We eliminate the match bonus,
retain the assumption of reference deletions and optimize
sDTW to run on GPUs.

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 141

Our contributions
In this work. we present DTWax, a GPU-accelerated

sDTW software for nanopore Read Until to save time
and cost of nanopore sequencing and compute. We adapt
SquiggleFilter ASIC [4]’s underlying sDTW algorithm to
suit a GPU in order to overcome the limitation with reference
lengths SquiggleFilter had. While sDTW was optimized for
integer compute on the ASIC, we fine-tune sDTW for high
throughput on the GPU. While SquiggleFilter uses integer
arithmetic and Manhattan distances on the ASIC, we use
floating point operations and Fused-Multiply-Add operations
on the GPU. We also demonstrate how to utilize some of the
GPU’s high throughput tensor core’s compute power for non-
ML workloads.

As a first step, we speed up the online pre-processing
step (normalization) on FP32 tensor cores using the batch
normalization functionality from the CUDNN library
traditionally used for machine learning workloads. DTWax
is optimized to make use of the high throughput Fused-
Multiply-Add instructions on the GPU. Further, we use FP16
and FP16 tensor core’s Matrix-Multiply-Accumulate (MMA)
pipe for higher throughput for sDTW calculation. Using FP16
helps us process the forward and reverse strands, thereby
extracting more parallelism to help improve the latency and
throughput of classification. We also make use of offline pre-
processing of reference squiggle index for coalesced loads,
cudastreams for better GPU occupancy, intra-, and inter-read
parallelism, register shuffles, and shared memory for low-
overhead communication while processing the same query.

DTWax achieves ∼1.92X sequencing speedup and ∼3.64X
compute speedup: costup from using nanopore Read Until for
a future MinION (with 100X the current throughput) on an
A100 compared to a workflow that does not use Read Until.

Methods
Offline pre-processing

ONT has published a k-mer current model [28] which
provides a reference to map a 6-mer to an expected value of
the current output from the MinION. We use this k-mer model
to map the reference genome of the target virus to a noise-free
FP16 squiggle reference. The squiggle reference will be of
length (target_length - 6 + 1). We also pack two FP16 values
(one from the forward strand and another from the reverse
strand) into a half2 reference word (built-in CUDA datatype
of two FP16 half-words). Further, we make use of the prior
knowledge of the target reference to ensure coalesced global
memory reads by re-ordering the target reference offline.

Online pre-processing: Normalization
The output squiggle of the MinION (query) is read from

ONT’s proprietary FAST5 file format. The raw integer data

is then scaled to pico-amperes (float32). The first few samples
(1000) are trimmed to cut adapters and barcodes off. We re-
purpose the CUDNN-Batchnorm to z-score normalize the
1-dimensional FP32 query current signal. CUDNN utilizes
tensor cores and performs normalization at a very high
throughout (∼6X the throughput of sDTW). The signal is
then rounded off to FP16 and copied into a half2.

DTWax: architecture
We adopt the segmented-sDTW architecture introduced

in prior works [27] where each segment is a fixed number of
cells in a row whose scores are computed by a thread. DTWax
breaks down the processing of longer target references into
multiple sub-matrices, each processing a fixed number of
target bases. The reference length processed per sub-matrix is
configurable and is set to 832 bases for optimal performance
on an A100. Within a sub-matrix, each thread is responsible
for processing a configurable but equal number of cells (cells
per thread is called a segment). Wavefront parallelism exists
along the off-diagonal segments in the sub-matrix as shown
in Figure 3. Thread 0 is the first to finish its computation
inside the sub-matrix while thread 31 is the last to finish.
Target reference is loaded into registers (one FP16 reference
sample each for forward and reverse strands into a single
half2 datatype) from global memory using coalesced loads.

For intra-sub-matrix communication, we exploit warp
shuffles for efficient register-to-register transfers within the
same warp. This is an idea demonstrated by Schmidt et al
[27] but not completely explored. Threads in a warp use warp
shuffles to transfer the query sample, the minimum score of
the segment, and the score of the last cell in the segment to
the thread on its right. Instead of using a global reduction to
find the final minimum score for DTWax, we use the efficient
warp-shuffles to pass the minimum scores of the segments
between threads. Inter-sub-matrix communication happens
via shared memory transfers instead of relying on global
memory. A thread block processing a read writes the last
column of the sub-matrix into the shared memory and reads
it back while calculating the consecutive sub-matrix for the
same read.

Intra- and inter-read parallelism
Using all the warps on an SM to process a single query

would mean that the last warp remains idle and is ineligible
for compute for an initial period of time. Therefore, we
choose to process one read with a thread-block of only 32
threads. We have intra- and inter-read parallelism. Every
query is processed by a thread block of 32 threads. Within a
thread block, we have intra-read parallelism from 32 parallel
threads each computing a segment of the sub-matrix. Across
the GPU, we have inter-read parallelism as there as multiple
concurrent blocks operating on different reads on any given
Streaming Multi-processor (SM).

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 142

FP16 for 2X throughput
SquiggleFilter [4] has demonstrated that the information

from the ONT sequencer may be captured using 8 bits. While
the ASIC was custom-designed for integer arithmetic, GPUs
are designed for high throughput floating point arithmetic.
Among the floating point pipes available, we use the high
throughput FP16 pipe on A100 (2X throughput compared to
FP32) for DTWax. Computation with respect to the forward
strand of the target reference happens on the first FP16
lane while the second FP16 lane computes with respect to
the reverse strand. For example, Rf 0,r0 represents a FP16
vectorized forward and reverse reference signal points in
Figure 3. Utilizing half2 FP16 pipes (FP16 vectorization)
not only helps us to increase throughput but also improves
the latency by 2X because we concurrently process both the
forward and the reverse strand of the target with respect to the
query in every cell of the sub-matrix.

Coalesced global memory access
The offline re-ordering of the target reference enables us

to perform coalesced reads from global memory (as many
loads as the length of one segment in a sub-matrix) before
computation starts in the sub-matrix. The normalized target
reference is an array of half2 datatype. This enables the
vectorized processing of the input query signals on the high
throughput FP16 pipe. Additionally, after the normalized

query is read from the global memory in chunks of 32 half2
query samples using a coalesced load of 128B, it is then
efficiently transferred between threads of a warp using warp
shuffles. For example, in Figure 3, Rf 0,r0, Rf 3,r3, . . . , Rf 93,r93
would be read in one coalesced read.

Utilizing tensor core pipe
HFMA2.MMA pipe on the tensor core has one of the

highest throughputs on A100. We re-formulate the addition
in the cost function of DTWax to a Fused Multiply-Add
operation in order to utilize the otherwise under-utilized
HFMA2.MMA pipe. We are then able to better throttle
the compute instructions between HFMA2.MMA and the
remaining FP16 pipes instead of increasing the traffic on the
FP16 pipe.

Assuming no reference deletion
Using the same assumption from SquiggeFilter [4] that

viral strains have minimal reference deletions, we observe
our accuracy of mapping using DTWax improves and our new
cost function becomes simpler as we now only have to find a
single minimum per cell instead of two minimums. This can
be visualized in Figure 3 where is there no dependency on the
immediate left neighbor’s score for score computation. Line
7 from Algorithm 1 is simplified to:

S[i,j] ← (Q[i]-R[j])2 + min(S[i-1,j-1],S[i-1,j])

Figure 3: Efficient intra- and inter-matrix communication in DTWax. Within a warp, each thread computes the FP16 vectorized scores
for forward and reverse strands for a configurable segment number of cells in a wavefront parallel manner along the off-diagonal of the
matrix. Warp shuffles are used for intra-warp communication (shown in dotted black) while shared memory is used as a buffer for inter-warp
communication (shown in blue).

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 143

Optimizing occupancy and branch divergence
We ensured high SM utilization by finding the right balance

between the number of resident warps on the SM and shared
memory utilization. Further, we keep the GPU occupancy
high by issuing concurrent asynchronous workloads to the
GPU using cudastreams. Memory transfers to and from the
GPU are overlapped with compute on the GPU. We reduce
the branch divergence via partial loop unrolling. The first
sub-matrix does not read from shared memory and the last
sub-matrix does not write into shared memory. Unrolling
the first and last sub-matrix computations of the query-target
matrix helps improve performance.

Configurability and scalability
DTWax can be reprogrammed to test for any target

reference of interest. Unlike some of the prior works [4,
27], DTWax can be reporgrammed to test for longer target
references. Further, one may easily try and scale DTWax
across multiple GPUs for higher throughput on longer or
multiple target references.

Implementation
Experimental Setup

For all our GPU evaluations, we use Google Cloud
Platform’s (GCP) a2-highgpu-1g instance with 40GB of
memory and 85GB of host memory. The high throughput
NVIDIA A100 GPU on this instance has the HFMA2.MMA
pipe that we use for high throughput FP16 computations. To
perform fair evaluations of prior works, our CPU baselines
are configured to their best performance with hyper-threading
enabled on GCP c2-standard-60 (30 Intel Cascade Lake
cores and 240 GB of memory). Additionally, 10% higher
GPU usage costs on GCP are factored in when benefits are
measured.

pyguppy-client and DTWax use GPU while other
softwares use CPU. We use UNCALLED v2.2, Sigmap v0.1,
mappy (Python interface to Minimap2 v2.17) and pyguppy-
client v0.1.0. We optimally configure the software for better
mapping accuracy. We configure Sigmap for better event
detection by setting “–min-num-anchors-output 2 –step-size
1”. We turn off minimizers in Minimap2 for better mapping
accuracy by setting “-w=1 -k=15”.

As previously noted by Sadasivan et al. [16], benefits
from Read Until can vary from run to run based on wetlab
protocols (capture time and read length), quality of the
flowcell and sample constitution. Therefore, it can be difficult
to correctly measure the benefits of Read Until for multiple
softwares across multiple live sequencing runs. To solve this,
we utilize the analytical model from RawMap [16] to estimate
sequencing time savings from using Read Until. We use the
average capture time of 2 seconds observed by Sadasivan
et al. [16] in wet-lab. The latency and throughput of above

softwares used in Read Until are measured and plugged into
this model as shown in the supplementary data. Additionally,
the results presented from the analytical model also helps
us to identify the optimal read-prefix length for Read Until
classification and also to explore the benefits of Read Until on
sequencing runs of different average read lengths. Although
ONT’s Read Until API currently does not support read-prefix
granularities (chunk sizes) lower than ∼200 bases (down
from 400 bases) [13], it might be worthwhile to consider
this as ONT’s support for short read length is increasingly
growing.

We use NVIDIA Nsight toolkit for profiling software.
NVIDIA Nsight Systems [29] is used to visualize concurrent
CUDA events, and NVIDIA Nsight Compute [30] is used to
profile GPU events.

We use public datasets used by SquiggleFilter [4]. The
lambda phage DNA is sequenced on a MinION R9.4.1 flow
cell following the Lambda Control protocol at the University
of Michigan’s laboratory using the ONT Rapid Library
Preparation Kit31. Human datasets (sequenced with MinION
R9.4 and R9.4.1 flow cells) are obtained from ONT Open
datasets [32] and the Nanopore Whole-Genome Sequencing
Consortium [33]. In all our experiments and analysis, the first
100 bases (or equivalent samples) are trimmed to remove
adapters.

Optimal GPU configurations
In order to optimize DTWax’s throughput on A100, we

introduce more inter-read parallelism by fitting 32 blocks
on each of the 108 Streaming Multiprocessors on the GPU.
We process one read per thread block of size 32 threads.
We observe that having multiple concurrent warps per read
resident on the SM may not be beneficial as there may be
a long latency in the last warp of a read getting valid inputs
from the previous warp and starting to calculate useful
values. Using Nsight Compute, we maximize the number
of reference bases processed per thread (segment size) to 26
amounting to a total of 32x26 reference bases processed per
thread block. In order to reduce global memory transactions,
we use shared memory for inter-sub-matrix communication.
A shared memory of size 500B is allocated per block to store
the output of the last column of a sub-matrix calculated by the
last thread in a thread block. This is read by the thread block
when it processes the next set of 32x26 reference bases.

Incremental Optimizations
We modify Hund et al.’s software [27] to perform sDTW

and observe that it is still slower than the future MinION.
DTWax is a compute-bound kernel. We implement a series of
optimizations to meet the throughput of the future MinION.
Figure 4 gives the reader a better understanding of the
relative benefits of some of the main optimizations that go
into DTWax.

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 144

Results
We use two metrics to evaluate the benefits of using

DTWax– sequencing speedup and compute speedup: costup.
Sequencing speedup is defined as the speedup in the end-
to-end sequencing time from using DTWax for Read Until
over a conventional nanopore sequencing workflow that does
not use Read Until (conventional workflow basecalls full
length reads and maps them using Minimap2). Accessing an
NVIDIA A100 GPU instance on the cloud is priced ∼10%
higher than the CPU instance we use for benchmarking.
Hence, we normalize the compute time savings from using
DTWax for Read Until to the cost of the cloud GPU instance to
estimate compute speedup: costup. Further, we also compare
the F1-score of DTWax in making Read Until classifications.
DTWax yields up to ∼1.92X sequencing

speedup and ∼3.64X compute speedup: costup with
a future MinION of 100X throughput when compared to a
sequencing workflow that does not use Read Until as shown

in Figure 5. Additionally, we observe that using a prefix
length of 250 bases yields the best benefits from using Read
Until on a dataset of average read length 2 Kbases. One may
also observe that savings from ont-pyguppy client degrades
with increasing read-prefix lengths used for classification
because ont-pyguppy cannot process streaming inputs and
concatenate to outputs. Therefore, ont-pyguppy-client has to
basecall the entire prefix again. Sigmap is unable to extract
events from signals less than 400 bases. Please note that
DTWax and pyguppy-client are GPU solutions and we label
them using dotted lines on all the plots.

Figure 6 shows that DTWax can handle more than 2X
the throughput of a future MinION and has ∼7.18X lower
latency than pyguppy-client followed by mappy using a
prefix length of 50 bases. Because of this, we operate DTWax
at a processing granularity of 50 bases over a prefix length
of 250 bases to make a Read Until classification decision.
To explain the performance of pyguppy-client on longer

Figure 4: A series of performance optimizations enable DTWax to handle more than 2X the projected future sequencing throughput.

Figure 5: DTWax yields ∼1.92X sequencing speedup and ∼3.64X compute speedup: costup. (a) DTWax yields the best sequencing speedup of
∼1.92X over a conventional pipeline that does not use Read Until on reads of length 2000 bases. (b)DTWax yields the best compute speedup:
costup of 3.64X. Prefix length used for classification is 250 bases for the best performance in both cases.

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 145

Figure 6: DTWax can handle more than 2X the throughput of a future MinION and has ∼7.18X lower latency than pyguppy-client followed
by mappy. (a)Unlike pyguppy-client followed by mappy, DTWax operating at a granularity of 50 bases can handle twice the throughput of
a future MinION (b)DTWax takes only ∼14 milliseconds to classify 50 bases and is ∼7.18X faster than pyguppy-client followed by mappy.

Figure 7: DTWax is the most accurate Read Until classifier. (a) DTWax has an F1-score of ∼92.24% and is the most accurate Read Until
classifier using a prefix length of 250 bases. (b) DTWax is better at filtering non-target (human) reads out than pyguppy-client followed by
mappy while being almost comparable in successfully retaining target reads

prefixes, we profile pyguppy-client using NVIDIA nsight-
compute and observe that the GPU occupancy is higher with
longer prefix lengths resulting in better benefits from longer
prefix lengths. UNCALLED seems to have a very high one-
time fixed cost for path buffer management for storing output

forest of trees and there is negligible cost with added prefix
lengths. Although, Sigmap is the best in terms of throughput
and latency, it cannot extract useful information from 250
bases and has lower F1 scores in classifying prefix lengths
longer than 400 bases as shown in Figure 7.

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 146

Apart from the performance of the classifier, the
correctness of classification also affects Read Until benefits.
This is because a missed target read can mean sequencing
another 1000 reads to collect a target read from a host: microbe
sample mix of 99.9: 0.1. DTWax is the most accurate Read
Until classifier as shown in Figure 7a. Figure 7a also shows
that Sigmap cannot classify reads smaller than 400 bases.
Figure 7b shows that DTWax is better at filtering non-target
human reads and almost as good at retaining target reads when
compared to pyguppy-client followed by mappy. We utilize
the analytical model to explore the sequencing speedup and
compute time savings from DTWax for higher average read
lengths in Figure 8. Using the analytical model, we visualize
the maximum benefit from Read Until that can come from
an ideal classifier with zero latency and 100% accuracy of
classification using the green line. DTWax is estimated to
yield higher benefits on longer read lengths by the analytical
model. However, it is worthwhile to note that this will only
be possible with improvements in nanopore chemistry and
pore design as currently long reads when ejected may tend to
temporarily clog and block the sequencing pores.

Conclusions
SquiggleFilter is an ASIC that can be programmed to

perform pathogen detection with the portable MinION
sequencer. However, the ASIC cannot be programmed with
references longer than 100 Kb. We adapt SquiggleFilter’s
underlying sDTW algorithm to the more widely available
GPUs to democratize Read Until. To make sDTW performant
on the GPU, we do offline pre-processing of target reference
to ensure coalesced loads from global memory, reduce
branch divergence, and utilize FP16 vectorization and tensor
core pipes. Further, we use warp-shuffles for efficient intra-
sub-matrix communication and shared memory for low-

latency inter-sub-matrix communication. Further, we assume
no reference deletions to improve both the throughput and
F1-score. We show that DTWax on an NVIDIA A100 GPU
achieves ∼1.92X sequencing speedup and ∼3.64X compute
speedup: costup over a sequencing workflow that does not
use Read Until.

Acknowledgements
Development of DTWax was supported by NVIDIA

Corporation and the University of Michigan Ann Arbor (via
D. Dan and Betty Kahn foundation grants). Additionally, we
would like to thank Google Cloud Platform for awarding us
cloud research credits for the final evaluations of this research.

Author contributions statement
H.S. performed the analysis, design, implementation

and evaluation of DTWax software apart from writing the
manuscript. D.S. and A.T. recommended various performance
optimizations and CUDA best practices for implementing
DTWax based on DTWax’s profile. J.I. and S.N. led the
collaborative effort and helped design the optimization
strategy for DTWax. All authors reviewed the manuscript.

Data availability statement
Datasets used are published by SquiggleFilter here:

:https://doi.org/10.5281/zenodo.5150973. One may download
the dataset using the scrip provided by SquiggleFilter: https://
github.com/ TimD1/SquiggleFilter/blob/master/setup.sh

Additional information
Software Availability

DTWax is open-sourced here: https://github.com/
harisankarsadasivan/DTWax.

Figure 8: DTWax may yield higher benefits on longer read lengths upon reliable ejection from the pore. In (a) and (b), we see increasing
benefits from using Read Until on higher read lengths and DTWax is the best solution for read lengths shorter than ∼50Kbases.

https://github.com/TimD1/SquiggleFilter/blob/master/setup.sh
https://github.com/TimD1/SquiggleFilter/blob/master/setup.sh
https://github.com/TimD1/SquiggleFilter/blob/master/setup.sh
https://github.com/harisankarsadasivan/DTWax
https://github.com/harisankarsadasivan/DTWax

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 147

Competing interests
The authors declare that they have no competing interests.

References
1.	 Amicone M, et al. Mutation rate of sars-cov-2 and

emergence of mutators during experimental evolution.
Evol. medicine, public health 10 (2022): 142–155.

2.	 Willett BJ, et al. Sars-cov-2 omicron is an immune
escape variant with an altered cell entry pathway. Nat
microbiology 7 (2022): 1161-1179.

3.	 Dramé M, et al. Should rt-pcr be considered a gold
standard in the diagnosis of covid-19? J. medical virology
92 (2020): 2312.

4.	 Dunn T, et al. Squigglefilter: An accelerator for portable
virus detection. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (2021):
535-549.

5.	 Park M, Won J, Choi BY, et al. Optimization of primer
sets and detection protocols for sars-cov-2 of coronavirus
disease 2019 (covid-19) using pcr and real-time pcr. Exp.
& molecular medicine 52 (2020): 963-977.

6.	 Patel NV. Why the CDC Botched Its Coronavirus Testing.
MIT Technology Review.

7.	 Sadasivan H, et al. Accelerating minimap2 for accurate
long read alignment on gpus. J Biotechnol Biomed 6
(2023): 13-23.

8.	 Mantere T, Kersten S, Hoischen A. Long-read sequencing
emerging in medical genetics. Front genetics 10 (2019):
426.

9.	 Gorzynski JE, et al. Ultrarapid nanopore genome
sequencing in a critical care setting. The New Engl
Journal medicine (2022).

10.	Amarasinghe SL, et al. Opportunities and challenges in
long-read sequencing data analysis. Genome biology 21
(2020): 1-16.

11.	Greninger AL, et al. Rapid metagenomic identification of
viral pathogens in clinical samples by real-time nanopore
sequencing analysis. Genome medicine 7 (2015): 1-13.

12.	Edwards HS, et al. Real-time selective sequencing with
rubric: Read until with basecall and reference-informed
criteria. Sci. Reports 9 (2019): 1–11.

13.	Payne A, et al. Readfish enables targeted nanopore
sequencing of gigabase-sized genomes. Nat biotechnology
39 (2021): 442–450.

14.	Kovaka S, Fan Y, Ni B, et al. Targeted nanopore
sequencing by real-time mapping of raw electrical signal
with uncalled. BioRxiv (2020).

15.	Zhang H, et al. Real-time mapping of nanopore raw
signals. Bioinformatics 37 (2021): i477–i483.

16.	Sadasivan H, et al. Rapid real-time squiggle classification
for read until using rawmap. Arch Clin Biomed Res 7
(2023): 45-47.

17.	Shih PJ, Saadat H, Parameswaran S, et al. Efficient
real-time selective genome sequencing on resource-
constrained devices. (2022).

18.	Loose M, Malla S, Stout M. Real-time selective
sequencing using nanopore technology. Nat. methods 13
(2016): 751.

19.	Bao Y, et al. Squigglenet: real-time, direct classification
of nanopore signals. Genome biology 22 (2021): 1–16.

20.	Sart D, Mueen A, Najjar W, et al. Accelerating dynamic
time warping subsequence search with gpus and fpgas.
In 2010 IEEE International Conference on Data Mining
(2010): 1001–1006.

21.	Kraeva Y, Zymbler M. Scalable algorithm for subsequence
similarity search in very large time series data on cluster
of phi knl. In International Conference on Data Analytics
and Management in Data Intensive Domains (2018): 149–
164.

22.	Ziehn A, Charfuelan M, Hemsen H, et al. Time series
similarity search for streaming data in distributed systems.
In EDBT/ICDT Workshops (2019).

23.	Xu X, et al. Accelerating dynamic time warping with
memristor-based customized fabrics. IEEE Transactions
on Comput. Des Integr Circuits Syst 37 (2017): 729-741.

24.	Hundt C, Schmidt B, Schömer E. Cuda-accelerated
alignment of subsequences in streamed time series
data. In 2014 43rd International Conference on Parallel
Processing (2014): 10–19.

25.	Xiao L, Zheng Y, Tang W, et al. Parallelizing dynamic
time warping algorithm using prefix computations on
gpu. In 2013 IEEE 10th International Conference on
High Performance Computing and Communications &
2013 IEEE International Conference on Embedded and
Ubiquitous Computing (2013): 294–299.

26.	Li T, Li X, Li Y, et al. Crescent: A gpu-based targeted
nanopore sequence selector. In 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM)
(2022): 2357–2365.

27.	Schmidt B, Hundt C. cudtw++: Ultra-fast dynamic time
warping on cuda-enabled gpus. In European Conference
on Parallel Processing (2020): 597–612.

28.	Technologies, O. N. 6-mer model for r9.4 chemistry
(2016). Oxford Nanopore Technologies (2016).

Sadasivan H, et al., J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280134

Citation:	Harisankar Sadasivan, Daniel Stiffler, Ajay Tirumala, Johnny Israeli, Satish Narayanasamy. Accelerated Dynamic Time Warping on GPU
for Selective Nanopore Sequencing. Journal of Biotechnology and Biomedicine 7 (2024): 137-148.

Volume 7 • Issue 1 148

29.	Nsight systems. NVIDIA https://developer.nvidia.com/
nsight-systems.

30.	Nsight compute. NVIDIA https://docs.nvidia.com/nsight-
compute/NsightCompute/index.htmla.

31.	ONT. Rapid Library Preparation Kit (SQK-RAD004)

(2021). Oxford Nanopore Technologies (2021).

32.	Technologies, O. N. Ont open datasets: Gm24385 dataset
release (2020).

33.	Workman RE, et al. Nanopore native rna sequencing of a
human poly (a) transcriptome. 459529 (2018).

https://developer.nvidia.com/nsight-systems
https://developer.nvidia.com/nsight-systems
https://docs.nvidia.com/nsight-compute/NsightCompute/index.htmla
https://docs.nvidia.com/nsight-compute/NsightCompute/index.htmla

	Title
	Abstract
	Keywords
	Introduction
	Background
	Nanopore Sequencing
	Selective Sequencing
	Prior Work
	Subsequence Dynamic Time Warping
	Squiggle Filter
	Our contributions

	Methods
	Offline pre-processing
	Online pre-processing: Normalization
	DTWax: architecture
	Intra- and inter-read parallelism
	FP16 for 2X throughput
	Coalesced global memory access
	Utilizing tensor core pipe
	Assuming no reference deletion
	Optimizing occupancy and branch divergence
	Configurability and scalability

	Implementation
	Experimental Setup
	Optimal GPU configurations
	Incremental Optimizations

	Results
	Conclusions
	Acknowledgements
	Author contributions statement
	Data availability statement
	Additional information
	Software Availability
	Competing interests

	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8

