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Abstract
Muscular dystrophies are inherited disorders that are characterized by 

progressive muscle degeneration. These disorders are caused by mutations 
in the genes encoding structural elements within the muscle, which leads 
to increased vulnerability to mechanical stress and sarcolemma damage. 
Although myofibers have the capacity to regenerate, the newly formed 
myofibers still harbor genetic mutation, which induces continuous cycles of 
muscle fiber death and regeneration. This repeated cycling is accompanied 
by an inflammatory response which eventually provokes excessive fibrotic 
deposition. The histopathological changes in skeletal muscle tissue are 
central to the disease pathogenesis. Analysis of muscle histopathology is 
the gold standard for monitoring muscle health and disease progression. 
However, manual, or semi-manual quantification methods, are not only 
immensely tedious but can be subjective. Here, we present four image 
analysis pipelines built in CellProfiler which enable users without 
a background in computer vision or programming to quantitatively 
analyze biological images. These image analysis pipelines are designed 
to quantify skeletal muscle histopathological staining for membrane 
damage, the abundance and size distribution of regenerating muscle fibers, 
inflammation via quantification of CD68+ M1 macrophages, and collagen 
deposition. Additionally, we discuss methods to address common errors 
associated with the quantification of microscopy images. These automated 
tools can not only improve workflow efficiency but can provide a better 
understanding of the histopathological progression of muscular dystrophy.

Keywords: Evan’s Blue Dye, CellProfiler, Automated Histopathology 
Analysis, Muscle Regeneration, Muscular Dystrophy, Fibrosis 

Background
Muscular dystrophies consist of a group of inherited disorders that cause 

progressive muscle weakness and atrophy due to defects in the muscle 
structural support genes [1]. Duchenne muscular dystrophy (DMD) is the 
most common type of inherited muscular dystrophy, affecting approximately 
1 in 3,500 to 1 in 5,000 male births worldwide [2, 3]. Patients with DMD 
typically become wheelchair-dependent around 10-12 years of age and most 
patients die in their early thirties due to cardiac and/or respiratory failure [4]. 
DMD is caused by a mutation in the dystrophin gene, which is located on 
the X-chromosome [5]. In muscle cells, the dystrophin protein connects the 
muscle contractile apparatus to the extracellular matrix [2]. In the absence of 
dystrophin, the sarcolemma becomes susceptible to mechanical stress during 
muscle contraction. In fact, these membrane disruptions can be visualized 
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via the release of intracellular enzymes [6] and the uptake of 
large molecules and dyes, such as Evans Blue Dye [7].

In response to damage, skeletal muscles have the 
capacity to regenerate new muscle fibers [8]. The presence 
of regenerating muscle fibers can easily be detected by their 
re-expression of developmental isoforms of muscle proteins, 
such as embryonic myosin heavy chain (eMyHC) [9]. 
eMyHC can be detected 2-3 days following muscle injury, 
and its expression persists for about 2-3 weeks post-injury 
[9]. Once the regenerative process is complete, the size of the 
newly formed muscle fibers increases, and the nuclei migrate 
to the cell periphery [10]. The success of the regenerative 
process is dependent on a balance between pro-inflammatory 
and anti-inflammatory factors, which determine whether the 
damaged site will be replaced by new myofibers or by fibrotic 
tissue [11].

The chronic nature of DMD causes persistent 
inflammation which further promotes disease progression 
[12]. Necrotic areas within the muscle typically display an 
abundance of CD68+ M1 macrophages, which are the first 
macrophages to invade the injured muscle tissue [13, 14]. 
Sustained inflammation within the muscle induces excessive 
deposition of extracellular matrix components often in place 
of new myofibers [12]. Even when the new muscle fibers 
are successfully regenerated in the dystrophic muscle, these 
new fibers are prone to degeneration because they still harbor 
the dystrophin mutation; thus, triggering repeated cycles 
of muscle fiber degeneration, chronic inflammation, and 
significant collagen deposition [12]. With the advancement 
of the disease, patients present progressive replacement of 
muscle tissue with fibrous and adipose tissue [15]. Together 
these pathological changes lead to a profound loss of muscle 
function.

Assessing muscle fiber damage, regeneration, 
inflammation, and fibrosis is essential to monitor the 
progression of muscular dystrophies. However, quantitative 
analysis of these pathologies from histological and immuno-
staining often involves a labor-intensive manual process. We 
introduce four image analysis pipelines which were created 
in CellProfiler to quantify these characteristics of skeletal 
muscle disease. CellProfiler enables large-scale image 
processing without the need for any prerequisite knowledge of 
programming languages. In addition, it is a free open-source 
software that is available for both Windows and MacOS.

Methods 
Animals 

The study is reported in accordance with ARRIVE 
guidelines (https://arriveguidelines.org). C57BL/10ScSnJ 
(B10, #000476) wildtype (WT) and C57BL/10ScSn-
Dmdmdx/J (mdx, #001801) mice were purchased from 
Jackson Laboratories (Bar Harbor, ME, USA) and were 

used as WT control and DMD model for all experiments. As 
DMD occurs primarily in males, only male mice were used 
in the current study. These mice had free access to drinking 
water and regular chow, unless otherwise noted. All animal 
experiments were performed in accordance with the relevant 
guidelines and regulations approved by the Animal Care and 
Use Committee of Wright State University.

Tissue Collection and Sectioning 
The gastrocnemius muscles were snap frozen using 

isopentane chilled with liquid nitrogen prior to embedding 
in Optimal Cutting Temperature (OCT) (Tissue-Tek, 
Sakura-Americas). The frozen tissues were stored at -80˚C. 
Gastrocnemius muscles were sectioned at 10μM using a 
Thermo Fisher cryostat micron HM550 set at -24˚C. Slides 
were then stored at -20˚C until subsequent experimentation.

Immunofluorescence and Microscopy Image  
Acquisition 

Muscle sections were air dried for 1h at room temperature. 
The tissue sections used to detect muscle regeneration were 
first blocked with 1XPBS containing mouse-on-mouse 
blocking reagent (#MKB-2213; Vectashield) for 1h at 
room temperature. Thereafter, tissue sections were blocked 
in 1XPBS containing 3% BSA (#BP9704; Thermo Fisher 
Scientific, Waltham, MA, USA) for 1h at room temperature. 
To detect muscle regeneration, tissue sections were incubated 
with antibodies against laminin 1α (ab11575; dilution 1:400; 
Abcam) and eMyHC (F1.652; dilution 3μg/μl; Developmental 
Studies Hybridoma Bank, Iowa City, IA, USA) for 45 
minutes at 37˚C. To detect muscle inflammation, tissues 
were first blocked in 1XPBS containing 3% BSA (#BP9704; 
Thermo Fisher Scientific, Waltham, MA, USA) for 1h at 
room temperature, then incubated with antibodies against 
CD68 (#97778; dilution 1:500; Cell Signaling Technology) 
and laminin 1α (ab11575; dilution 1:400; Abcam). All tissue 
sections were subsequently incubated with an Alexa Fluor 
488- or Alexa Fluor 555-conjugated secondary antibody
(#A-21411; Thermo Fisher Scientific) for 1h in the dark at
room temperature. Nuclei of cells were detected by applying
Vectashield antifade mounting medium with 4,6-diamidino-
2-phenylindole (DAPI) (Vector Laboratories; H-1200-10).
Images were obtained using an inverted microscope (IX70
Olympus) equipped with a DFC7000T camera (Leica
Microsystems, Wetzlar, Germany). Indicated images were
quantified using the CellProfiler software.

Evans Blue Dye (EBD) Assay 
EBD dye injection was performed as we did previously [16, 

17]. Briefly, mice were injected with EBD (10mg/ml stock in 
sterile saline, 0.1ml/10g body weight) I.P. and euthanized 24h 
later. The skeletal muscles were dissected and snap-frozen 
in isopentane cooled Optimal Cutting Temperature (OCT) 
embedding media (Tissue-Tek, Sakura-Americas). Frozen 
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marker. After quantifying our sample EBD datasets, we found 
that nearly 7% of the myofibers in the mdx gastrocnemius 
muscle were EBD+, while the WT muscle didn’t exhibit any 
EBD+ fibers (Figure 1A & 1B, p value 0.0286). To perform 
this quantification, gastrocnemius muscles of WT and mdx 
mice were co-stained with EBD and laminin. All microscopy 
images were saved as TIFF files. It is recommended to save 
images in either TIFF or PNG formats, which do not lose 
information during format conversion, however, CellProfiler 
will accept a variety of image formats. An overview of the 
EBD quantification pipeline is shown in Figure 1C and can 
be downloaded from the Supplementary Materials section 
(Supplementary File S1). To begin quantification, the images 
to be quantified must first be loaded into the input panel. One 
advantage to using CellProfiler is that it will accept as many 
files or folders as needed. 

Once the images are loaded as input, the user can then 
load an existing pipeline or create one from scratch. The 
image analysis pipeline that was created for this work 
performs general image processing functions such as 
image manipulation using arithmetic operations and object 
identification. One of the challenges of quantifying EBD+ 
myofibers is that membrane damage leads to poorly defined 
myofiber boarders. Instead of simply using the red channel 
to quantify the EBD+ myofibers, we first masked the EBD+ 
cells and identified the cells which didn’t exhibit any EBD 
staining. We then subtracted this quantity from the total 
number of cells in the image to give the number of EBD+ 
cells. An overview of the EBD image analysis workflow is 
described below: 

1) As shown in Figure 1D, once an EBD 
immunofluorescence image has been loaded into the 
software, the pipeline will first invert the input image using 
the “ImageMath” module. 2) The inverted image will then 
be converted into a grayscale image that combines the red 
and green color channels, using the “ColorToGray” module. 
In almost all image analysis projects, one of the first steps 
will involve converting colored images into grayscale images 
because this step simplifies the algorithms by removing 
unnecessary information and reducing computational demand 
[18]. Additionally, all subsequent object identification 
modules in CellProfiler will only accept grayscale images. 3) 
To mask the EBD+ cells, we used the “ImageMath” module 
again to square the values of all the pixels in the grayscale 
image (Figure 1D). This operation darkens the gray pixels 
(reduces their pixel intensities), while keeping the intensities 
of the lighter colored pixels close to 1. In doing so, the dark 
gray pixels will be ignored in the subsequent object detection 
step. 4) The “IdentifyPrimaryObjects” module was then 
used to identify all the muscle cells which do not present 
any EBD staining (we refer to these as the Not_EBD_Cells) 
(Figure 1E). Setting the minimum and maximum diameter of 
muscle fibers filtered out objects that didn’t meet the diameter 

OCT blocks were cryo-sectioned at 10μM thickness and 
stained with laminin 1α (ab11575; dilution 1:400; Abcam) 
antibody before being analyzed by fluorescence microscopy.

Histology Staining to Assess Fibrosis 
Fibrosis was assessed using Picrosirius red staining. 

Muscle tissue sections were washed twice in xylene for 5 
minutes, twice in 100% ethanol, twice in 95% ethanol, and 
twice in 70% ethanol for 30 seconds each wash. Then tissue 
sections were washed in dH2O for 5 minutes. Picrosirius 
red dye (ab150681; Abcam) was applied on top of each 
tissue section and allowed to incubate at room temperature 
for 1h. Slides were then quickly dipped in dH2O 3 times. 
Afterward, slides were washed twice in 0.5% acetic acid for 
30 seconds, then dehydrated three times in 100% ethanol for 
15 seconds. Once the slides were dry, toluene solution (Fisher 
Chemical; SP15-500) was used as the mounting medium, 
and coverslips were applied. Images were obtained using an 
EVOS brightfield microscope.

Automated Image Analysis Using CellProfiler 
CellProfiler is a free open-source software which relies 

on advanced statistical algorithms to quantitatively analyze 
biological images. CellProfiler provides a user-friendly 
platform for the design of image analysis pipelines which can 
easily be adapted for a variety of use cases. This software 
can be downloaded from the CellProfiler website (https://
cellprofiler.org/releases) and will run on Windows or Mac 
operating systems. For the work presented here, version 4.2.1 
was utilized, however, a newer version of the software is 
now available (4.2.4). After the software was downloaded, 
a sequential set of individual modules was pieced together 
to form the image analysis pipelines. Before testing out 
the software, it is recommended to review the CellProfiler 
manuals, which can be found at (https://cellprofiler.org/
manuals).

Statistical analysis 
Statistical analysis was performed with an unpaired 

t-test to determine significant changes between WT and 
mdx groups. All statistical analyses were performed using 
GraphPad Prism 9 (GraphPad Software, version 9.4.0, CA, 
USA). Data are provided as the mean ± SD number (n) of 
independent experiments. For all analyses, p < 0.05 was 
considered statistically significant. The four quantification 
pipelines for assessing muscle fiber damage, regeneration, 
inflammation, and fibrosis can be downloaded from the 
Supplementary Materials section.

Results 
Quantification of Muscle Membrane Damage Using 
EBD Staining 

In muscular dystrophies, muscle membrane damage can be 
detected through staining with EBD, a membrane-permeable 

https://cellprofiler.org/manuals
https://cellprofiler.org/manuals
https://www.fortunejournals.com/supply/AMI-9043.zip
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value can be adjusted to meet the needs of the image dataset 
such that when increasing the number of standard deviations 
will make the threshold more stringent compared to a low 
number of standard deviations. 5) Next, the pipeline retrieved 
the original immunofluorescent image and converted it into 
separate grayscale images representing each of the color 
channels using the “ColorToGray” module (Figure 1F). 
6) The green channel grayscale image was then selected 
and inverted using the “ImageMath” module (Figure 1F). 
Inverting the green channel image makes the muscle cells 
(objects) appear light and the laminin appear dark. 7) Then, 
the “IdentifyPrimaryObjects” module was used again to 
identify all the muscle cells (including the EBD+ cells) in 
the image (Figure 1F). We again used the robust background 
algorithm to automatically calculate the threshold for each 
image. 8) The “CalculateMath” module was used to subtract 
the number of Not_EBD_Cells from the total number of 
muscle cells to determine the number of EBD+ cells in the 

criteria. To determine the appropriate thresholding algorithm 
(which classifies pixels into foreground and background) 
analyzing the pixel intensity distribution with a histogram 
in CellProfiler can be helpful. Since our immunofluorescent 
images showed one peak at a low pixel intensity, we selected 
a robust background as our thresholding method. The 
robust background algorithm works by first removing the 
brightest (5%) and dimmest (5%) pixel intensities, as well 
as the foreground pixels leaving behind all the pixels that 
represent the background, since the background distribution 
approximates a Gaussian (CellProfiler Documentation 4.2.1, 
n.d.). The mean and standard deviation of the background 
pixel intensities are then calculated. From here, the threshold 
is calculated as the mean + N standard deviations. For our 
pipeline, we chose to set the threshold as the mean + 2 
standard deviations, which is the standard value/ default 
value set by CellProfiler, in order to make the threshold more 
lenient in identifying the foreground pixels. However, this 

Figure 1: Processing and quantification of EBD+ myofibers by CellProfiler. A) Representative images of gastrocnemius muscle cross-sections 
from 4-6-month-old B10 and mdx mice immunolabeled with laminin  α (green), and EBD (red). Scale bar = 100μm. B) Quantification analysis 
of EBD-positive muscle fiber expressed as the percentage of the total number of muscle fibers in WT and mdx mice (n = 5 mice/group). 
**p<0.01. C) Overview of the image analysis workflow. D) A sample mdx image was fed into the EBD quantification pipeline, which first 
inverts the original image. The inverted image is then converted into a grayscale image with the red and green channels combined. The pixels 
are then squared to mask the EBD+ cells. The “not” EBD cells are then identified and counted. E) The original image is retrieved and split into 
separate grayscale images representing each of the color channels (red, green, and blue). F) The green channel grayscale image is then inverted 
and used for subsequent identification of all muscle cells.
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image. 9) Lastly, the data collected was exported to comma-
delimited files (.csv) using the “ExportToSpreadsheet” 
module. 

There are several approaches that can be implemented 
to improve the accuracy of the EBD quantification. 
For example, adjusting the smoothing filter within the 
“IdentifyPrimaryObjects” module can be used to optimize 
object segmentation. This practice can be particularly 
useful for segmenting the dystrophic muscle fibers which 
are typically irregular in size and shape. If objects are over-
segmented (when one object is incorrectly identified as 
multiple objects), it is recommended to increase the size 
of the smoothing filter. However, if the objects are under-
segmented (when two or more objects are identified as a 
single object), then reducing the smoothing filter may be 
necessary. Additionally, when performing the same analysis 
on a new dataset it may be necessary to update some of 
the settings in the “IdentifyPrimaryObjects” modules. For 
example, Figure 2A and 2B shows a WT gastrocnemius 
muscle cross-sectional image with poor muscle cell detection. 
Here, the “IdentifyPrimaryObjects” module did not identify 
some of the muscle cells in the top corner of the image. By 
adjusting the upper and lower bounds of the threshold used 
for object detection we were able to improve muscle cell 
recognition (Figure 2C). Object identification is often the 
most challenging step in image analysis but is one of the most 
critical because its accuracy will determine the accuracy of 
subsequent measurements [19]. The test mode in CellProfiler 
can be used as quality control to ensure that all parameters are 
set up appropriately for the image dataset.

Quantification of Muscle Fiber Regeneration Using 
Embryonic Myosin Heavy Chain (eMyHC) Staining 

Skeletal muscle regeneration is sustained to counteract 
muscle degeneration. To detect muscle regeneration in our 
mouse models, we co-stained gastrocnemius muscle cross-
sections from WT and mdx mice with laminin, and eMyHC 
(Figure 3A). All images were saved as TIFF files. After 

quantifying our sample dataset, we found that approximately 
14% of the myofibers in the mdx images were eMyHC+, 
while the WT images showed no eMyHC+ myofibers 
(Figure 3B, p value 0.0079). Additionally, we found that the 
majority of these eMyHC+ myofibers were relatively small 
in size (Figure 3C). An overview of the muscle regeneration 
quantification pipeline is shown in Figure 3D. The eMyHC 
pipeline can be downloaded from the Supplementary 
Materials section (Supplementary File S2). A description of 
the eMyHC quantification workflow is provided below: 

1) Once an image has been loaded into the pipeline, 
the image will first be converted into separate grayscale 
images representing each of the color channels using the 
“ColorToGray” module (Figure 3E). 2) Since the objects 
to be detected must appear lighter than the background, 
the “ImageMath” module was used to invert the red 
channel grayscale image (Figure 3F). 3) With the muscle 
cells appearing light and the laminin appearing dark, the 
“IdentifyPrimaryObjects” module was then used to identify 
the muscle cells (objects) (Figure 3G). We again used the 
robust background algorithm to threshold the images since 
these images mostly consisted of background. The size of 
the smoothing filter for “declumping” had to be optimized 
to the dataset to ensure proper segmentation of the muscle 
cells. 4) Next, the “MeasureObjectSizeShape” module 
was used to obtain area measurements for the identified 
muscle cells. 5) To detect the eMyHC+ cells, we used the 
“IdentifyPrimaryObjects” module again, but this time used 
the green channel grayscale image as input (Figure 3H). The 
green channel grayscale image did not need to be inverted 
prior to object detection, because the objects (eMyHC+ 
cells) already appeared light in a dark background. 6) The 
sizes of the eMyHC+ fibers were determined using the 
“MeasureObjectSizeShape” module. 7) Lastly, all the data 
collected were exported into separate spreadsheets using the 
“ExportToSpreadsheet” module. 

Quantification of Muscle CD68 Deposition 
Inflammation is a pathological hallmark of muscular 

dystrophies, and dysregulated macrophages produce cytokines 
to promote remodelling within the dystrophic muscle [20, 21]. 
The infiltration of CD68+ M1 macrophages play a critical role 
in mediating the inflammatory response [14]. Gastrocnemius 
muscles from mdx and WT mice were stained with CD68, 
and laminin (Figure 4A). We found widespread CD68+ M1 
macrophages in the mdx muscle cross-sections that formed 
clusters or aggregates. Since macrophage forms aggregates 
in some areas and it is nearly impossible to determine the 
number of CD68+ M1 macrophages within these aggregates, 
we quantified CD68 deposition by measuring the area of 
coverage in the muscle cross-sections. After quantifying the 
sample dataset, we found that approximately 3.2% of the area 
in mdx images consisted of CD68 deposition, whereas the WT 

Inverted Green Muscle Cell Outlines Muscle Cells

Muscle Cell Outlines Muscle Cells

A B

C

Figure 2: Examples of correct and incorrect image thresholding. 
Improper thresholding in the “IdentifyPrimaryObjects” module can 
impair object detection. A) The inverted green channel (grayscale) image 
used for muscle cell identification. B) Poor muscle cell identification.  
C) Improved muscle cell identification was achieved by adjusting 
the upper and lower bounds of the threshold.

https://www.fortunejournals.com/supply/AMI-9043.zip
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images had hardly detectable CD68+ macrophages (Figure 
4B, p value 0.0079). An overview of the CD68 quantification 
pipeline is shown in Figure 4C and can be downloaded from 
the Supplementary Materials section (Supplementary File 
S3). All images were saved as TIFF files and quantified using 
the following workflow: 

1) The input immunofluorescent images were first 
converted into separate grayscale images representing each of 
the color channels using the “ColorToGray” module (Figure 
4D). 2) The green channel grayscale image (representing the 
CD68) was used as input for the “IdentifyPrimaryObjects” 
module to identify the CD68 (Figure 4E). Here, we applied 
a global thresholding strategy and used the minimum cross-
entropy algorithm to automatically calculate the threshold 
for each input image. Minimum cross-entropy uses the 
distribution of pixel intensities that define foreground and 
background as estimates for the probability distributions 

that produce the intensities of foreground and background. 
The cross-entropy between foreground and background is 
then calculated for each possible threshold. The final chosen 
threshold is the lowest cross-entropy value. 3) Next, the 
identified objects (CD68) were converted into a binary image 
using the “ConvertObjectsToImage” module (Figure 4F). 
Here, the white pixels represent the CD68, while the black 
pixels represent the background. Since white pixels have an 
intensity value of 1 and black pixels have an intensity value 
of 0, the creation of this binary image allows for simple 
quantification of the area occupied by CD68. 4) Using the 
“MeasureImageAreaOccupied” module the area covered 
with CD68 was determined 5) and the data was exported into 
.csv files using the “ExportToSpreadsheet” module. 

Quantification of Collagen Deposition 
The heightened inflammatory response observed in the 

dystrophic muscle eventually leads to excessive collagen 
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Figure 3: Processing and quantification of eMyHC+ myofibers by CellProfiler. A) Representative images of gastrocnemius muscle cross-
sections from 4-6-month-old B10 and mdx mice immunolabeled with laminin α1 (red), and eMyHC (green). Scale bar = 100 μm. B) Boxplot 
displaying quantification of the sample eMyHC-positive muscle fiber expressed as the percentage of the total number of muscle fibers in WT 
and mdx mice (n = 5 mice/group). **p<0.01. C) Histogram showing the size distribution (in pixels) of the eMyHC+ fibers obtained from the 
sample dataset. D) Overview of the image analysis workflow. E) A sample mdx image was fed into the pipeline and converted into separate 
grayscale images representing each of the color channels. Here, only the red and green channels were used for subsequent processing. F) The 
red channel grayscale image was inverted and used for the G) identification of the muscle cells. H) Outlines of the identified eMyHC+ cells.
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deposition which causes muscle stiffness and functional deficit 
[12]. Collagen deposition was detected through Picrosirius 
red staining of gastrocnemius muscle cross-sections from WT 
and mdx mice (Figure 5A). We found a significant increase in 
collagen deposition in the mdx cross-sections compared to the 
WT muscle cross-sections (Figure 5A & 5B, p value 0.0079). 
An overview of the collagen quantification pipeline is shown 
in Figure 5C and can be downloaded from the Supplementary 
Materials section (Supplementary File S4). All images were 
saved as TIFF files, and quantified as described below: 

1) Images loaded into the collagen quantification pipeline 
were first converted into separate grayscale images using 
the “ColorToGray” module (Figure 5D). The green channel 
grayscale image was selected for further processing because 
this channel showed the collagen most clearly. 2) The 
“ImageMath” module was then used to invert the green 
channel image to ensure that the desired foreground (collagen) 

appeared light, while the background (muscle cells) appeared 
dark (Figure 5E). 3) Next, the “IdentifyPrimaryObjects” 
module was used to identify the collagen (objects) surrounding 
the muscle cells (Figure 5F). For our dataset, we chose to set 
the values of the typical minimum and maximum diameters 
of the objects to represent the size of myofibers. Additionally, 
we used the minimum cross-entropy thresholding algorithm 
to automatically calculate the threshold used for each image. 
4) The identified objects (collagen) were then converted 
into a binary image using the “Convert Objects to Image” 
module (Figure 5G). As previously mentioned, the creation 
of this binary image simplifies the subsequent image area 
measurement. 5) The “MeasureImageAreaOccupied” module 
was then used to measure the collagen pixel area. 6) Lastly, 
the measurements were exported into .csv files and imported 
into Excel for further analysis. To determine the percentage 
of muscle area occupied by collagen, the collagen area was 
divided by the total area represented in each image. 

WT mdx
0

1

2

3

4

C
D

68
D

ep
os

iti
on

(%
A

re
a)

✱✱B

F

CA

Original Image Green Channel

CD68: Binary Image

D

E
CD68 Outlines Zoom

Analysis WorkflowLaminin/CD68
Wildtype mdx

WT  mdx

Figure 4: Processing and quantification of inflammation via detection of CD68 deposition by CellProfiler. A) Representative images of 
gastrocnemius muscle cross-sections from 4-6-month-old B10 and mdx mice immunolabeled with laminin α1 (red), and CD68 (green). Scale 
bar = 100μm. B) Boxplot illustrating the quantification of the sample CD68 dataset images showing the percent area of CD68 deposition in 
each gastrocnemius muscle of WT and mdx mice (n = 5 mice/group). **p< 0.01. C) Overview of the image analysis workflow. D) A sample 
mdx image was fed into the CD68 quantification pipeline which first converts the color image into separate grayscale images representing 
each color channel. The green channel grayscale image was used for further processing. E) Outlines of the identified CD68. F) The identified 
objects (CD68) were then converted into a binary black and white image for easy quantification of CD68 deposition (% area) within the muscle 
cross-section.
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Discussion 
Detection, characterization, and quantification of muscle 

pathology provide valuable information which can be used to 
monitor the progression of muscle disease or even evaluate 
the effectiveness of treatment intervention. Although this 
phenotypic data is an essential component of muscle research, 
many individuals currently rely on manual or semi-manual 
methods to obtain this data which is not only labor-intensive 
but can potentially introduce inter-individual bias. A previous 
study by Lau et al., 2018 [22] showed that CellProfiler could 
be utilized to quantify the size distribution and central 
nucleation of muscle cells. Here, we expanded upon their 
approach to obtain a more comprehensive analysis of skeletal 
muscle health, focused on muscle membrane damage, the 
size, and abundance of regenerating muscle fibers, muscle 
inflammation, and collagen deposition.

Extensive muscle membrane damage is a hallmark of 
muscular dystrophy that can be accessed via EBD staining 
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Figure 5: Processing and quantification of collagen deposition by CellProfiler. A) Representative images of gastrocnemius muscle cross-
sections from 4-6-month-old B10 and mdx mice stained with Picrosirius red. Scale bar = 100μm. B) Boxplot illustrating quantification of 
percent area of collagen deposition in each muscle section (n = 5 mice/group). **p<0.01. C) Overview of image analysis workflow. D) A 
sample mdx image was fed into the collagen quantification pipeline, which first converts the color image into separate grayscale images 
representing each of the color channels. The green channel grayscale image was selected for subsequent processing because the collagen had a 
prominent appearance in this channel. E) The green channel image was inverted and used for F) identification of the collagen. G) The identified 
collagen was then converted into a binary black and white image for simple quantification of collagen deposition (% area) within the muscle 
cross-section.

[7]. We established an EBD pipeline to quantify the number 
of muscle fibers that exhibit membrane instability. When 
we designed the EBD pipeline, we originally planned to use 
the red channel to identify the EBD+ cells. However, since 
the shapes of damaged muscle cells are poorly defined, we 
found it particularly difficult to accurately segment these 
objects. Due to this challenge, we opted to mask the EBD+ 
cells by reducing their pixel intensities and instead decided 
to identify all the Not_EBD_Cells and subtract this quantity 
from the total number of identified cells to give the number 
of EBD+ cells. Once damage has occurred in skeletal muscle, 
muscle cells have the ability to regenerate. To quantify the 
size and abundance of the regenerating muscle fibers, we 
followed a similar approach for the eMyHC+ cells but did 
not need to mask the eMyHC+ cells because these cells 
had a well-defined shape. The eMyHC+ cells were directly 
detected and measured using the green channel from the 
immunofluorescent images.
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Compared to the rare and dispersed distribution of CD68+ 
M1 macrophages in healthy muscle, the mdx muscle exhibits 
large aggregates of these macrophages which are often 
found in necrotic regions. Since the individual CD68+ M1 
macrophages that compose these clusters are poorly defined, 
we found it difficult to accurately determine the number of 
these pro-inflammatory macrophages in each cluster. Due to 
this difficulty, we quantified inflammation by measuring the 
area of the muscle cross-section occupied by the CD68+ M1 
macrophages. To evaluate muscle fibrosis, we used a similar 
approach in our collagen pipeline to quantify the area of 
collagen coverage in the muscle cross-sections. 

Before getting started with CellProfiler, there are a few 
important considerations to keep in mind. Because of tissue 
folding or tearing, poor laminin staining around the muscle cell 
boarders, some extra regions appeared incorrectly assigned 
to the morphology of muscle fiber, and the presence of 
background staining can all potentially induce quantification 
errors. To minimize the rate of these errors, high quality 
images are critical for accurate quantification. In addition, 
carefully adjusting the parameters for thresholding can 
greatly reduce the rate of errors. In addition, we recommend 
to add secondary antibody-only controls to optimize the 
imaging parameters.

To validate the muscle cell identification accuracy in 
our EBD and eMyHC pipelines, we compared CellProfiler’s 
automated quantification with manual quantification. After 
using both methods to quantify our sample datasets, we found 
that the automated quantification was very similar as manual 
quantification (data not shown). To test the reproducibility 
of Cell Profiler, analysis was also done by different users 
with different levels of experience in these types of analyses. 
Different users obtained very similar results.

It should be mentioned that automated quantification 
can avoid inter-individual bias introduced by manual 
quantification of microscopy images, allow for higher 
analysis throughput, and provide reproducibility and rigor 
of histological studies. Quantification using CellProfiler 
will improve the reproducibility of microscopy image 
quantification. Furthermore, CellProfiler can not only produce 
reliable quantification but does so in a time efficient manner. 
While it took hours and days to manually quantify our sample 
EBD and eMyHC datasets, CellProfiler was able to perform 
the same quantification within one minute. Several software 
including Fiji and ImageJ have been shown to be able to 
perform quantification analysis. However, CellProfiler 
enables large-scale modular image processing without 
the need for any prerequisite knowledge of programming 
languages. In addition, it is a free open-source software that 
is available for both Windows and macOS. 

Although the present study focused on the quantification 
of gastrocnemius muscle cross-sections, the workflows we 
generated can be applied to much wider applications. In fact, 
the same quantifications could be conducted on a variety of 
other muscles and tissues. For example, inflammation and 
fibrosis are common features of many other chronic diseases, 
affecting a variety of tissues. The CD68 and collagen pipelines 
shown here are not limited to muscle tissue and could be 
used to quantify inflammation and fibrosis in essentially 
any kind of tissue section. In summary, the image analysis 
pipelines presented here not only perform histopathological 
quantification in a time effective manner but can be used to 
quantify even the subtle features of microscopy images that 
aren’t easily detected by the human eye [19]. 

Conclusions 
Images can provide a wealth of phenotypic data but 

extracting this data via manual quantification is not only 
subjective, but also time-consuming [23]. The present paper 
describes four image analysis pipelines utilized to evaluate 
skeletal muscle cross-sections for membrane instability, 
muscle regeneration, inflammation, and collagen deposition. 
Computer-based image analysis offers many advantages over 
manual analysis including reproducibility, simultaneous 
image processing, ability to measure and extract multiple 
features in a single run, as well as adaptability. Our tools 
should aid in the analysis of muscle disease progression and 
evaluation of therapeutic intervention by facilitating faster 
moe accurate data acquisition. 
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