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Abstract
The design and supply of RT-PCR primers for accurate virus testing 

is a complex process. The MinION is a revolutionary portable nanopore 
DNA sequencer that may be used to sequence the whole genome of a 
target virus in a biological sample. Human samples have more than 99% 
of non-target host DNA and Read Until is a protocol that enables the 
MinION to selectively eject reads in real-time. However, the MinION 
does not have any in-built compute power to select non-target reads. 
SquiggleFilter is a prior work that identified the accuracy and throughput 
challenges in performing Read Until using the state-of-the-art solution and 
proposed a hardware-accelerated subsequence Dynamic Time Warping 
(sDTW) based programmable filter on an ASIC. However, SquiggleFilter 
does not work for genomes larger than 100Kb. We propose DTWax which 
optimizes SquiggleFilter’s sDTW algorithm onto the more commonly 
available GPUs. DTWax better uses tensor core pipes, 2X-SIMD FP16 
computations and efficient data handling strategies using offline pre-
processing, coalesced global memory loads, warp shuffles and shared 
memory buffering among other optimizations. DTWax enables Read Until 
and yields 1.92X sequencing speedup (improvement in sequencing time) 
and ∼3.64X compute speedup: costup (improvement in compute time 
normalized to cloud access cost) over a sequencing workflow that does not 
use Read Until.

Keywords: Read Until; Selective sequencing; DTW; MinION; 
Metagenomics; Nanopore

Introduction
With SARS-CoV-2 evolving and adapting to its new environment [1] and 

becoming immune-evasive [2], there is a possible threat from a variant that 
can evade our current gold standard tests and fuel a surge in cases. Reverse 
Transcription Polymerase Chain reaction (RT-PCR) is the current gold 
standard [3] for SARS-CoV-2 diagnostic testing. Prior works have shown 
that RT-PCR requires the design and manufacture of custom PCR primers 
which is a complex, time-consuming, and error-prone process [4-6]. This 
limits the utility of RT-PCR in the early stages of a pandemic. Insufficient 
testing contributed to the uncontrolled spread of the virus early on. It took 
half a year after the first SARS-CoV-2 genome was sequenced in January 
2021 for the number of daily tests worldwide to even cross 1 million [4]. 
Dunn and Sadasivan et al. [4] developed SquiggleFilter, a portable virus 
detector that could be re-programmed to speed up the sequencing of reads 
from a viral target of interest. SquiggleFilter is an ASIC, envisioned to work 
alongside Oxford Nanopore Technology’s (ONT) MinION MK1B (or simply 
the MinION), a recent-to-market portable DNA sequencer that does not have 
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any compute built into it. However, SquiggleFilter can only 
be programmed with references of size less than 100Kb and 
it being an ASIC, is not easily scalable.

Additionally, GPUs are becoming a more common choice 
for accelerated computing on sequencers ONT sequencers 
GridION, PromethION, and MinION MK1C have GPUs built 
into them [7]. GPUs are also widely available in workplaces 
and on cloud platforms. While SquiggleFiter’s subsequence 
Dynamic Time Warping (sDTW) algorithm was optimized to 
work on an ASIC, we adapt and optimize it to work on the 
more common GPUs.

Background
Nanopore Sequencing

Long-read sequencing technology is increasingly 
becoming popular for rapid and accurate medical diagnosis 
[8,9] with lower adoption costs, end-to-end sequencing times, 
and improved portability and raw read accuracies. Long reads 
are particularly useful for applications that include structural 
variant calling and denovo assembly [8,10] as they, unlike 
short reads, can span highly repetitive regions in the genome. 
Oxford Nanopore Technology’s (ONT) MinION is a long-
read DNA sequencer that is low-cost, real-time, portable, and 
can perform digital target enrichment using software instead 
of time-consuming wet-lab based methods [4]. While prior 
sequencing technology like Illumina relied on short accurate 
DNA reads, nanopore sequencers introduced long and 
noisy reads. ONT sequencers can produce very long reads 
to help span the highly repetitive regions in the genome. 
Nanopore senses the DNA molecule that passes through the 
pore by measuring the characteristic disruptions in electric 
current density. Decoding this noisy but characteristic 
signal (squiggle) helps us understand the DNA base (A, G, 
T, or C). MinION is an ideal candidate for viral detection 
because of many factors [4]. MinION is portable, low-cost, 
and capable of real-time DNA sequencing. Unlike RT-PCR 
tests, where one has to perform enrichment of target DNA 
in low-concentration specimens in the wet-lab, MinION 
lets us save time and cost by digitally checking for targets 
while sequencing. In real-time, MinION can be controlled to 

selectively sequence just the target DNA strands and eject the 
non-target strands by reversing the electrical potential across 
the pore.

Selective Sequencing

Most human samples have a very high fraction of non-
target DNA (∼ 99.9% and most of it is human DNA) [11]. 
In order to save time and cost of sequencing, ONT has a 
feature called Selective Sequencing (Read-Until) [12] which 
lets us selectively sequence only the target DNA reads while 
ejecting the non-target. As the read is sequenced, real-time 
compute may be performed to classify the read as a target or 
not. Non-targets are ejected by reversing the voltage in the 
nanopore while targets are completely sequenced. The state-
of-the-art selective sequencing pipeline [12,13] uses Guppy-
fast (hereon referred to as Guppy)

for basecalling and Minimap2 for classifying the reads [13] 
as shown in Figure 1. Guppy is a deep neural network-based 
software that converts the raw signal output of the MinION 
(noisy squiggles) to bases. However, Guppy has a two-fold 
performance problem. Prior works have demonstrated how 
Guppy is compute intensive [14-16] and does not have the 
required throughput even on a high-end edge GPU to handle 
the future throughput of the MinION [4] and SquiggleFilter 
[4] pointed out how the increasing throughput of the MinION 
amplifies this problem. We demonstrate the same problem 
in Figure 2b. Figure 2b also points to the fact that the GPU 
hardware is under-utilized when the prefix (query) lengths are 
smaller which we confirmed by profiling the software using 
NVIDIA Nsight Compute. Secondly, Guppy is unable to 
accurately basecall small chunks of data. ∼40% of the bases 
sequenced from a sample of average read length 2 Kbases 
is unclassified with prefix lengths of 250 bases as shown in 
Figure 2a because Guppy could not basecall these very short 
fragments accurately [16]. Please note that in this context, 
classification refers to mapping read prefixes to target 
(microbe) or non-target (host). Additionally, we trim the 
first 100 bases (or equivalent signal samples) to remove the 
adapters from all our analysis.

 
Figure 1: State-of-the-art selective sequencing pipeline uses Guppy-fast for basecalling and Minimap2 for classifying the reads.
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Hardware-accelerated SquiggleFilter [4] was proposed as a 
replacement for the Read Until classification using Guppy followed 
by Minimap2.

Prior Work
Since the MinION’s release in 2014, there has been 

a few attempts in improving the benefits of Read Until [4, 
12-17], of which only SquiggleFilter [4] has the optimal 
combination of accuracy and throughput to keep up with a 
future MinION. The softwares performing Read Until can 
be broadly classified into two categories based on the inputs 
they operate on- signal space and basecalled space. Softwares 
operating in the signal space attempt to classify the input 
squiggle as a target or non-target while softwares operating 
in the basecalled space rely on the basecaller to transform 
raw squiggles to bases in real-time which is computationally 
expensive. We observe that the basecaller also basecalls 
smaller signal chunks poorly. The basecalled read prefixes 
may then be classified as a target or non-target. Readfish [13] 
and RUBRIC [12] classify basecalled reads to detect targets 
using mapping tools like Min- imap2. We show that ONT’s 
proprietary basecaller Guppy suffers from not being able to 
basecall smaller signal chunks correctly leading to ∼40% 
of the sequenced bases being unclassified by Minimap2. 
Addi- tionally, Guppy, a deep neural network, also suffers 
from low throughput on high-end GPUs and cannot meet 
the real-time compute requirements of a future MinION 
[4]. Three of the signal space-based methods rely on event 
segmentation- a pre-processing step where raw squiggles 
are segmented into events to detect positions in the signal 
where we are more likely to see a new base. The very first 

attempt at Read Until [18], UNCALLED [14], and Sigmap 
[15] use event segmentation as a pre-processing step. Loose 
et al. [18] uses sDTW on python to perform Read Until from 
events on a CPU. This yields sub-optimal performance. 
UNCALLED follows up with FM-index look-ups and seed 
clustering to find a target map. Although UNCALLED has 
a good mapping accuracy for smaller genomes, We observe 
that UNCALLED does not have the necessary throughput to 
match the compute requirements of a future MinION. Sigmap 
does seeding followed by Minimap2-style chaining on the 
seeds to identify a target map. But we observe that Sigmap 
needs a relatively long read prefix to identify a sufficient 
number of seeds and this turns out to be 4000 raw samples. 
Additionally, we observe that Sigmap has lower mapping 
accuracy than UNCALLED.

SquiggleNet [19] is a convolutional neural network-
based software for classifying squiggles into target or non-
target. However, SquiggleNet [19] is slower than guppy 
followed by Minimap2 and only achieves similar mapping 
accuracy to Guppy followed by Minimap2. SquiggleFilter 
[4] is a programmable ASIC that can match the throughput 
of a future MinION and yield optimal Read Until benefits. 
However, the initial cost of adoption is high as ASIC needs to 
be economically manufactured at scale and shipped in order to 
be deployed worldwide. GPUs on the other hand are already 
widely available at workplaces, shipped along with some 
of the sequencers, and also available on the cloud. DTWax 
is our proposed software which optimizes SquiggleFilter’s 
underlying sDTW algorithm on GPUs for Read Until. DTW has 
been parallelized in the past for various different applications 

 
Figure 2: Guppy basecalls smaller signal chunks poorly leaving a high percent of sequenced bases unclassified by Minimap2. 
Guppy also has a throughput problem doing Read Until. (a) ∼40% of the bases sequenced are non-target in a 99.9: 0.1 non-target: 
target mix with an average read length of 2 Kbases and a Read Until read-prefix length of 250 bases. Read prefix lengths used for 
classification are color-coded. (b) Guppy followed by Minimap2 cannot match the throughput of a future MinION even on a high-
end cloud instance that uses an A100 GPU for basecalling (prefix length used is 250 bases per second).
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on architectures including FPGAs [17, 20], Intel Xeon Phis 
[21], big data clusters [22], customized fabrics [23] and even 
GPUs [24,25]. HARU [17] is a recent work that implements 
SquiggleFilter’s algorithm on a budget-constrained FPGA. 
HARU cannot match the maximum throughput of the current 
MinION and is not a solution that can match the planned 100X 
throughput of the MinION. Crescent [26] is a recent closed-
source implementation of SquiggleFilter’s algorithm directly 
on the GPU but ends up being 29.5X lower in throughput 
than DTWax possibly because of several reasons including 
not utilizing warp synchronized register shuffles for data 
sharing between threads and fewer number of cells computed 
per thread. cuDTW++ [27] is the best-performing prior work 
on GPU which accelerates DTW. However, cuDTW++ is 
∼2.6X slower than DTWax and is built for database querying 
of very small queries and not for subsequence Dynamic Time 
Warping that is required to perform Read Until. Additionally, 
the normalization step is performed very inefficiently.

Subsequence Dynamic Time Warping

sDTW is a two-dimensional dynamic programming 
algorithm tasked with finding the best map of the whole of 
the input query squiggle in the longer target reference. In 
sDTW’s output matrix computation, parallelism exists along 
the off-diagonal of the matrix and therefore, the computation 
happens in a wavefront parallel manner along this off-
diagonal. Diagonals are processed one after the other. If the 
query is assumed to be along the vertical dimension of the 
matrix and the target reference along the horizontal dimension, 
the minimum score on the last row of the matrix will point to 
the best possible map of the query to the reference. This score 

may be compared to a threshold to figure out if the query is a 
target or not. The sDTW cost function is defined as follows:

Squiggle Filter
While traditional RT-PCR tests rely on complex custom 

primer design and time-consuming wet-lab processes for 
target enrichment, MinION can be controlled to selectively 
sequence only the target virus of interest using the Read Until 
feature. Utilizing the Read Until feature requires making real-
time classifications during sequencing but the current MinION 
does not have any compute power. Dunn and Sadasivan et 
al. [4] demonstrated how basecalling is the bottleneck and 
constitutes ∼88-96% of Read Until assembly and how this 
problem was amplified with the projected 100X increase in 
ONT’s sequencing throughput. Their solution, SquiggleFilter 
[4], uses hardware accelerated subsequence Dynamic Time 
Warping (sDTW) to perform Read Until.

SquiggleFilter addresses the compute bottlenecks in 
portable virus detection and is designed to even handle the 
higher throughput of a future MinION. SquiggleFilter is 
programmable and offers better pandemic preparedness 
apart from saving time and cost of sequencing and compute. 
However, SquiggleFilter’s limited on-chip memory buffer 
only lets it test for viral genomes smaller than 100Kb. 
Additionally, SquiggleFilter uses a modified version of 
sDTW algorithm where the accuracy dip from various 
hardware-efficiency focussed optimizations are overcome 
with the match bonus [4]. Match bonus is a solution to a 
problem on the ASIC and performing this on the GPU can 
introduce branch divergence. We eliminate the match bonus, 
retain the assumption of reference deletions and optimize 
sDTW to run on GPUs.
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Our contributions
In this work. we present DTWax, a GPU-accelerated 

sDTW software for nanopore Read Until to save time 
and cost of nanopore sequencing and compute. We adapt 
SquiggleFilter ASIC [4]’s underlying sDTW algorithm to 
suit a GPU in order to overcome the limitation with reference 
lengths SquiggleFilter had. While sDTW was optimized for 
integer compute on the ASIC, we fine-tune sDTW for high 
throughput on the GPU. While SquiggleFilter uses integer 
arithmetic and Manhattan distances on the ASIC, we use 
floating point operations and Fused-Multiply-Add operations 
on the GPU. We also demonstrate how to utilize some of the 
GPU’s high throughput tensor core’s compute power for non-
ML workloads.

As a first step, we speed up the online pre-processing 
step (normalization) on FP32 tensor cores using the batch 
normalization functionality from the CUDNN library 
traditionally used for machine learning workloads. DTWax 
is optimized to make use of the high throughput Fused-
Multiply-Add instructions on  the GPU. Further, we use FP16 
and FP16 tensor core’s Matrix-Multiply-Accumulate (MMA) 
pipe for higher throughput for sDTW calculation. Using FP16 
helps us process the forward and reverse strands, thereby 
extracting more parallelism to help improve the latency and 
throughput of classification. We also make use of offline pre-
processing of reference squiggle index for coalesced loads, 
cudastreams for better GPU occupancy, intra-, and inter-read 
parallelism, register shuffles, and shared memory for low-
overhead communication while processing the same query.

DTWax achieves ∼1.92X sequencing speedup and ∼3.64X 
compute speedup: costup from using nanopore Read Until for 
a future MinION (with 100X the current throughput) on an 
A100 compared to a workflow that does not use Read Until.

Methods
Offline pre-processing

ONT has published a k-mer current model [28] which 
provides a reference to map a 6-mer to an expected value of 
the current output from the MinION. We use this k-mer model 
to map the reference genome of the target virus to a noise-free 
FP16 squiggle reference. The squiggle reference will be of 
length (target_length - 6 + 1). We also pack two FP16 values 
(one from the forward strand and another from the reverse 
strand) into a half2 reference word (built-in CUDA datatype 
of two FP16 half-words). Further, we make use of the prior 
knowledge of the target reference to ensure coalesced global 
memory reads by re-ordering the target reference offline.

Online pre-processing: Normalization
The output squiggle of the MinION (query) is read from 

ONT’s proprietary FAST5 file format. The raw integer data 

is then scaled to pico-amperes (float32). The first few samples 
(1000) are trimmed to cut adapters and barcodes off. We re-
purpose the CUDNN-Batchnorm to z-score normalize the 
1-dimensional FP32 query current signal. CUDNN utilizes 
tensor cores and performs normalization at a very high 
throughout (∼6X the throughput of sDTW). The signal is 
then rounded off to FP16 and copied into a     half2.

DTWax: architecture
We adopt the segmented-sDTW architecture introduced 

in prior works [27] where each segment is a fixed number of 
cells in a row whose scores are computed by a thread. DTWax 
breaks down the processing of longer target references into 
multiple sub-matrices, each processing a fixed number of 
target bases. The reference length processed per sub-matrix is 
configurable and is set to 832 bases for optimal performance 
on an A100. Within a sub-matrix, each thread is responsible 
for processing a configurable but equal number of cells (cells 
per thread is called a segment). Wavefront parallelism exists 
along the off-diagonal segments in the sub-matrix as shown 
in Figure 3. Thread 0 is the first to finish its computation 
inside the sub-matrix while thread 31 is the last to finish. 
Target reference is loaded into registers (one FP16 reference 
sample each for forward and reverse strands into a single 
half2 datatype) from global memory using coalesced loads.

For intra-sub-matrix communication, we exploit warp 
shuffles for efficient register-to-register transfers within the 
same warp. This is an idea demonstrated by Schmidt et al 
[27] but not completely explored. Threads in a warp use warp 
shuffles to transfer the query sample, the minimum score of 
the segment, and the score of the last cell in the segment to 
the thread on its right. Instead of using a global reduction to 
find the final minimum score for DTWax, we use the efficient 
warp-shuffles to pass the minimum scores of the segments 
between threads. Inter-sub-matrix communication happens 
via shared memory transfers instead of relying on global 
memory. A thread block processing a read writes the last 
column of the sub-matrix into the shared memory and reads 
it back while calculating the consecutive sub-matrix for the 
same read.

Intra- and inter-read parallelism
Using all the warps on an SM to process a single query 

would mean that the last warp remains idle and is ineligible 
for compute for an initial period of time. Therefore, we 
choose to process one read with a thread-block of only 32 
threads. We have intra- and inter-read parallelism. Every 
query is processed by a thread block of 32 threads. Within a 
thread block, we have intra-read parallelism from 32 parallel 
threads each computing a segment of the sub-matrix. Across 
the GPU, we have inter-read parallelism as there as multiple 
concurrent blocks operating on different reads on any given 
Streaming Multi-processor (SM).
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FP16 for 2X throughput
SquiggleFilter [4] has demonstrated that the information 

from the ONT sequencer may be captured using 8 bits. While 
the ASIC was custom-designed for integer arithmetic, GPUs 
are designed for high throughput floating point arithmetic. 
Among the floating point pipes available, we use the high 
throughput FP16 pipe on A100 (2X throughput compared to 
FP32) for DTWax. Computation with respect to the forward 
strand of the target reference happens on the first FP16 
lane while the second FP16 lane computes with respect to 
the reverse strand. For example, Rf 0,r0 represents a FP16 
vectorized forward and reverse reference signal points in 
Figure 3. Utilizing half2 FP16 pipes (FP16 vectorization) 
not only helps us to increase throughput but also improves 
the latency by 2X because we concurrently process both the 
forward and the reverse strand of the target with respect to the 
query in every cell of the sub-matrix.

Coalesced global memory access
The offline re-ordering of the target reference enables us 

to perform coalesced reads from global memory (as many 
loads as the length of one segment in a sub-matrix) before 
computation starts in the sub-matrix. The normalized target 
reference is an array of     half2 datatype. This enables the 
vectorized processing of the input query signals on the high 
throughput FP16 pipe. Additionally, after the normalized 

query is read from the global memory in chunks of 32     half2 
query samples using a coalesced load of 128B, it is then 
efficiently transferred between threads of a warp using warp 
shuffles. For example, in Figure 3,  Rf 0,r0, Rf 3,r3, . . . , Rf 93,r93 
would be read in one coalesced read.

Utilizing tensor core pipe
HFMA2.MMA pipe on the tensor core has one of the 

highest throughputs on A100. We re-formulate the addition 
in the cost function of DTWax to a Fused Multiply-Add 
operation in order to utilize the otherwise under-utilized 
HFMA2.MMA pipe. We are then able to better throttle 
the compute instructions between HFMA2.MMA and the 
remaining FP16 pipes instead of increasing the traffic on the 
FP16 pipe.

Assuming no reference deletion
Using the same assumption from SquiggeFilter [4] that 

viral strains have minimal reference deletions, we observe 
our accuracy of mapping using DTWax improves and our new 
cost function becomes simpler as we now only have to find a 
single minimum per cell instead of two minimums. This can 
be visualized in Figure 3 where is there no dependency on the 
immediate left neighbor’s score for score computation. Line 
7 from Algorithm 1 is simplified to:

S[i,j] ← (Q[i]-R[j])2 + min(S[i-1,j-1],S[i-1,j])

 
Figure 3: Efficient intra- and inter-matrix communication in DTWax. Within a warp, each thread computes the FP16 vectorized scores 
for forward and reverse strands for a configurable segment number of cells in a wavefront parallel manner along the off-diagonal of the 
matrix. Warp shuffles are used for intra-warp communication (shown in dotted black) while shared memory is used as a buffer for inter-warp 
communication (shown in blue).
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Optimizing occupancy and branch divergence
We ensured high SM utilization by finding the right balance 

between the number of resident warps on the SM and shared 
memory utilization. Further, we keep the GPU occupancy 
high by issuing concurrent asynchronous workloads to the 
GPU using cudastreams. Memory transfers to and from the 
GPU are overlapped with compute on the GPU. We reduce 
the branch divergence via partial loop unrolling. The first 
sub-matrix does not read from shared memory and the last 
sub-matrix does not write into shared memory. Unrolling 
the first and last sub-matrix computations of the query-target 
matrix helps improve performance.

Configurability and scalability
DTWax can be reprogrammed to test for any target 

reference of interest. Unlike some of the prior works [4, 
27], DTWax can be reporgrammed to test for longer target 
references. Further, one may easily try and scale DTWax 
across multiple GPUs for higher throughput on longer or 
multiple target references.

Implementation
Experimental Setup

For all our GPU evaluations, we use Google Cloud 
Platform’s (GCP) a2-highgpu-1g instance with 40GB of 
memory and 85GB of host memory. The high throughput 
NVIDIA A100 GPU on this instance has the HFMA2.MMA 
pipe that we use for high throughput FP16 computations. To 
perform fair evaluations of prior works, our CPU baselines 
are configured to their best performance with hyper-threading 
enabled on GCP c2-standard-60 (30 Intel Cascade Lake 
cores and 240 GB of memory). Additionally, 10% higher 
GPU usage costs on GCP are factored in when benefits are 
measured.

pyguppy-client and DTWax use GPU while other 
softwares use CPU. We use UNCALLED v2.2, Sigmap v0.1, 
mappy (Python interface to Minimap2 v2.17) and pyguppy-
client v0.1.0. We optimally configure the software for better 
mapping accuracy. We configure Sigmap for better event 
detection by setting “–min-num-anchors-output 2 –step-size 
1”. We turn off minimizers in Minimap2 for better mapping 
accuracy by setting “-w=1 -k=15”.

As previously noted by Sadasivan et al. [16], benefits 
from Read Until can vary from run to run based on wetlab 
protocols (capture time and read length), quality of the 
flowcell and sample constitution. Therefore, it can be difficult 
to correctly measure the benefits of Read Until for multiple 
softwares across multiple live sequencing runs. To solve this, 
we utilize the analytical model from RawMap [16] to estimate 
sequencing time savings from using Read Until. We use the 
average capture time of 2 seconds observed by Sadasivan 
et al. [16] in wet-lab. The latency and throughput of above 

softwares used in Read Until are measured and plugged into 
this model as shown in the supplementary data. Additionally, 
the results presented from the analytical model also helps 
us to identify the optimal read-prefix length for Read Until 
classification and also to explore the benefits of Read Until on 
sequencing runs of different average read lengths. Although 
ONT’s Read Until API currently does not support read-prefix 
granularities (chunk sizes) lower than ∼200 bases (down 
from 400 bases) [13], it might be worthwhile to consider 
this as ONT’s support for short read length is increasingly 
growing.

We use NVIDIA Nsight toolkit for profiling software. 
NVIDIA Nsight Systems [29] is used to visualize concurrent 
CUDA events, and NVIDIA Nsight Compute [30] is used to 
profile GPU events.

We use public datasets used by SquiggleFilter [4]. The 
lambda phage DNA is sequenced on a MinION R9.4.1 flow 
cell following the Lambda Control protocol at the University 
of Michigan’s laboratory using the ONT Rapid Library 
Preparation Kit31. Human datasets (sequenced with MinION 
R9.4 and R9.4.1 flow cells) are obtained from ONT Open 
datasets [32] and the Nanopore Whole-Genome Sequencing 
Consortium [33]. In all our experiments and analysis, the first 
100 bases (or equivalent samples) are trimmed to remove 
adapters.

Optimal GPU configurations
In order to optimize DTWax’s throughput on A100, we 

introduce more inter-read parallelism by fitting 32 blocks 
on each of the 108 Streaming Multiprocessors on the GPU. 
We process one read per thread block of size 32 threads. 
We observe that having multiple concurrent warps per read 
resident on the SM may not be beneficial as there may be 
a long latency in the last warp of a read getting valid inputs 
from the previous warp and starting to calculate useful 
values. Using Nsight Compute, we maximize the number 
of reference bases processed per thread (segment size) to 26 
amounting to a total of 32x26 reference bases processed per 
thread block. In order to reduce global memory transactions, 
we use shared memory for inter-sub-matrix communication. 
A shared memory of size 500B is allocated per block to store 
the output of the last column of a sub-matrix calculated by the 
last thread in a thread block. This is read by the thread block 
when it processes the next set of 32x26 reference bases.

Incremental Optimizations
We modify Hund et al.’s software [27] to perform sDTW 

and observe that it is still slower than the future MinION. 
DTWax is a compute-bound kernel. We implement a series of 
optimizations to meet the throughput of the future MinION. 
Figure 4 gives the reader a better understanding of the 
relative benefits of some of the main optimizations that go 
into DTWax.
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Results
We use two metrics to evaluate the benefits of using 

DTWax– sequencing speedup and compute speedup: costup. 
Sequencing speedup is defined as the speedup in the end-
to-end sequencing time from using DTWax for Read Until 
over a conventional nanopore sequencing workflow that does 
not use Read Until (conventional workflow basecalls full 
length reads and maps them using Minimap2). Accessing an 
NVIDIA A100 GPU instance on the cloud is priced ∼10% 
higher than the CPU instance we use for benchmarking. 
Hence, we normalize the compute time savings from using 
DTWax for Read Until to the cost of the cloud GPU instance to 
estimate compute speedup: costup. Further, we also compare 
the F1-score of DTWax in making Read Until classifications. 
DTWax yields up to ∼1.92X sequencing

speedup and ∼3.64X compute speedup: costup with 
a future MinION of 100X throughput when compared to a 
sequencing workflow that does not use Read Until as shown 

in Figure 5. Additionally, we observe that using a prefix 
length of 250 bases yields the best benefits from using Read 
Until on a dataset of average read length 2 Kbases. One may 
also observe that savings from ont-pyguppy client degrades 
with increasing read-prefix lengths used for classification 
because ont-pyguppy cannot process streaming inputs and 
concatenate to outputs. Therefore, ont-pyguppy-client has to 
basecall the entire prefix again. Sigmap is unable to extract 
events from signals less than 400 bases. Please note that 
DTWax and pyguppy-client are GPU solutions and we label 
them using dotted lines on all the plots.

Figure 6 shows that DTWax can handle more than 2X 
the throughput of a future MinION and has ∼7.18X lower 
latency than pyguppy-client followed by mappy using a 
prefix length of 50 bases. Because of this, we operate DTWax 
at a processing granularity of 50 bases over a prefix length 
of 250 bases to make a Read Until classification decision. 
To explain the performance of pyguppy-client on longer 

 
Figure 4: A series of performance optimizations enable DTWax to handle more than 2X the projected future sequencing throughput.

 
Figure 5: DTWax yields ∼1.92X sequencing speedup and ∼3.64X compute speedup: costup. (a) DTWax yields the best sequencing speedup of 
∼1.92X over a conventional pipeline that does not use Read Until on reads of length 2000 bases. (b)DTWax yields the best compute speedup: 
costup of 3.64X. Prefix length used for classification is 250 bases for the best performance in both cases.
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Figure 6: DTWax can handle more than 2X the throughput of a future MinION and has ∼7.18X lower latency than pyguppy-client followed 
by mappy. (a)Unlike pyguppy-client followed by mappy, DTWax operating at a granularity of 50 bases can handle twice the throughput of 
a future MinION (b)DTWax takes only ∼14 milliseconds to classify 50 bases and is ∼7.18X faster than pyguppy-client followed by mappy.

Figure 7: DTWax is the most accurate Read Until classifier. (a) DTWax has an F1-score of ∼92.24% and is the most accurate Read Until 
classifier using a prefix length of 250 bases. (b) DTWax is better at filtering non-target (human) reads out than pyguppy-client followed by 
mappy while being almost comparable in successfully retaining target reads

prefixes, we profile pyguppy-client using NVIDIA nsight-
compute and observe that the GPU occupancy is higher with 
longer prefix lengths resulting in better benefits from longer 
prefix lengths. UNCALLED seems to have a very high one-
time fixed cost for path buffer management for storing output 

forest of trees and there is negligible cost with added prefix 
lengths. Although, Sigmap is the best in terms of throughput 
and latency, it cannot extract useful information from 250 
bases and has lower F1 scores in classifying prefix lengths 
longer than 400 bases as shown in Figure  7.
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Apart from the performance of the classifier, the 
correctness of classification also affects Read Until benefits. 
This is because a missed target read can mean sequencing 
another 1000 reads to collect a target read from a host: microbe 
sample mix of 99.9: 0.1. DTWax is the most accurate Read 
Until classifier as shown in Figure 7a. Figure 7a also shows 
that Sigmap cannot classify reads smaller than 400 bases. 
Figure 7b shows that DTWax is better at filtering non-target 
human reads and almost as good at retaining target reads when 
compared to pyguppy-client followed by mappy. We utilize 
the analytical model to explore the sequencing speedup and 
compute time savings from DTWax for higher average read 
lengths in Figure 8. Using the analytical model, we visualize 
the maximum benefit from Read Until that can come from 
an ideal classifier with zero latency and 100% accuracy of 
classification using the green line. DTWax is estimated to 
yield higher benefits on longer read lengths by the analytical 
model. However, it is worthwhile to note that this will only 
be possible with improvements in nanopore chemistry and 
pore design as currently long reads when ejected may tend to 
temporarily clog and block the sequencing pores.

Conclusions
SquiggleFilter is an ASIC that can be programmed to 

perform pathogen detection with the portable MinION 
sequencer. However, the ASIC cannot be programmed with 
references longer than 100 Kb. We adapt SquiggleFilter’s 
underlying sDTW algorithm to the more widely available 
GPUs to democratize Read Until. To make sDTW performant 
on the GPU, we do offline pre-processing of target reference 
to ensure coalesced loads from global memory, reduce 
branch divergence, and utilize FP16 vectorization and tensor 
core pipes. Further, we use warp-shuffles for efficient intra-
sub-matrix communication and shared memory for low-

latency inter-sub-matrix communication. Further, we assume 
no reference deletions to improve both the throughput and 
F1-score. We show that DTWax on an NVIDIA A100 GPU 
achieves ∼1.92X sequencing speedup and ∼3.64X compute 
speedup: costup over a sequencing workflow that does not 
use Read Until.
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