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Abstract
Understanding protein secretion pathways is paramount in studying 

diseases caused by bacteria and their respective treatments. Most such 
paths must signal ways to identify secretion. However, some proteins, 
known as non-classical secreted proteins, do not have signaling ways. 
This study aims to classify such proteins from predictive machine-learning 
techniques. We collected a set of physical-chemical characteristics of 
amino acids from the AA index site, bolding known protein motifs, like 
hydrophobicity. We developed a six-step method (Alignment, Preliminary 
classification, mean outliers, two Clustering algorithms, and Random 
choice) to filter data from raw genomes and compose a negative dataset 
in contrast to a positive dataset of 141 proteins from the literature. Using 
a conventional Random Forest machine-learning algorithm, we obtained 
an accuracy of 91% on classifying non-classical secreted proteins in a 
validation dataset with 14 positive and 92 negative proteins - sensitivity 
and specificity of 91 and 86%, respectively, performance compared to state 
of the art for non-classical secretion classification. However, this work’s 
novelty resides in the fastness of executing non-CSP classification: instead 
of dozens of seconds to just one second considering a few dozen protein 
samples or only ten seconds to classify one hundred thousand proteins. 
Such fastness is more suitable for genomic-scale analyses than current 
methods without losing accuracy. Therefore, this research has shown that 
selecting an appropriate descriptors’ set and an expressive training dataset 
compensates for not using an advanced machine learning algorithm for the 
secretion by non-classical pathways purpose.

Keywords: Bacteria, Non-Classical Secretion, Classification, Machine 
learning, training datasets, Random Forest.

Introduction
Protein transport can occur from the cytoplasm to other cell compartments, 

external environments, and other organisms [1]. The process of protein 
secretion is an im- portant activity for prokaryotic and eukaryotes organisms 
([2]. One of the various functions of protein secretion sys- tems is present 
in disease-causing bacteria. Such pathogenic bacteria use their protein 
secretion pathways to manipulate the host and establish replication niches 
[3]. An example is the virulence factors transport through the cytoplasmic 
membrane toward the host [4] [5]. One of the essential stages in studying 
diseases and their corresponding treatments is identifying proteins and their 
secretion pathways [6]. In this sense, learning the routes of protein secretion 
is paramount in combating various pathologies known to hu- mans. The 
general secretion pathway (Sec) and the arginine translocation pathway 
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(Tat) are the main routes of protein transport through the 
cytoplasmic membrane [1]. Proteins secreted by the Sec 
pathway depend on a signal located in the amino-terminal 
region of the proteins. This signal com- prises twenty amino 
acids divided into a positively charged N-terminal region, a 
hydrophobic center, and a polar C- terminal region [7]. As a 
signal peptide, the proteins secreted by the Tat pathway have 
a sequence of two arginines in their N-terminal region [8]. In 
addition, there are pathways present only in gram-negative 
bacteria, like T1SS, T2SS, T3SS, T4SS, T5SS, and T6SS. 
Also, only gram-positive bac- teria, like SecA1, SecA2, and 
T7SS, have different signal- ing regions in secreted proteins 
[9] [10] [11]. Despite our knowledge about exportation 
mechanisms, the proportion of proteins predicted as exported 
is a smaller fraction of a bacterial proteome than the predicted 
intracellular ones. For instance, the Mycobacteria tuberculosis 
H37Rv contains about four thousand proteins. A subcellular 
compartment prediction for proteins within this organism via 
the SurfG+ software [12] resulted in 13.8% (556) of predicted 
exopro- teins. We have 75.6% or about three thousand 
proteins classified as cytoplasmic and the remainder (10.46%) 
as membrane integral. SurfG+ uses the Sec pathway only to 
decide secreted proteins (5.62%) and several other in-house 
motifs to differentiate potentially surface-exposed proteins 
(8.32%), both considered exported proteins. However, some 
proteins have no signal peptide or apparent identification 
exportation pattern. Consequently, about 75% of proteins 
classified by SurfG+ as cytoplasmic are candidates for non- 
classical secretion. We used to call Non-Classically Secreted 
Proteins (non-CSPs) molecules primarily sharing only the 
fact that they locate in the extracellular medium [13]. We 
know several proteins classified as essential for character- 
izing infections and diseases and secreted by non-classical 
pathways [13]. We also use non-classical pathways to pro- 
duce recombinant proteins in the biotechnological industry 
[6]. We know prediction methods based on the functional 
classification of proteins [14,15] and more recently advanced 
machine-learning techniques exploring dozens or hundreds 
of features from protein sequences [16,17]. Such methods 
use the analysis of physical-chemical characteris- tics present 
in the amino acid sequence on grouping pro- teins. In this 
research, we also aimed to classify non-CSPs by selecting 
physical-chemical propensity indexes as machine- learning 
descriptors. However, this work’s novelty resides in the 
fastness of executing non-CSP classification: instead of 
dozens of seconds to just one second considering a few dozen 
protein samples or only ten seconds to classify one hundred 
thousand proteins. Such fastness is more suitable for genomic-
scale analyses than current methods without losing accuracy. 
Besides, we provided a novel methodology to minimize 
contradictory label assignments to negative training datasets 
that are broadly applicable.

Materials and Methods
We have broken down our methodology into several 

stages. The first stage consisted of the search for non-CSPs 
estab- lished by the current literature and creating our positive 
training (141 proteins) and validation (14 proteins) datasets. 
Next, we search the AA index site for physical-chemical 
characteristics that classify secretion by non-classical 
path- ways. We chose thirty propensity scales related to 
hy- drophobicity. We used them as descriptors for machine- 
learning algorithms. We initially created a negative training 
dataset of 1050 proteins, equally sampled thirty proteins per 
genome, among thirty-five bacterial genomes downloaded 
from NCBI, mostly classical secreted ones. We assembled 
the AA index selected characteristics according to the ARFF 
format, trained, and tested in all machine-learning classifiers 
present in the WEKA software [18], capable of dealing with 
the training data. We compared the results of the different 
algorithms selecting the best for further analyses. Finally, 
we recreated the negative training dataset with the full set of 
proteins from 28 complete genomes to choose a trustable and 
larger negative training dataset, obtaining a better pre- dictive 
performance after successfully applying the filters from one 
to six described below.

Preprocessing
We created an in-house program called valifasta (’src/

valifasta’) to remove punctuation characters, line breaks, and 
other artifacts occasionally present in downloaded protein 
sequences. Valifasta aims to minimize probable processing 
errors from bioinformatics tools that accept only the format of 
the twenty letters representing the essential amino acids and 
identification for each protein and ensures each protein will 
have a unique identification key. We processed all proteins 
used in this work with valifasta.

Features Search

The affinity of non-CSPs with the plasma membrane 
con- tributes to their exportation outside the cellular compart- 
ment. The plasma membrane of prokaryotes consists mainly 
of hydrophilic and hydrophobic regions [19]. We considered 
the proportion of amino acids with such a characteristic in 
selecting targets for the training set. In addition, the attributes 
of basicity and acidity are also essential in the secretion 
process. Together, these characteristics distinguish four 
groups of amino acids.

We represented non-polar characteristic amino acids 
(hydrophobic) by blue color and polar amino acids, i.e., 
hydrophilic, as purple. We used green to describe essential 
amino acids and the acid ones in orange. Only these four 
descriptors cannot correctly classify the main four subcellular 
sites a protein can be found (cytoplasm, membrane, exposed 
on the membrane, and outside the cell-secreted by classical 
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pathways). For this reason, we sought new descriptors in the 
AA index repository [20]. The AA index repository [20] has 
hundreds of weight propensity indices for each of the twenty 
essential amino acids. It considers the chemical, physical, 
and structural characteristics of the amino acids studied 
in significant sets of organisms, the proportion of three-
dimensional alpha-helix structure, the amount of negatively 
and positively charged amino acids, and types of metals 
of catalytic sites, among others. We empirically gathered 
30 propensity scales from the AA index as our result. The 
result list in alphabetical order is ACID, AURR980101, 
AURR980105, AURR980118, BASIC, BEGF750101, 
BROC820102, CHAM830103, CHAM830104, 
CHAM830105, FAUJ880111, FAUJ880112, GEIM800103, 
GEIM800105, LEWP710101, MONM990101, 
MONM990201, NAKH900102, NAKH900108, 
NONPOLAR, OOBM850104, PALJ810115, POLAR, 
PONP800106, QIAN880116, RICJ880107,  ROBB760111,  
ROSM880103,  VENT840101, and ZHOH040103. We 
formatted all our data using the

ARFF file format from the Weka software using the 
above features: thirty original parts from the AA index (file 
’src/propensity.dat’), ninety derived from these thirty original 
counting amino acids at the beginning, middle, and end of 
each protein, plus the twenty amino acids. We designed the 
software ’src/features.lisp’ in the common language to insert 
the original, derivative, and twenty amino acid features in all 
ARFF files, like filtering, training, and validation.

Positive Training Dataset
To create a positive training dataset, we identified and 

cataloged proteins secreted by non-classical pathways from 
the recent literature. We acquired 141 positives for non-CSP 
proteins from the PeNGaRoo article [16].

First Negative Training Dataset
Table 1 depicts the number of genomes by genus used 

to sample proteins for the training set concerning non-CSPs. 
We selected these genomes considering pathogenic bacteria 
to humans. From Table 1, we sampled thirty-five distinct 
genomes to create our initial negative training dataset. We 
used the software SurfG+ (folder ’src/surfg+’) to classify all 
proteins according to four subcellular locations (cytoplasm, 
membrane, surface exposed, and secreted). We empirically 
think of gathering about one thousand proteins to avoid 
an extreme unbalance compared to the size of the positive 
training dataset, which contains 141 proteins. Ultimately, we 
created a negative training dataset containing 1050 pro- teins, 
the majority selected as classical secreted ones (file ’data/
surfgplus neg.faa’).

Second Negative Training Dataset
We created the second negative training dataset from a 

poll of 28 complete genomes comprising 100238 proteins. 

We selected these 28 genomes considering pathogenic 
bacteria to humans, according to Table 1. Compared to the 
first negative training dataset, we chose a smaller number 
of genomes keeping at least one species from the genus but 
more than one for worthy genera like Acinetobacter, Entero- 
coccus, Campylobacter, Streptococcus, and Escherichia. 
We de- signed almost one hundred thousand proteins as our 
initial candidate training negative dataset. To speed up the 
filtering process, we created an ARFF file containing all 
training sequences mapped to the attributes obtained from the 
AA index, despite most of the entries still being candidates 
for training. The filtering process was technically reduced to 
a sed Linux command to remove undesirable lines from the 
ARFF file.

Validation 1 – my independent dataset (MYIDS)
This is the first set of proteins used to validate the classifiers 

comprised of 106 proteins. We obtained 14 positives for 
non-CSP from Wang’s research [21] after removing the 141 
included in the positive training dataset. We also considered 
two proteins with high sequence similarity to the training 
group. Ninety-two negatives for non-CSP validation came 
from the UniProt repository [22]. They comprised a set of 
membrane proteins (integral and partial) exported by classical 
pathways and cytoplasmic proteins.

Validation 2 – PeNGaRoo original independent 
dataset (ORIDS)

The PeNGaRoo [16] and ASPIRER [17] software used 

Genus Number of genomes 
Acinetobacter 3

Bacteroides 1

Campylobacter 2

Clostridioides 1

Clostridium 2

Corynebacterium 1

Enterobacteriaceae 3

Enterococcus 2

Escherichia 6

Klebsiella 1

Mycobacterium 1

Neisseria 1

Pseudomonas 1

Salmonella 2

Shigella 2

Staphylococcus 1

Stenotrophomonas 1

Streptococcus 3

Vibrio 1

Table 1: Genomes by genus creating the negative training set.
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the same independent validation datasets, ASPIRER, af- ter 
PeNGaRoo. We directly downloaded 34 negatives and 34 
positive validation proteins from the ASPIRER site (files 
’data/pengaroo independent test neg.faa’ and ’data/pengaroo 
independent test pos.faa’).

Datasets by Subcellular location
Table 2 lists the subcellular location according to the soft- 

ware SurfG+ (folder ’src/surfg+’) for all files in the ’data’ 
folder. As expected, most of the proteins used by PeNGaRoo 
were predicted as cytoplasmic. Our work creates the only 
sets presenting diversity between the four indicated central 
subcellular locations.

Data assembly for WEKA
The machine learning software tool we used was WEKA 

[18]. We calculated the frequency of amino acids of the 
selected proteins according to the indices chosen feeding 
the WEKA classifiers algorithms. We used frequencies and 
the values assigned according to the AA index as weights, 
thus generating numerical vectors for each protein according 
to the selected indices. Table 3 exemplifies the weighting 
of some physical-chemical characteristics used in training 
algorithms.

We also created an in-house program called fea- tures, 
developed in Common Lisp language, to for- mat data in 
the model required by the WEKA soft- ware (’src/features/
features.lisp’). This program processes a MULTIFASTA 
file, generates a file in CSV format, and counts the values 
of all amino acids according to selected descriptors. Besides 
the 30 propensity scales, our software features created three 
other propensity scales from the original ones. We used 
our knowledge of the approximate signal peptide size. We 

counted the amino acids until the border of this maximum 
size (about 20 AA), creating, for instance, the ACIDINI AA 
propensity scale for the original ACID propensity scale. 
We repeat this process at the end of a sequence creating 
an ACIDEND AA propensity scale. Finally, the AA range 
between the ACIDINI and ACIDEND constitutes the third 
derivate AA propensity scale, the ACIDMID. Ultimately, 
we turned 30 AA propensity scales into 120 AA propensity 
scales, plus one propensity scale for each amino acid summing 
140 attributes or descriptors for each protein. We converted 
protein sequences into an ARFF file with characteristics 
signaling secretion or not for non- classical pathways.

Iterative filtering in six steps
We created this iterative filtering process by working with 

other datasets, like COVID-19. At that time, we perceived a 
need for filtering false negative entries labeled as negatives, 
mainly due to the presence of immunoglobulins for 
COVID-19 in samples of healthy sample donors. Using part 
of these six steps below, we could produce reliable machine- 
learning models using the WEKA software capable of high 
accuracy (unpublished work). Our six steps method to filter 
false negatives comprises: (i) Remove entries with a signif- 
icant global Needleman–Wunsch algorithm [23] alignment 
(>90%) against the positive datasets and controls. (ii) Create 
a prediction model using all the negative and positive train- 
ing datasets from the PeNGaRoo article [16]. We mapped the 
446 negative and 141 positive proteins for non-CSPs to our 
140 attributes derived from the AA index. This filter consists 
of an adapted PeNGaRoo prediction model built by the Weka 
software (file ’bin/PeNGaRoo dataset.bin’). (iii) Use the 
RWeka library in R software for this filtering step, with the 
file called ’src/profile.R’. We used the 140 features derived 

Dataset name Total proteins Surface exposed SEC CYT MEM
surfgplus neg 1050 22 960 62 6

myids-validation-neg 92 13 19 54 6

myids-validation-pos 14 0 1 13 0

pengaroo-independent-test-neg 34 0 0 34 0

pengaroo-independent-test-pos 34 1 1 32 0

pengaroo-training-neg 446 3 1 442 0

pengaroo-training-pos 141 0 0 141 0

Table 2: Training and test proteins counting splitting four subcellular locations. Legend: SEC=Secreted, CYT=Cytoplasmic, MEM=Membrane 
integral

Features A R N D C Q E G H I L K M F P S T W Y V
Basic 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

Acid 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Polar 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 1 0 1 0

Non-Polar 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 0 1

Table 3: Example of indices (features) and their values for each amino acid.
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from the AA index in two vectors, one for the positive 
training dataset and the other for the candidate negative 
dataset. These vectors contain the mean values of their sets to 
all features, and we call them positive and negative centroids. 
After that, we removed entries from the candidate negative 
dataset possessing a low Pearson corre- lation (<0.95) to the 
negative centroid and a high Pearson correlation (>0.9943) 
to the positive centroid. We decided on the cut-off values by 
trial and error according to the results obtained by creating 
predictive models with the remaining entries. The Linux 
command sed could not eliminate all lines at once. To 
accomplish this, we created a script called ’src/create.sed’ to 
split the removal into several indepen- dent and minor sed 
delete commands. (iv) Use the RWeka library in R software 
for this filtering step and the R package ”optics dbScan” with 
the file called ’src/DBScan.R’. This software tries to create 
numerically labeled groups of sim- ilar elements using the 
default parameters epsilon=0.9 and minPoints=6. We variate 
these parameters trying to isolate elements very distinct from 
the majority and hoping that these are the offending ones for 
our classifications. (v) Use the RWeka library in R software 
for this filtering step, with the file called ’src/Kmeans.R’. A 
filter like the previous one, using Kmeans, can also pinpoint 
possible elements to be removed from the training set. (iv) We 
created a series of scripts in the folder ’src/semiag/semiagN.
bash’ for this filtering step. The N in the script name alludes to 
the number of elements from the candidate negative training 
dataset we should draw at once to upgrade our classification 
results. We run this algorithm recursively and manually, 
like a genetic algorithm (a semi-genetic algorithm), over the 
previous better outcome.

Results
We compared the results of all classifiers available in the 

WEKA software. We selected the four best classifiers, high- 
lighting the main developments in Table 4. Two of the top 
four classifiers belong to the so-called instance-based learning 
group. Such classifiers (K Star and IBk) obtained an accuracy 
of 76 and 73%, respectively. The Instance-based learning 
method derives from algorithms called K-nearest neighbors 
(KNN) or classifiers from nearby neighbors. Such algorithms 
calculate the proximity mea- sure between the analyzed data 
to generate a classification. Broader used, such algorithms 
are famous for their ease of implementation, versatility, 
and high accuracy, which justify the results. To mature our 
methodology, we chose the algorithm Random Forest [24], 

the second better algo- rithm according to our benchmark 
(Table 4). Besides better results, another argument favoring 
this choice is the speed of processing the vast datasets 
containing several thousand entries from this work. In the 
following subsections, we will describe using Random Forest 
to refine our methods and decide on better negative training 
datasets for the task of classifying non-CSP proteins.

Six steps filtering over the MYIDS validation dataset
We applied the filtering methods comprised of the six 

steps described in Material and Methods over the MYIDS 
valida- tion dataset. We obtained the following results by 
filtering action: (i) The alignment filter removed 261 proteins 
from the initial dataset. However, these are important because 
they are part of the validation dataset. At the end of this 
step, 99977 remains in our negative training dataset. (ii) We 
applied our adapted PeNGaRoo prediction model over the 
99977 candidate negative training proteins. As a result, we 
obtained 90499 classified as non-CSPs capable of proceed- 
ing to the next filter. Here we ran a validation getting a 
completely biased predictor capable of misidentifying all 
14 positive validation non-CSPs proteins (sensitivity of 
0%). We expected this result because, at this stage, there are 
probably hundreds of false negatives within the candidate 
training set. (iii) We obtained an intermediary result over 
the validation set using 8279 candidates for negative training 
proteins while searching for cut-off values. This intermedi- 
ary result gave us specificity, sensibility, and accuracy 
of 99, 43, and 92%, respectively, for the Random Forest 
algorithm. However, an unacceptable result considering the 
low pre- dictive power for non-CSPs. Ultimately, we could 
remove more than 84 thousand proteins or about 93.2% of 
our initial candidate negative training dataset. We ended this 
filtering step with 6152 candidate proteins for the negative 
training dataset. At this point, validation with the remaining 
entries culminated in specificity, sensibility, and accuracy 
of 88, 79, and 87%, respectively, for the Random Forest 
algorithm (file ’src/myids-filter2-88-79-87.arff’). This result 
already overcomes those from Table 4. (iv) Using the default 
parameters in DBScan (epsilon = 0.9), just a few elements 
are not included in the single cluster created for our 6152 
candidates’ negative training dataset. After we removed the 
parts outside this single cluster, we could not perceive any 
improvements in the classification of our validation dataset. 
After that, we inverted the logic and tried to create the 
smallest group of clustered elements possible, labeling most 

Classifier Specificity%  Sensitivity% Accuracy% FALSE+ FALSE-
K Star 73 100 76 25 0

Random Forest 71 86 73 27 2

IBk 66 100 73 31 0

Random Committee 66 93 71 31 1

Table 4: Result of the four best qualifiers for non-CSPs.
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entries as non-classified (NA). With parameters epsilon=0.1 
and minPoints=6, the algorithm DBScan [25] fragmented 
the candidate negative dataset to the extreme: 6103 proteins 
classified as NA’s. Only three sets (14, 21, and 14 proteins) 
remained. After we removed these 49 proteins, the sensitiv- 
ity of our classifier was increased from 79 to 86%, followed 
by a slight decrease in sensitivity from 88 to 86% compared 
to the previous filtering step (file ’src/myids-filter3-86-86- 
86.arff’). We applied the second round of this filter using 
the parameters epsilon=0.025 and minPoints=3. Now, we 
got twenty proteins separated into six sets. Removing each 
batch of proteins in isolation increased the sensitivity at the 
cost of slightly decreasing specificity. However, instead 
of eliminating the packs in isolation, we joined them for 
removal. Two collections removed together produced an 
actual increase in specificity without diminishing sensitivity. 
At this point, validation with the 6097 remaining candidate 
negative entries culminated in specificity, sensibility, and 
accuracy of 89, 86, and 89%, respectively, for the Random 
Forest algorithm (file ’src/myids-filter3-89-86-89.arff’). (v) 
Working on other data sets, we had the chance to upgrade 
our results using Kmeans [26]. However, we could not 
upgrade our results even after splitting the data into 80 
clusters for this data. (vi) A random procedure excluding 
five proteins at once, retraining, and validating allowed us 
to accomplish specificity, sensitivity, and accuracy of 91, 
86, and 91%, respectively (file ’src/myids-filter5-91-86-91- 
a.arff’). Another outcome was specificity, sensitivity, and ac- 
curacy of 89, 93, and 90%, respectively, after removing three 
negative entries from the candidate training dataset (file ’src/
myids-filter5-89-93-90-a.arff’). As a result, considering that 
K Star [27] had a better outcome than Random Forest [24] 
in Table 4, we trained and validated the performance of this 
WEKA classifier using the same training data set obtained at 
step vi. K Star got specificity, sensibility, and accuracy of 67, 
100, and 72%, respectively. Despite being consistent with its 
previous result, it is far worse than our algorithm of choice 
Random Forest.

Six steps filtering over the ORIDS validation dataset

We also applied the filtering methods comprised of the 
six steps described in Material and Methods over the ORIDS 
validation dataset, the original dataset used by PeNGaRoo 
and ASPIRER. We obtained the following results by filtering 
action when ORIDS was our driving dataset: (i) The align- 
ment filter removed 86 proteins from the initial dataset. At 
the end of this step, 100152 remains in our negative training 
dataset. (ii) We applied our adapted PeNGaRoo prediction 
model over the 100152 candidate negative training proteins. 
As a result, we obtained 90718 proteins classified as non- 
CSPs capable of proceeding to the next filter. (iii) We started 
from the positive (>0.9943) and negative (<0.95) cut-off 
values for the Pearson correlation we used on the MYIDS 
dataset. Using the starting cut-off values, we got a neg- 
ative training dataset with 41860 proteins. The validation 
acquired specificity, sensibility, and accuracy of 91, 50, and 
71%, respectively, for the Random Forest algorithm. After 
experimenting with several other filtering values, we could 
not obtain a set of proteins that, after removal, could si- 
multaneously keep specificity and sensitivity above 80%. Our 
last result was a negative training dataset with 5237 proteins, 
acquiring specificity, sensibility, and accuracy of 44, 88, and 
66%, respectively. We opted to pass our initial trial for the 
next step, hoping we could have a slight decrease in specificity 
followed by a significant increase in sensitivity. (iv) Using 
DBScan, we could not avoid the same behavior observed 
in the previous step: an antagonist be- havior between 
specificity and sensibility. The better result we obtained in 
this step was a negative training dataset with 36064 proteins, 
acquiring specificity, sensibility, and accuracy of 79, 62, 
and 71%, respectively. We obtained this result after running 
DBScan twice over the initial dataset using epsilon=0.7 and 
minPoints=6. At this step, we de- cided to terminate our tries 
to improve this training dataset because we experienced that 
further measures could not simultaneously produce significant 

Figure 1: Filtering and testing experiments with ORIDS as the validation dataset.
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leaps in specificity and sensitivity. Figure 1 depicts several 
experiments with the ORIDS training dataset where we can 
perceive the up and down of specificity and sensitivity but 
always in different directions.

Comparing models
The training dataset we created using MYIDS (Tests 1 and 

3) obtained better performance than those we created using 
ORIDS (Tests 2 and 4, in Table 5). Besides testing models 
against our MYIDS (Validation/Set 1), we also tested these 
against the ORIDS (Validation/Set 2). We gave our models 
names after Validation 1, the better outcomes. In Validation 
2, both our models got performance decreasing (Tests 2 and 
4). One can think of the results obtained by our models in 
tests 2 and 4 discrediting our claimed results. However, our 
models kept consistently classifying the negative validation 
dataset from ORIDS with mean specificity and sensitivity of 
about 86 and 73%, respectively.

On the contrary, both state-of-the-art software per-formed 
poorly when confronted with our negative valida- tion dataset: 
PeNGaRoo (test 7) obtained a specificity of 37, and ASPIRER 
(test 9) reached a specificity of 47%. Low specificity is a 
measure to be avoided when predicting non- CSPs. Because 
most of the genome proteins are cytoplasmic, we cannot 
have the most significant part of proteins sub- mitted to 
classification labeled as false positives, even with greater 
specificity. Curiously, even PeNGaRoo classifying its self-
created independent negative validation dataset (test 8) is not 
an exceptional result with a specificity of 73%. We wondered 
how our chosen AA index descriptors would perform over 
a training dataset different from ours. Trying to answer 
such a question, we used the PeNGaRoo training datasets 
to create a new non-CSPs model. Tests 5 and 6 in Table 5 
show these results consistently predicting non- CSPs proteins 
with 90% of specificity, even with a size 13-fold smaller than 
our training datasets. For sensitivity, our varied PeNGaRoo 
model was also steady, despite one modest and other poor 
results. In Table 5, for tests 5 and 6, the difference from the 
results presented in Table 4 is a subtle sensitivity instead 
specificity. To our experience with this work, considering 
our chosen AA index descriptors, we hypothesized that the 
unfiltered negative training datasets used to create tests 5 and 
6 could shape contradictory signal- ing to the Random Forest 
algorithm affecting the capacity of our adapted PeNGaRoo 
model correctly classify the actual positive proteins. In table 
5, there is an unexpected result. Both the predictors of the 
state-of-the-art and our predictors are biased. The classifiers 
produced in this work have a bias favoring predicting 
negatives, while the predictors of the state-of-the-art with a 
tendency to expect positives. One could argue that the number 
of elements used to train the models of this work would be 
responsible for this bias. However, we also obtained above-
average results in pre- dicting positives even with this bias for 

predicting negatives (tests 1 and 3), also an unexpected result 
considering the tendency due to the overrepresentation of a 
data class. On average, the specificity and sensitivity of our 
predictors were 89 and 62%, respectively. On the other hand, 
state-of- the-art predictors obtained an average specificity 
and sensi- tivity of 69 and 90%, respectively. State-of-the-
art predictors, on average, have an almost inverted result 
compared to the predictors of this study. This bias explains 
the modest average sensitivity to this work’s classifiers 
and the ordi- nary specificity produced by state-of-the-art 
predictors. A user should assess the models’ performance 
according to their purposes. Suppose a must high-specificity 
scenario, the typical scenario on predicting from whole 
genomes. A researcher cannot get a list of thousands of false 
positives even if specific non-CPS proteins exist among 
those. Even our starting predictor in Figure 1 is acceptable in 
such a picture because we are missing just one for each pair 
of true positives and pointing out minimal false positives. 
It happened to Test 6, in Table 5, when we predicted the 
same independent test dataset used by state-of-the-art soft- 
ware, obtaining 97, 47, and 72% to specificity, sensitivity, 
and accuracy, respectively. Due to developments like this 
example, we decided to keep the binary model to our adapted 
PeNGaRoo dataset within our software repository (file ’bin/
PeNGaRoo dataset.bin’). Another worthy-of-note feature in 
Table 5 is the time to execute classifications. Our models 
took about one second to run predictions for both validation 
sets, considering the time to format (0.6 secs using the script 
’src/createARFF.bash’), classify, and output results (0.3 secs 
using the script ’./run.validation1’ and ’./run.validation2’). 
Considering a web server, we expect ten seconds as an 
average expectation for data upload, processing, and mail 
sent. Other software took hundreds or thousands more 
times for the same task, even discounting the uploading and 
mailing times. Another example of our model classification 
speediness remounts to our crafting efforts to create a 
negative training dataset. In our second filtering process 
step, we started with about one hundred thousand candidate 
proteins (Figure 1). These proteins’ set undergoes the same 
classification process as Tests 5 and 6 in Table 5. Our adapted 
PeNGaRoo model took about ten seconds to classify these 
one hundred thousand proteins, unqualifying about 10% of 
the proteins as candidates in our ongoing negative training 
dataset. Besides the speediness, this our adopted model kept 
consistent with pointing out false positives because 90% of 
data were not misclassified, as expected, even predicting in a 
massive dataset.

Discussion
Why are we using only fourteen proteins as the 
positive test dataset?

The state-of-the-art works to classify non-CSP proteins 
present us with less than two hundred proteins known as such 
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[16,17]. From this total, they used one hundred and forty-one 
proteins for training purposes, as we also, and thirty-four as 
a positive validation dataset. We intended to create a novel 
and more diverse test dataset compared to previous work. 
Our methodology to create training datasets cannot be used 
to craft positive ones since we need expor- tation proof, a 
feature not effortlessly achieved. Because of that, we took the 
remaining sixteen proteins as candidates for positive ones in 
our test dataset. In the end, we filter only fourteen. Note that 
we also used the validation data set used by the state-of-art 
against our prediction models. We agree that there are better 
scenarios than a test set comprising a few cases for a class. 
However, given that a small number of proteins are broadly 
known as non-CSP, a workaround has yet to be smoothly 
achieved.

What could have gone wrong with ORIDS training?
The six steps method for filtering negative training 

datasets in this work uses the validation dataset to mark out 
a reasonable candidate dataset. We perform such beaconing 
by excluding proteins: sequence-similar compared to the 
validation dataset, classified by a previous training model, 
correlated to the positive validation dataset, outside the major 
or inside minor clusters, and finally, the randomized ones. 
A classification model should perform better with- out a 
set of proteins indicated for exclusion. As we can see, the 
filtering process relays on the validation dataset. Considering 
our chosen AA propensity index reliance on hydrophobicity 
and the presence of proteins possessing this trace within 
the MYIDS validation dataset (Table 2) could explain the 
reason for a better outcome of the MYIDS over ORIDS. The 
classification of proteins composing the training and testing 
datasets in four subcellular locations (Table 2) corroborates the 

subcellular diversity in the training dataset. In our experience, 
a single protein entering or leaving the training dataset can 
increase or decrease the performance of our classifiers. We 
combined datasets to create other validation sets for training. 
In our attempts, we kept our negative validation dataset 
comprised of 92 proteins vary- ing the positive validation data 
set to 34 (only ORIDS) and 48 (34 from ORIDS and 14 from 
MYIDS). After the six steps’ filter two and testing against the 
validation dataset 2, we obtained specificity and sensitivity 
of 88 and 53%, respectively, using the 92x34 dataset. For 
the 92x48 dataset, we got specificity and sensitivity of 91 
and 44%, respectively. We still got a mean specificity closer 
than 90% and median sensitivity. Briefing, we could not 
suddenly benefit from an extended positive validation dataset 
driving the crafting of our training datasets. We believe that 
in a scenario where a single protein can change the entire 
performance of the predictor, the inclusion of dozens of new 
driving positive validation proteins negatively impacted the 
performance of our predictors for actual positive instances. 
We conclude that using our initial positive validation datasets 
containing fourteen proteins contributed to our best results.

About the better algorithms
In Table 4, the second and fourth-best classifiers (Random 

Forest and Random Committee) obtained an accuracy of 73 
and 70%, respectively. Such classifiers belong to the group 
of committee algorithms, also called ensemble learning 
algorithms. This group uses the combination of different 
models for creating a robust outcome and a committee of 
experts that meets to deliberate decisions that only one 
expert would be able to handle. There are numerous ways to 
craft such model combinations. However, the result shown 
here specifies the randomization method as the form that 

Test Model Set Set size Spec.  % Sens.% Acc. % Timea (secs)  

1 myids5-89-93-90-a 1 106 89 93 90 1b

2 myids5-89-93-90-a 2 68 85 62 74 1b

3 myids5-91-86-91-a 1 106 91 86 91 1b

4 myids5-91-86-91-a 2 68 88 56 72 1b

5 PeNGaRoo  dataset 1 106 84 71 82 1b

6 PeNGaRoo  dataset 2 68 97 47 72 1b

7 PeNGaRoo websitec 1 106 37 100 45 673

8 PeNGaRoo websitec 2 68 73 82 77 480

9 ASPIRERd 1 106 43 92 50 70+255e

10 ASPIRERd 2 68 94 88 91 44+80e

Superscript table legends: 
a We performed the tests and recalculated the metrics for PeNGaRoo and ASPIRER. 
b Considering standalone formatting and classification only. 
c Recommended configuration for quality assurance. 
d –threshold=0.2 
e Creating a Pse-PSSM matrix in a third-party site (POSSUM) + ASPIRER.py processing time.

Table 5: Comparing models produced in this work and state-of-the-arta
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generated the highest accuracy values. The Random Forest 
classifier uses random decision tree sets (decision forests) to 
generate its analysis. The Random Committee classifier con- 
structs a set of basic classifiers from the same dataset; thus, 
it uses different seeds of random numbers for each classifier 
to calculate the average of its predictions. As explained, 
these methods’ robustness and high performance present 
their results among the best obtained by such analyses. Con- 
sidering the algorithms used in this work, the individual 
differences of each of the best classifiers were responsible for 
the differences observed between these best results. In Table 
4, the delimitation of the four best results in the groups of 
instance-based and committee-based demonstrates the power 
of such methodologies in the context of problem- solving 
from machine learning.

Size and diversity matter
Our first try to reach high specificity and sensitivity in 

predicting non-CSP proteins used a smaller number of 
candidate negative training datasets comprised of 1050 pro- 
teins. We sampled this initial negative training dataset from 
several pathogenic bacteria to humans considering four sub- 
cellular locations (cytoplasm, membrane, surface exposed, 
and secreted), most (91%) planned as being secreted ones. To 
our surprise, the set of filters (i to vi) presented in this work 
was not enough to improve our predictive results when using 
this negative training dataset (data not shown). At this point, 
we perceived the need for a more extensive and unbiased 
negative training dataset concerning subcellular location. We 
found one solution by extending the initial training dataset 
from about one thousand to a factor of one hundred without 
a biased selection of probable subcellular location. Our set 
of filters could help us create a reasonable machine-learning 
model since there is enough unbiased data. The state-of-
the-art software for non-CSPs designed a negative training 
dataset composed of 446 proteins. Our first model described 
in the previous paragraph had about 2-fold in size. Our final 
negative training solution (MYIDS) used nearly 13-fold in 
size compared to the state-of-the-art. However, in the early 
stages, our candidate models used a 94-fold size for the 
negative training dataset, yet it could perform with 91, 50, 
and 71% to specificity, sensitivity, and accuracy, respectively 
(Figure 1). To our expectations, we suspected entirely 
negatively biased predictions (sensitivity 0%) considering 
the positive training dataset with only 141 proteins and the 
negative training dataset 297-fold bigger. Before our three 
initial filtering processes, we perceived zero sensitivities, but 
not after that. The Figure 1 data was de- signed by crafting 
the ORIDS. We perceived a “To rob from Peter to pay Paul” 
effect on varying the candidate negative training dataset size 
when developing the ORIDS and the MYIDS dataset. We 
found this effect despite the filtering method utilized in the 
candidate data. The main difference among the filters resides 

in the fine-tuning of creating lists of candidate deletions.  
We used this knowledge to focus bulks of removals in the 
former steps, and graining cuts to the last filters. However, 
someone can tweak all filters’ parameters to perform massive 
filtering in all stages.

Future works
As a perspective for continuing this research, we plan 

to identify these false negatives from the training set using, 
for instance, literature evidence or sequence and structural 
alignment methods. Another possible move to excel our pre- 
dictions could be to figure out other amino acid propensity 
indexes more prone to the task of non-CSPs classification.

Conclusion
Our results showed that the specificity and sensitivity are 

close to 90% with the best models. Using the MYIDS valida- 
tion dataset demonstrates the power of the chosen physical- 
chemical characteristics and the six steps filtering process to 
produce training datasets. We understood that we achieved 
the objective of obtaining a set of physical-chemical features 
correctly discriminating non-CSPs and minimizing the error 
of classifiers filtering the training dataset. We also crafted 
classification models faster than the current state-of-the-art 
software and are handy to use in standalone mode without 
needing third-party software.

Data and software are available at:   
https://github.com/santosardr/non-CSPs
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