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Abstract
Tear on the tendon, ligament and articular cartilage of the joints do not 

heal by itself and new modalities of treatment are required to address the 
need for full restoration of joint functions. Accompanied by degenerative 
diseases, the healing of these tissues does not occur naturally and hence 
requires surgical interventions, but with associated morbidity. Tissue 
engineering strategies are now focusing on the effective incorporation 
of biomechanical stimulation by the application of biomechanical forces 
relevant to the tissue of interest to regenerate and engineer functional 
tissues. Bioreactors are being continuously developed to accomplish this 
goal. Although bioreactors have been developed, the advancement in the 
field of biomaterial, basic science, and cell engineering warrant further 
refinement for their effective use.  In this article we reviewed the application 
of biomechanical forces in the tissue engineering and regeneration of the 
joints such as rotator cuff of shoulder, ball and socket joint of the hip, 
articular cartilage of knee, and the ankle joints. 
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Introduction
Ligament and tendon injuries account for 50% of musculoskeletal 

injuries with approximately 17 million ligamentous injuries that reported 
to have medical treatment and ~200,000 surgical procedures for cartilage 
defect are being performed in US annually [1,2]. Musculoskeletal injuries 
impart a huge economic burden significantly impacting the quality of life. 
Physiologically, the load generated by movement and inherent load of the 
body is counterbalanced by the force generated within the ligaments, tendons, 
muscles, and articular cartilage tissues. Due to overuse, tear or degeneration 
caused by diseases such as arthritis, the normal function of these tissues are 
impaired causing pain and dysfunction of the joint movements. The surgical 
restoration attempts are promising; however, often associated with morbidity 
resulting in repeated surgeries. Unfortunately, the joint instabilities, Achilles’ 
tendon tear, rotator cuff injuries and large cartilage defect are often irreparable 
warranting regenerative/tissue engineering strategies for regaining the 
biomechanical function  [3-5]. Recently, tissue engineering strategies are 
focused on incorporating biomechanical stimuli in the development of 
functional tissues such as tendons, ligaments, and articular cartilage in vitro. 
Biomechanical stimulations on tissue samples and cells seeded on biomaterial 
constructs improved the mechanical properties [6]. Bioreactors are developed 
and used to apply biomechanical forces to the constructs, but to mimic the in 
vivo microenvironment has been a challenge. Hence, a deep understanding 
of the biomechanical forces in the tissues are required to develop treatment 
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strategies, and to address the knowledge gap in tissue 
regeneration and pathological events associated with these 
load-bearing connective tissues.

Biomechanics of joints
Shoulder joint

The glenohumeral joint (GHJ) of the shoulder is 
stabilized by a group of tissues named rotator cuff [7]. The 
rotator cuff is composed of four muscles and their tendons: 
supraspinatus, infraspinatus, subscapularis, and teres minor, 
commonly referred as ‘SITS’. These muscles play a crucial 
role in stabilizing the shoulder joint (glenohumeral joint) and 
enabling its extensive range of motion [8]. The articulation 
surface is formed between the union of scapula and clavicle 
against the humerus. Rotator cuff muscles are responsible for 
holding up the tensile load and generating the tensile force to 
keep the GHJ intact. The glenoid cavity and its articulating 
surface of the humeral head holds up the compression force 
generated, and shear force generated during motion [9]. The 
glenohumeral joint reaction force generated by the articulating 
cartilage tissues balances the compression forces generated 
by the rotator cuff muscles and aid in the smooth gliding of 
the humeral head against the glenoid cavity resulting in shear 
load on the cartilage tissues. The transfer of the load across 
the joint during abduction and overhead elevation/lifting is 
shown in Figure 1. During abduction the acromion blocks 
the movement of the humerus at around 120o (Fig. 1B). The 
remaining range of motion (humoral elevation) is achieved 
by rotation of scapula in superior direction to another 60o 

(Fig. 1C), to make the 180o elevation.  At this position the 
axis of the load is vertical, and the load is transferred to the 
body through the articular cartilage to the body. The tendons 
hold the joint complex intact throughout the movement by 
acting as force couple [10]. 

Hip joint
The acetabulofemoral joint or the ball-and-socket joint 

of the hip is stabilized by various ligaments, muscles, and 
tendons that perform as flexors, extensors, adductors, 
abductors, lateral rotators, and medial rotators [11]. The 
acetabulum has a smooth lining of articular cartilage called 
the lunate, and its crescent shaped incomplete ring bears 
most of the load that is transferred to the femur [12,13]. The 
articular cartilage of the hip joint experiences compressive 
forces that are directed vertically along the axis of the femur 
(Fig. 2A) and is stabilized by the ligaments and tendons of 
the joint. Shear forces occur parallel to the joint surfaces 
causing sliding movement between the articulating surfaces 
of the femur and acetabulum. The articular cartilage and 
the synovial fluid in the joint help to reduce shear forces 
and prevent excessive friction. A combination of shear and 
compression occurs during movements like rotation in the 
articular face, while the ligaments and tendons are under 
tensile load in the reciprocation of movements [14].

Knee joint

The knee joint is composed of two articulations namely 
the tibiofemoral joint and patellofemoral joint and is a hinge 
type synovial joint [15]. In humans it is the most stressed and 
largest articulating joint [6]. The network of ligaments and 
tendons of the knee contribute to the stability of the knee. 
The anterior cruciate ligament (ACL), posterior cruciate 
ligament (PCL), medial collateral ligament (MCL), and 
lateral collateral ligament (LCL) give stability and integrity 
from excessive movement [16]. The medial collateral 
ligament has its origin at the medial epicondyle of the femur 
and inserts onto the medial aspect of the proximal tibia. 
On the other hand, the lateral collateral ligament originates 
from the lateral epicondyle of the femur and inserts onto the 

 
Figure 1: Schematic image showing the transfer of forces during the movement of shoulder joint. Black lines show the 
axis of load transfer. (A) Transfer of load during initial phase of abduction, (B) the acromion blocking the humerus at 
around 120o angle, and (C) the rotation of scapula to make the humoral elevation to 180o angle.  
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head of the fibula. The quadriceps tendon plays a crucial 
role in extending the knee joint and facilitating movements 
such as jumping and running. The hamstring tendon formed 
by the merging of the tendons of the hamstring muscles 
(semitendinosus, semimembranosus, and biceps femoris) 
imparts stability to knee joint. The transfer of load during 
flexion (Fig. 2B) and extension (Fig. 2C) occurs along the 
axis of tibia and fibula. The articular cartilage is constantly 
subjected to dynamic compression loading, hydrostatic force, 
and shear force. It holds the whole weight of the body during 
all physical activities and stabilized by the tensile force of the 
tendons and ligaments [6,16,17].

Ankle joint

The ankle joint complex includes the talocalcaneal 
(subtalar), tibiotalar (talocrural), and transverse-tarsal 
(talocalcaneonavicular) joints [18]. Achilles tendon is 
attached to the calcaneus and the interosseous talocalcaneal 
ligament, the lateral talocalcaneal ligament, anterior 
talocalcaneal ligament, calcaneofibular part of the lateral 
collateral ligament, tibiocalcaneal ligament of the deltoid 
provide stabilization to the talocalcaneal joint [19].  In normal 
walking the ankle joint holds up to five times the load of the 
body and it increases to thirteen times while running [20,21]. 
It was reported that approximately 83% of this load is 
transmitted through the tibiotalar joint. The representation of 
the axis of load transfer in ankle complex is shown in Figure 
2D. The load bearing area of the ankle is 11-13 cm2 which 
results in lower stress level compared to the hip or knee joints 
[18].

Injury and treatment  

Repetitive eccentric forces, acute or chronic 
tendinopathies, rotator cuff tear are the cause of pain and 
dysfunction can lead to secondary arthritis of the joint if 
left untreated. The rotator cuff tear may be partial or full 
thickness tears. Full thickness defect may be graded as 
grade-1 (less than 3 mm), grade-2 (3-6 mm) and grade-3 
(more than 6 mm) and the treatment varies in accordance 
with the grade of tear [22]. The general treatment options 
include rest, usage of non-steroidal anti-inflammatory drugs 
(NSAIDs), cytotherapy, steroids, continuous passive motion, 
restrictive bracing, surgically suturing the tendons and finally 
tissue grafting (Fig 3A). The graft may be autograft, allograft 
(biological derived or artificial) or xenograft [23]. The 
surgical procedures have a high failure rate while allograft 
and xenograft may end up with graft rejection and warrants 
life-long immunotherapy. The earlier reports state that there 
is inflammation and alteration in the collagen composition of 
the tendons with rotator cuff tear [24-26]. The restoration by 
rotator cuff repair surgery has a high failure rate (2% - 94%) 
and morbidity [27-30].

The articular cartilage full thickness defect larger 
than 6 mm do not heal by itself [31,32]. Depending on the 
grade of defect the use of NSAIDs to manage pain, joint 
immobilization, injection of hyaluronic acid to the joint 
to increase the joint lubrication are done. Arthroscopic 
procedures such as microfracture, mosaicplasty and 
osteochondral graft transplantation are being carried out 
(Fig 3B). But they come with the need of repeated surgery 

Figure 2: Schematic image showing the transfer of forces on the hip joint (A), Flexion of knee (B), Extension of knee (C), 
and ankle joint (D). Black lines show the axis of load transfer.  
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to remove/trim the formation of fibrous cartilage that grows 
in excess and the associated morbidity [33,34]. Autologous 
chondrocyte transplantation (ACI) is considered the gold 
standard treatment in the regeneration of articular cartilage 
[35]. This procedure has made immense development with 
the use of biomaterial of biological origin and established 
the matrix-induced autologous chondrocyte implantation 
(MACI). Tissue engineering is a viable option for non-
treatable chronic disease conditions that combines the 
cells, biomaterials as scaffolds, biochemical factors, and 
biomechanical factors to generate functional tissues [5,36-
38]. There is always a quest to identify the right cell source, 
a suitable biomaterial, and appropriate biochemical factors 
for the regeneration of tissues of the joints. These have 
been discussed in detail earlier for ligaments [23], articular 
cartilage [39,40], tendons and muscles.

Biomechanical forces and tissue engineering 

The hierarchical organization, integrity and the ECM 
of the load bearing tissues such as tendons, ligaments and 
articular cartilage are responsive to mechanical loads [41,42]. 
In vivo models were used to study the response of these tissues 

to mechanical loading. The limited availability of animal 
models, variations between subjects, inability to achieve 
the precise mechanical loading and data collection were 
addressed by development of bioreactors [43]. In this regard 
the bioreactors are superior in having precise control over the 
use of biochemical factors and biomechanical stimulation 
of tissue engineered constructs [44-46]. Bioreactors may be 
used to study the (i) basic pathways, (ii) growing new tissues 
or (iii) priming the cells to mechanical stimulation before 
implantation [47]. A schematic representation of development 
of tissue engineered construct is shown in Figure 4. Few of 
the commonly employed bioreactors include the rotating wall 
bioreactor, a concentric cylinder bioreactor [48], perfusion 
bioreactor [49,50], and compression loading bioreactor  
[51-53] and tensile bioreactor system [54]. 

A list of bioreactors used for biomechanical stimulation 
is given in Table 1. Mechanical stimulation on cell seeded 
scaffolds increased the extracellular matrix (ECM) secretion 
and differentiation of stem cells [46,47,55-58]. For instance, 
the tensile forces applied to the porcine-derived acellular 
dermal matrix (PADM) increased the tenocyte markers [57]. 

Figure 3: A schematic image representation of the grades of injury and current treatment/management approaches for load 
bearing tissues. MACI, matrix-induced autologous chondrocyte implantation; NSAIDs, non-steroidal anti-inflammatory 
drugs.
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The application of mechanical forces needed in the 
engineering of tissues of the joints should account for the 
biomechanical forces in the in vivo microenvironment to 
generate optimal regeneration. Young’s modulus of human 
Achilles tendon was reported as 816 ± 218 MPa and ultimate 
stress of 71 ± 17 MPa [59], while for the Achilles tendon of 
rat it is 405 ± 115 MPa (Young’s Modulus) and 51.6 ± 10.8 
MPa (UTS), respectively [60]. These values get affected to a 
very lower values in disease conditions. This may be highly 
associated with the infiltration of inflammatory cells, loss 
of collagen in the tendons, fatty infiltration in the tendons 
and muscles of the joints [61, 62].  The shape of cells and 
the force sensed at the ECM induce cell differentiation. The 
cellular response to compression loading is different from 
tensile stress. Human mesenchymal stem cells (hMSCs) were 
seeded on to alginate hydrogels and mechanical loads were 
applied. Genes associated with fibroblast and osteogenesis 
were upregulated on cell seeded constructs that received 
tensile loading, whereas the constructs that received dynamic 
compression had upregulated gene expression related to 
chondrogenesis [63]. The stress-strain curve of tendons 
exhibits a nonlinearity strain (0-2%) and then a linear strain (2-
6%) before it enters a microfracture leading to macrofracture 
(8%) and ultimate rupture. The physiological strain level 
equates to 2-6% strain, however prolonged cyclic loading 

causes molecular breakdown leading to tear of tendon. Strain 
valued greater than 8% caused macrofracture [64]. Hence 
to closely mimic the in vivo microenvironment, these strain 
% are used in bioreactors for generating tissue engineered 
constructs [65,66]. The creep test on flexor digitorum longus 
tendon of rat with 35% of ultimate tensile strength (UTS) 
broke the sample in 15 minutes, whereas 5% of UTS on rat 
tail tendon broke the sample at 15 hours [67,68]. Application 
cyclic tensile loading (10% strain) on collagen scaffolds 
seeded with porcine tenocytes were able to align the cells 
towards the direction of strain but the cells did not survive 
for longer period in culture [69]. It should be noted that the 
strain applied in this study was higher than the physiological 
percent strain and is equivalent to the macrofracture of 
tendons. Table 1 provides additional studies on mechanical 
stimulation and bioreactor used for stimulation [70-73].

Mechanical stimulation is sensed by Focal adhesion 
kinase (FAK), integrins and vinculin which in turn increases 
the intracellular calcium level. In a seminal study, the human 
tenocytes seeded on the unique uniaxial microgroove silicon 
membrane with cyclic stretching (4,8,12% strain at 1 Hz) 
at different time intervals (4,8,12 h) revealed maximum 
intracellular calcium at 12% strain than the 4% and 8% strain 
that increased with time [74]. Moreover, the stretch activated 
calcium channels have a positive effect in differentiation of 

Figure 4: A schematic diagram showing the process of tissue engineering to develop functional tissue.
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Tissue Biomaterial construct Mechanical stimulation Bioreactor Reference

Cartilage
Polycaprolactone-β- tricalcium 
phosphate (PCL-TCP) blended 
scaffolds seeded with rat MSC

0.22% cyclic compressive strain at 1 Hz 
for 4 h per day + 5 rpm biaxial rotation at 

an angle of rotation at 90°
Custom made [70]

Cartilage PCL/fibrin scaffolds scaffold seeded 
with KUM5 (Riken Cell Bank)

15% cyclic compressive strain at a 
frequency of 1 Hz + 90 minutes static 

load
Custom made [71]

Cartilage 3D-printed PCL scaffolds seeded cells 
(hADSCs) Media perfusion at flow rate of 1 ml/min Perfusion bioreactors  

(BOSE, TA Instruments) [72]

Ligament/
tendon porcine-derived acellular dermal matrix 

(PADM) seeded with rat MSC

5% cyclic strain at a frequency of 0.2 Hz 
for 1 h each followed by 5 h no load for 

up to 3 days

Flexcell®FX-5000TM system 
(Flexcell International, Burlington, 

NC, USA)
[57]

Tendon
polycaprolactone (PCL) nanofiber 

seeded with HADMSC: HT: HUVEC 
(2:2:1)

4% elongation at a frequency of 0.5 Hz 
for 2 h per day for 12 days.

MechanoCulture T6 Mechanical 
Stimulation System (CellScale 
biomaterials testing, Canada)

[65]

Tendon
poly(L-lactide-co-e-caprolactone)/

collagen scaffold seeded with Tendon-
derived stem cells

4% elongation in length at 0.5 Hz, 2 h 
per day for a total of 14 days Information not available [66]

Tendon Collagen scaffold seeded with porcine 
tenocytes

10% elongation in length at 0.5, 1.0 and 
2.0 Hz, for a total of 14 days Custom made [69]

Tendon Oligo (polyethylene glycol) fumarate) 
gel seeded with hBMSC

10 % cyclic tensile strain for 3 h at 1 Hz, 
for 21 days Custom made [73]

Table 1: List of mechanical stimulation and bioreactor used for stimulation.

human bone marrow mesenchymal stem cells to tenogenic 
lineage but at higher strain (8%) the viability of cells decreased 
beyond 72 hours [75]. Hydrostatic force and media perfusion 
(shear) have a positive effect in cartilage regeneration along 
with compression loading [76,77]. The native cartilage is 
subjected to repeated dynamic and static compression loading 
is degenerative to chondrocytes, but the ECM secretion is 
enhanced by the application of dynamic compression loading 
[78]. Canine chondrocytes were seeded on agarose hydrogels 
and dynamic compression loading (5% strain at 1 Hz) for 3 
hours a day and 5 days a week. The constructs that received 
dynamic mechanical loading had significant increase in 
stiffness as measured by Young’s modulus, collagen-II and 
glycosaminoglycan (GAG) content [51]. The application of 
mechanical forces needed to engineer tissues of the joints 
should account for the biomechanical forces in the in vivo 
microenvironment to generate optimal regeneration. The 
results are encouraging but the bioreactor that could mimic 
the ideal microenvironment to produce load bearing tissue 
is yet to be designed. Hence the parameters such as loading 
time, frequency, interval of loading, and the strain percentage 
need to be carefully studied.

Outstanding questions and Future directions
There is a strong need to develop bioreactor for tissue 

engineering application due to significant challenge in 
mimicking the native microenvironment of the load bearing 
tissues like tendon, ligaments, and articular cartilage. 

Recent advancement in the field portrays the importance of 
biomechanical forces in regenerating tissues. But each tissue 
has a specific biomechanical regime, and the knowledge is 
largely incomplete. The biomechanical properties of tendons, 
ligaments or articular cartilage of each join have different 
values which add up to the complexity in designing the 
experimental studies further. To list the variables that need 
further consideration include: (i) force - tensile, compression, 
torsion, shear and hydrostatic force, (ii) nature of force - 
static, dynamic, intermittent, and alternating, (iii) frequency 
- has a wide physiological range, (iv) duration of culture, (v) 
duration of mechanical stimulation, and (vi) biochemical 
factors. One of the main limitations is the number of samples 
and its replicates that a bioreactor can hold, and the above 
variables can be accommodated in a single run. Multiple 
successful experiments need to be performed to study the 
differences in loading regimes and biochemical factors. 
Additional hurdles in performing vast experiments include 
capital and operational cost, and the requirement of large 
volume of cells. Lastly, in a dynamic environment the viability 
and attachment of cells for sufficiently long term to produce 
an appreciable functional tissue is a challenge. These may be 
further affected by mass transfer of oxygen, carbon dioxide, 
nutrients, and inappropriate mechanical stimulations/load. 
Hence, novel approaches need to be developed and create 
opportunities for advancing knowledge in developing tissues 
suitable for implantation.
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Key Points:

1. The joints are stabilized by load bearing tissues such as 
tendons, ligaments, and articular cartilage.

2. Tear and degenerative diseases on the load bearing tissues 
do not heal by themselves.

3. Conservative treatment procedures on higher grade of 
injuries fail and repeated surgeries are needed.

4. Incorporation of biomechanical stimulation in tissue 
engineering strategies yields better functional tissues.

5. Advances in bioreactor development and thorough 
understanding of the biomechanical forces of the in vivo 
microenvironment are necessary for development of 
functional tissues in vitro. 

6. Innovative approaches are needed to develop, understand, 
and mimic the response and survival of cells under 
mechanical load.

7.  Meticulous analysis of the role of biomechanical and 
biochemical factors needs further investigation to bridge 
the gap between the available knowledge and generation 
of new tissues in laboratory.
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