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Abstract 

The handshaking lemma is one of the important branches of graph theory. The content is widely applied in topology 

and computer science. The basis of the development of the dyeing theory used in this research paper is to discuss the 

application of the right transfer method in dyeing theory. 
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1. Introduction 

The four-color problem forms the famous four-color conjecture. The four-color conjecture is available for any flat-

picture graph   such that, 4)(  G . The four-color lemma has seen extensive research in graph theory, but the 

problem is hardNP  and computer results proved convincing in edge-dyed [2], surface-dyed [3, 4] , and color-

dyed [1, 8]  with a restricted strip. In the literature above, the methods of proof commonly used in mathematics, such 

as the traditional direct proof method, the reverse proof method, the mathematical induction method, etc., and the 

graph theory proves its unique method and technology, such as the shortest (long) path method, and the maximum 

edge method [1, 5, 8]. 

 

mailto:forson@pop.zjgsu.edu.cn


J Anal Tech Res 2019; 1 (2): 064-067                        DOI: 10.26502/jatri.008 

 

Journal of Analytical Techniques and Research   65 
 

2. The Development of Dyeing Theory 

The process of applying the weight transfer method is based on the handshake lemma. Let G be a connected plane 

graph, then according to Euler theorem; 

2 V  

  

Where   is the number of vertices of G, the number of edges of G is    , and the number of planes of G is   . The 

handshake lemma [2, 5, 9]  sets G as a communication flat graph, and that,  

 

 
 


)( )(

2)()(
GVv GFf

GG fdvd 

 

  

Where )(GF   is the face set of G. 

If we set G as a connected flat chart, for any real number 0, lk ; following constant equation is established: 

 

 
 


)( )(

)(4))(2)(())(2)((
GVv GFf

GG lklkfldlkvkd

 

  

3. Power Transfer Method 

Applying Euler Formula 2 V  and handshaking lemma,  
 


)( )(

2)()(
GVv GFf

GG fdvd   explains the 

sum of the initial rights as a constant. By using the nonexistence of reducible sub-graphs, it is shown that the total 

number of new weight sums is different from the total number of initial weight sums [2, 10], and thus obtains the 

contradiction. It is proven that such a minimal counterexample of G does not exist [12, 13], so the graph belonging 

to C has the P attribute.  

 

For any,  )()(, GFGVyx  , We remember )( yxw   denotes the weight transferred from x to y. To begin with, 

every element in )()( GFGV  , the graph G remains unchanged; )()()2( GFGV     the new weight of each 

element is not negative, which contradicts the Euler formula. In practice, this is often the case: 

Yes, arbitrary )()( GFGVx     defines graph G as follows: 

 

),(GVx   make ),(GVx  )(GFf  ).(2)()( klfldf G   

 

    So 



)()(

).(2)(
GFGVv

lkx  
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 This follows that, )()( GFGVx  . The weights of each element are adjusted to )(' x   . Since it is only 

transferred within the elements, the addition and retention of the graph remains the same, that is,  

.0)()('
)()()()(

 
 GFGVvGFGVv

xx    Furthermore we define an appropriate weight transfer rule, and verify that 

each conforms to a certain rule structure, such as the result obtained ,0)('
)()(


 GFGVv

x which is a contradiction, 

and the conclusion is proved. 

Below 4 cases: 

We give an example to illustrate the application of weight transfer method [7, 9]. Let G be a simple plan, and 

,2)( G   if 7)( Gg   , Then one of the following conditions holds: 

(I) G contains a 2-point adjacent to a 2-point; 

(II) G contains a 3-point adjacent to a 2-point and a ≤ 3-point; 

(III) G contains a d-point adjacent to (d -1) 2-points, where d ≥ 4 

 

 

 

It is proved that G is the least reverse example to meet the example condition, and the Euler defined formula 

2 V    can be rewritten into the following form; 

 

 
 


)( )(

28)14)(2)14)(5(
GVv GFf

fdvd  

 

 Then, )()( GFGVx    defines the initial weight function 14)(5)(),(:)(  vdvGVvx     provided that, 

14)(2)(),(  fdfGFf  and 



)()(

028)(
GFGVx

x  The transfer of power method is then used to obtain 

a new number of '  , where the rules for transfer of power are as follows: 

 :)1(R  Transfer from each 3  point to each of its adjacent 2-points is 2 
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 :)2(R Transfer from each 4   point to each of its adjacent vertex  v, if ,2)( vd   then there is a transfer 2 to 

1,3)( fromvd     

we proved that, )()( GFGVx  , ,0)(',  x   and that is a contradiction. The set )(Gf is such that, 

7)( fd   and 0)()('  ff    . 

Set v is any vertex of Figure G, if 2)( vd   , the 3)( GNv
  and 022)()('  vv     such that, ,3)( vd     

is attached to the )(GNv
  . Thus all the 4)( GNv

  is   01212,0min)()('  vvw   and that 

012)(3212)2)(()()(',4)(  vdvdvvvd      

Thus, ,0)(' x   as proved. 
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