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Abstract
The classification of immune cell phenotypes in single cell data is a 

major challenge in biology research today. Here, we present a novel machine 
learning approach, SignacX, which uses neural networks trained with flow-
sorted gene expression data to classify immune cellular phenotypes in 
single cell RNA-sequencing data. We demonstrate that SignacX accurately 
classified single cell RNA-sequencing data across diseases, technologies, 
species, and tissues, and outperformed other leading methods in immune 
phenotype classification, particularly for classification of CD8 and CD4 
T cell subsets. We used the annotations generated by SignacX to identify 
conserved and tissue-specific gene expression-based signatures of immune 
cell types. Next, we defined immune-relevant precision medicine candidate 
drug targets in rheumatoid arthritis using single cell data from human 
synovium. A full release of this workflow together with detailed vignettes, 
an interactive data portal and freely accessible software that is integrated 
with Seurat and is easy to use can be found at our GitHub repository 

(https://github.com/Sanofi-Public/PMCB-SignacX).

Keywords:  Machine learning; Disease; Autoimmune; Single cell RNA-
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Introduction
Single-cell technologies are now main stream in disease research due to 

their ability to identify cellular phenotypes in diseased tissue with single cell 
resolution [1]. However, cellular phenotypes are not identified from single 
cell data alone [2]. Instead, single-cell data analysis is typically a labor-
intensive, project-specific and subjective process, such that two groups 
observing the same data will often arrive at a different set of conclusions [3]. 
The key analytical challenges of single-cell data analysis are how to map 
single-cell observations to known immune phenotypes in a consistent fashion 
independent of the scientist interpreting the experiment and how to efficiently 
identify conserved gene markers of known immune phenotypes. There are 
existing tools that can label immune phenotypes in single cell data in some 
circumstances, like Azimuth, symphony and scVI, which seem to perform 
well when there are single cell reference data derived from the same tissue 
as the query data [4–6]. However, in many cases we do not have reference 
data for annotating new single-cell data. For example, the peripheral blood 
mononuclear cell (PBMCs) classifier published with Azimuth cannot classify 
cells in other organ systems, like nonimmune cells or macrophages, without 
additional organ-specific training [6]. Furthermore, since the cell type 
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composition of single-cell experiments varies with different 
technologies, each reference mapping approach exhibits 
technology-specific bias in classification (they perform best 
on single cell data derived from the technology on which 
they were trained) [3]. Another challenging aspect of these 
tools is that they are limited to the degree of annotation of 
the reference data, which is typically determined manually 
by studying gene expression patterns. Since cells can have 
similar transcriptional patterns and diverse functions (e.g., 
T cell subsets), these populations have historically been 
defined using flow cytometry with functional validation. 
Ideally, we need a solution that annotates cells from any 
tissue or technology, without technology-specific bias, and 
using as reference data populations of cells that were sorted 
with flow cytometry together with functional validation to 
create a consistent labeling of single cell identities across 
diseases, tissues and technologies. In this study, we filled this 
gap by developing a robust, efficient, and scalable machine 
learning algorithm, SignacX, which (a) accurately and 
consistently maps single-cell identities to a detailed hierarchy 
of known immune phenotypes that were established with 
flow cytometry; (b) identifies novel cell populations and 
(c) surfaces conserved gene expression-based signatures 
of immune phenotypes from single cell data. Overall, our 
approach produces a consistent labeling of cellular phenotypes 
in scRNA-seq data that allows for the study of immune cells 
across diseases, technologies, species and tissues with a 
consistent labeling hierarchy [7]. Our approach differs from 
other methods as it can reliably classify single cell data from 
any technology or tissue without any tissue- or technology-
specific training [3], it was validated with CITE-seq and with 
flow cytometry data, and successfully differentiated cell types 
that were highly similar to each other, like T cell subsets (a 
known limitation of other methods) [3,8]. To demonstrate 
this idea, we used our tool to classify non-human data to help 
study under-represented model organisms that lack sufficient 
reference data [3,8], and integrated our software with popular 
software packages SPRING and Seurat for ease of use [7,9]. 
Our method is the first hierarchical ensemble of neural 
network-based classifiers that was trained with bulk sorted 
reference data to classify single cell data. To summarize, its 
detailed immunological classification and its robustness to 
diverse tissues and technologies make our algorithm unique 
among existing solutions.

Results
Overview of the SignacX approach for immune cell 
identification

To annotate cellular phenotypes in single-cell 
transcriptomic data, we developed a novel approach, 
SignacX, which used machine learning to classify each cell in 
unlabeled scRNA-seq data according to a detailed hierarchy 
of immune phenotypes (Figure. 1A-B). Our approach is based 
on an ensemble of neural network classifiers that were trained 

on a reference dataset of gene expression profiles for purified, 
sorted cell types generated by the Human Primary Cell Atlas 
(HPCA; see Methods: Overview of the SignacX approach) 
[10]. First, we identified gene markers that distinguished each 
level of the cell type hierarchy (Figure. 1A) by performing 
differential gene expression analysis with the HPCA data and 
by performing meta- analysis of previously established gene 
markers (Supplemental Figure 1; see Methods: Establishing 
the HPCA reference data for training SignacX; Supplemental 
Dataset 2) [10–12]. This established a set of gene markers, 
but it left open the question of how to use them to classify 
cells in scRNA-seq data. We reasoned that this task could 
be accomplished with machine learning [13]. However, the 
HPCA data contains as few as two samples for each sorted 
cell type population (Supplemental Figure 1), which is too 
few to use as training data for a classifier. To help solve this 
problem, we bootstrapped and added noise to each pure cell 
type category in the HPCA reference data, and thus created 
a large and diverse training data set of many (n = 1,000) 
bootstrapped samples of each pure cell type, and then we 
used the bootstrapped data to train an ensemble of n = 100 
neural network classifiers to make cell type classifications 
by amending a label to the largest average probability of the 
ensemble of classifiers (Figure. 1C; see Methods: Establishing 
a predictive model for cellular phenotypes using the HPCA 
reference data; for additional details see Methods: Overview 
of the SignacX approach; Supplemental Figure 1).

To validate our approach, we generated predictions for 
flow-sorted gene expression data that were not used in the 
analysis described above and instead originated from the 
Encode and Blueprint Epigenomics consortia, which used 
a different sequencing technology (RNA-seq) than the 
HPCA data (microarray) [10,14,15]. We observed 100% 
accuracy in the classification of B-cells, mononuclear 
phagocytes, neutrophils, CD8 T-cells, CD4 T-cells, NK-
cells, plasma cells, T regulatory cells and nonimmune 
cells, even classifying nonimmune sub-types that were not 
present in the training data (Supplemental Figure 2; see 
Methods: SignacX classification). Altogether, this supports 
the idea that our approach can classify diverse cell types in 
different data sets, and demonstrates that the neural network 
models were built with hyperparameters and structure that 
were cross validated in an unseen data set [10]. However, 
single-cell data are distinct in many ways from the HPCA, 
Blueprint and Encode data described above [10,14,15]. 
For example, single-cell data are sometimes composed 
of cell types for which flow-sorted data are unavailable, 
and may exhibit single cell technology-specific artifacts, 
like dropouts and doublets [2,4,12,16,17]. To address 
these concerns, we developed methods for learning gene 
expression-based representations of cell types from single-
cell data, for imputing missing gene expression values, and 
for leaving cells unclassified if they did not conform to a 
known cellular phenotype (Figure.1D).
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Figure 1: Conceptual overview of the SignacX approach. A, Classification hierarchy. Dendrogram displays the hierarchy of cellular phenotypes 
that are classified by SignacX: immune (teal) and nonimmune (carrot orange), major immune cell phenotypes (mononuclear phagocytes “MPh”; 
B cells and T/NK cells) and functional/terminally differentiated cellular phenotypes (rows). B, SignacX conceptual overview (theoretical 
data). SignacX takes as input scRNA-seq data for which the cellular phenotype is unlabeled (left; n = 10 cell barcodes, grey circles). Next, 
SignacX applies neural networks trained with pure, sorted reference data which results in labeled scRNA-seq data (teal; immune, carrot orange; 
nonimmune). The scRNA-seq data represented here are in a dimensionality-reduced plot (axes) where distances correspond to transcriptional 
similarities between cells (e.g., UMAP, t-SNE or PCA). C, Concept for training neural network classifiers by bootstrapping a reference dataset 
(theoretical data). Heatmap (left) shows the expression (red indicates high gene expression, blue indicates low gene expression) of genes (n 
= 3, rows) across samples (n = 3, columns) in theoretical flow-sorted gene expression reference data of two pure cell type populations, A and 
B. Feature selection (black arrow) identifies a single gene that is correlated with A and B. This marker gene is bootstrapped (black arrow) 
by resampling from A and B separately, yielding a training data set for that gene, with a balanced number of bootstrapped samples from cell 
population A (n = 1,000 samples) and B (n = 1,000 samples). Next, neural network classifiers (n = 100) are trained (black arrow) on the training 
data set, yielding an ensemble of neural network classifiers (NNAB) that can be used to identify cell types A and B. D, Example workflow 
(theoretical data). SignacX takes as input scRNA-seq expression data (left; expression matrix 𝐸ij with 𝑖 = 1, … , 𝑚 gene rows and 𝑗 = 1, … , 
𝑛 cell columns) for which the cell type identity of each cell is unknown (gray circles). In step 1, a subset of the genes is imputed (arrow) using 
the imputation operator 𝐷jj (see Methods: KNN imputation) yielding 𝐸𝑘j′. Next, an ensemble (n = 100) of neural network classifiers (NNAB; 
black box) are applied to the imputed expression matrix 𝐸𝑘j′, yielding for every cell a set of probabilities (one for each classifier) that the 
cellular phenotype is either phenotype A (PA) or B (PB). In step 2, these probabilities are then averaged and reported as a single probability, 
corresponding to the probability matrix Pjk, and then each cell (circle) is amended a label (teal, carrot orange) corresponding to the maximal 
probability of Pjk. Alternatively, a cell (circle) remains unclassified (light gray circle) if the maximal probability is below a user-set threshold. 
In step 3, after initial classification of cell types, KNN networks (black lines indicate network edges) are used to correct broad cell type 
assignments corresponding to immune and nonimmune cells and the first level of the cell type hierarchy (Fig 1A); each cell is assigned to the 
majority of itself and its first-degree neighbors in KNN networks. Classification continues until the deepest cell types in the hierarchy (Figure 
1A), resulting in a vector of cell type labels xj. In step 4, novel cell types are identified using Louvain clustering to identify theoretical Cluster 
X (3 cells, black box); if cluster X is statistically enriched (two sample t-test, p-val < 0.01) for unclassified cells (top) or exhibits statistically 
significant normalized Shannon entropy in SignacX labels (bottom), then Cluster X is flagged as a potential novel cellular population “N” 
(purple), yielding novel cell type labels (right). In step 5, the cell type labels are used for downstream analysis (listed). In step 6, scRNA-seq 
data is now used as a training data set to learn novel cell types (e.g., Novel population “N”) from scRNA-seq data, by developing neural network 
models that can distinguish novel cell populations (N) from other cell populations (B). Finally, this new model can be applied to other single 
cell data sets, yielding new classifications (step 7).
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Figure 2: SignacX reliably distinguishes immune and nonimmune cells in peripheral tissues. A, SignacX classifications were consistent with 
PTPRC expression in CEL-Seq2 data from synovium. Two-dimensional visualization (left; SPRING plots) of single-cell transcriptomes (n = 
8,920) in synovium biopsies (n = 26). Each cellular transcriptome (dot) was colored by SignacX classifications; immune (teal), nonimmune 
(carrot orange) or unclassified (grey) cellular phenotypes. Single-cell gene expression plot (right) for a representative immune cell- type-
enriched gene. B, SignacX classifications were consistent with PTPRC expression in CEL-Seq2 data from kidney. See the caption for Figure 
2A, except these visualizations correspond to single-cell transcriptomes (n = 4,941) from kidney biopsies (n = 36). C, SignacX classifications 
were consistent with PTPRC expression in 10X data from lung. See the caption for Figure 2A, except these visualizations correspond to single-
cell transcriptomes (n = 42,844) from lung biopsies (n = 18). D, SignacX correctly rejected the nonimmune labels in blood. See the caption for 
Figure 2A, except these visualizations correspond to single-cell transcriptomes (n = 7,902) from PMBCs (n = 1).
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SignacX reliably distinguishes immune cells from 
non-immune cells in a variety of peripheral tissues

A fundamental requirement of automated immune cell 
type classification is the ability to distinguish immune cells 
from the cells of the host tissue at the infiltration site. Our 
approach succeeded in separating immune from nonimmune 
cells in data from three mixed tissue experiments deriving 
cells from human kidney, synovium, and lung (Table 1), 
generated with either plate-based (Figure. 2A-B) or droplet-
based technologies (Figure. 2C). These data were visualized 
with SPRING, a two-dimensional force-layout embedding 
that we used for interactive exploration of single-cell gene 
expression data (see Methods: Single cell data pre-processing) 
[9,18]. SignacX also correctly rejected the non- immune label 
in data derived from human peripheral blood mononuclear 
cells (PBMCs; Figure. 2D) [19], indicating accurate immune 
and nonimmune cell-classifications in peripheral tissues as 
well as in blood.

Benchmarking SignacX with flow cytometry and 
CITE-seq data

 Next, we applied SignacX to annotate deeper cellular 
phenotypes for the synovium and the PBMCs data 
introduced above. Unlike typical scRNA-seq data, these 
data also contained simultaneous protein expression data 
for each individual cell measured with cellular indexing 
of transcriptomes and epitopes by sequencing (CITE-seq) 
for the PBMCs and with flow cytometry for the synovium 
[4,19]. To validate the cell type classifications generated by 
SignacX, we determined to what extent SignacX, which uses 
only transcriptional information, labeled cellular phenotypes 

that were consistent with the expected lineage-specific protein 
expression data.

SignacX accurately classified CITE-seq PBMCs
Using only transcriptional data, SignacX identified 

several distinct cellular phenotypes in PBMCs that were 
consistent with the expected protein expression data: CD19+ 
B-cells, CD19+CD25+ memory B-cells, CD19+CD25-
CCR7+ naïve B-cells, CD14++CD16- classical monocytes, 
CD14+CD16++ nonclassical monocytes, CD3+ T cells, 
CD45RA+CD4+ naïve T-cells, CD45RO+CD4+ T 
memory cells, CD4+TIGIT+FOXP3+ T regulatory cells, 
CD45RO+CD8+ T effector memory cells, CD56+CD3- NK 
cells, CLEC10A+ dendritic cells (DCs), MZB1+ plasma 
cells and CD56+CD3- NK cells (Figure. 3A-C; additional 
examples Supplemental Figure 3). Furthermore, well-
known gene markers for these cell types were identified here 
with an unsupervised and unbiased analysis that identified 
immune marker genes (IMAGES) from single cell data (see 
Methods: Identifying IMAGES in scRNA-seq data; Figure. 
3B; Supplemental Figure 4). Finally, we performed cluster-
based annotation from the antibody-derived tag (ADT) data 
whenever we could do so unambiguously (6,990/7,865 cells 
across five categories: B, myeloid, NK, T CD4, and T CD8). 
We measured both sensitivity (recall) and precision of the 
SignacX classification in relation to the unambiguous ADT-
based annotation. SignacX achieved the average recall of 
0.94, the average precision of 0.97, and the overall accuracy 
of over 0.95 (Supplemental Figure 13). Altogether, this 
demonstrated that our approach accurately classified cellular 
phenotypes in PBMCs.

Tissue Disease Number of cells Number of samples Source Technology SignacX version

Kidney Cancer 48,037 47 20 10X v3 2.0.7

Kidney and urine LN and healthy 5,886 39 21 CEL-Seq2 2.0.7

Lung Cancer 42,844 18 18 InDrop 2.0.7

Lung Fibrosis 96,461 31 22 10X v3 2.0.7

Lung Fibrosis 1,09,421 16 23 10X v3 2.0.7

Monkey PBMCs Healthy 5,491 1 24 10X v3 2.0.7

Monkey PBMCs Healthy 5,220 1 24 10X v3 2.0.7

Monkey T cells Healthy 5,496 1 24 10X v3 2.0.7

PBMCs Cancer 14,048 8 18 InDrop 2.0.7

PBMCs Healthy 7,902 1 10X Genomics CITE-seq 2.0.7

PBMCs Healthy 4,784 1 10 X Genomics 10X v3 2.0. 7

PBMCs Healthy and 
vaccinated 10,000 8 6 CITE-seq 2.0.7

Skin AD 36,690 17 25 10X v3 2.00.07

Synovium RA and OA 8,920 26 4 CEL-Seq2 2.00.07

Table 1: Summary of scRNA-seq data used in this study

Table 1: Data used in this study. LN: lupus nephritis, RA: rheumatoid arthritis, OA: osteoarthritis, AD: atopic dermatitis, PBMCs: peripheral blood 
mononuclear cells.
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Figure 3: Validating SignacX with single-cell protein expression 
data from PBMCs and synovium. A, Two dimensional visualization 
of SignacX-classified CITE-seq PBMCs transcriptomes. SPRING 
plot visualization as-depicted previously (Figure 2D) except with 
deeper SignacX annotations for cell types. B, Dot plot of top 
IMAGES expressed in CITE-seq PBMCs in cellular phenotypes 
labeled by SignacX. Dot plot shows the percentage (size) of single-
cell transcriptomes within a cell type (y-axis) for which non-zero 
expression of marker genes was observed (x-axis). Color displays the 
average gene expression (red indicates more expression) in each cell 
type category. C, Heatmap of protein expression in CITE-seq PBMCs 
in cellular phenotypes labeled by SignacX. Color shows the scaled 
protein expression data (rows’ yellow is higher expression; purple 
is lower expression) across single-cell transcriptomes (columns). 
Annotation bar indicates the cell type assigned by SignacX (i.e., 

Figure 3A-B). D, Two-dimensional visualization of synovium single-
cell transcriptomes with cell types identified by FACs (left) and 
SignacX(right). SPRING plot visualization as-depicted previously 
(Figure 2A) except with cell type labels determined by FACs (left), 
where each single-cell transcriptome is colored by the label assigned 
to it with flow cytometry (T cells, teal;fibroblasts, green; empty, 
grey; B cells, purple and monocytes, yellow). On the right, the same 
data are plotted the same way, except with labels generated with 
SignacX. E, Bar plot of SignacX and SingleR performance in cell 
type classification with synovium. Bar plot shows each flow-sorted 
cell type category (x-axis), and the performance of SignacX (red) 
and SingleR (blue) in recalling the flow cytometry labels (error 
bars correspond to 95% confidence intervals, two-sided binomial 
test). F, Two-dimensional visualization of synovium single-cell 
transcriptomes identified by SignacX. G, Dot plot of top IMAGES 
expressed in single-cell transcriptomes from synovium in cellular 
phenotypes labeled by SignacX. See caption for Figure. 3B.

Figure 4: CD56bright NK cells were learned from CITE-seq data 
and then classified in PBMCs and kidney data. A, Scatter plot of 
protein expression in CITE-seq data revealed a population of 
CD56bright NK cells (red; box). Scatter plot shows the CD56 and 
CD16 protein expression for NK cells (dots). B, Two-dimensional 
visualization of the CITE-seq PBMCs single-cell data. SPRING 
plot visualization as-depicted previously (Figure. 3A) except 
annotating just the NK cells (purple) and the sub-population of NK 
cells identified in Figure. 4A as CD56bright NK cells (red). C, Dot 
plot of top NK cell markers expressed in CITE-seq PBMCs. Gene 
expression patterns across NK cell types; size of each dot indicates 
the percentage of single-cell transcriptomes within each cell 
populations (x-axis) for which non-zero gene expression (y-axis) 
was observed. Color displays the average gene expression (red 
indicates more expression) across single cell transcriptomes detected 
in each category. D, Dot plot of top NK cell markers expressed in 
10X PBMCs. See the caption for Figure 4C, except these n = 17 
marker genes were identified by classifying the CD56bright NK in 
n = 4,784 single-cell transcriptomes from a different human sample 
and then performing differential expression analysis (resulting in n 
77 gene markers). The n = 17 plotted here were markers in both the 
CITE-seq and 10X data. E, CD56bright NK abundance bar plot in 
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healthy blood, healthy kidney and lupus nephritis kidney. Each bar 
is the ratio of single-cell transcriptomes classified as CD56bright 
NK cells divided by all NK cells within each tissue (error bars are 
95% C.I.; two-sided binomial test). These results were derived from 
n = 4,784 healthy PBMCs from one donor (10X), n = 7,902 healthy 
PBMCs from one donor (CITE-seq data described above), n = 501 
healthy kidney cells from 8 biopsies, and n = 4,440 lupus nephritis 
kidney cells from 28 biopsies. F, Upset plot reveals the number of 
NK cell markers that are shared across single cell data from blood 
and kidney. Dark circles in the matrix (below) indicate sets that are 
part of the intersection. Bar plot (top) is ordered left-to-right by the 
largest intersecting set size; each number (top) indicates the number 
of marker genes belonging to that set. Bar plot (left) shows the 
number of marker genes identified in each data set (purple).

SignacX outperformed other pre-trained 
classification methods (scPred, Azimuth and 
SingleR) in annotation of CITE-seq PBMCs

We compared this result with other leading methods for 
cell type annotation: scPred, Azimuth and SingleR [6,12,26]. 
We expected that Azimuth would be the best performing 
method because it used reference data that was also produced 
from CITE-seq PBMCs, and thus it may exhibit a performance 
bias. We observed highly consistent results between SignacX 
and Azimuth, with SignacX outperforming both SingleR and 
scPred (Supplemental Figure 5). 

We wondered if the consistency between SignacX and 
Azimuth might be explained by the reference data that 
Azimuth had used in this case – a large CITE-seq panel of 
PBMCs (n = 8 human donors) [27]. We tested this idea by 
applying SignacX to annotate the reference data set, which 
revealed that SignacX was consistent with the annotations 
for the Azimuth reference data, suggesting an agreement 
between their author-derived annotations of the Azimuth 
study and the data-derived SignacX annotations of these 
cellular phenotypes (Supplemental Figure 6).

Next, we benchmarked our approach against other pre-
trained methods (such as Moana, Garnett, DigitalCellSorter 
and SCINA) in bencharking data from PBMCs that were 
sequenced with seven different technologies; SignacX was 
by far the best performing pre-trained method (see Methods: 
Benchmarking SignacX across sequencing technologies with 
PBMCs) [3,28–31]. Although this demonstrated the accuracy 
of SignacX in PBMCs, it remained unclear to what extent 
SignacX classified cells in other tissues. Since the immune 
composition of synovium is known to be distinct from that 
of blood, it was advantageous to next study data from the 
Accelerating Medicines Partnership (AMP), which isolated 
cells from human joint synovial tissues and performed flow 
cytometry in addition to scRNA-seq [4,32]. The proteins 
observed in this study were well-established lineage-specific 
markers for four distinct cell types: CD45+CD3+ T cells, 
CD45+CD3-CD19+ B cells, CD45+CD14+ monocytes and 
CD45-CD31-PDPN+ fibroblasts [4], which allowed us to 

compare flow cytometry labels established previously to 
those generated by our approach (Figure.3D) [4]. SignacX, 
using only the transcriptional measurements for each cell, 
identified 98.2% of the flow cytometry labels (95% C.I. 
[98.0%; 98.5%], p-value < 0.001, two- sided binomial test, 
n = 8,334 cells). Encouraged by this result, we compared 
SignacX to another cell type annotation tool, SingleR, which 
uses pairwise correlations between reference transcriptomes 
and single cell data to make cell type classifications 
[3,10,12]. SignacX and SingleR had relatively similar 
outcome among B cells and Monocytes. However, SignacX 
outperformed SingleR among T cells and most notably 
among fibroblasts, the only nonimmune cell type in the data. 
(Figure. 3E; see Methods: Comparing SignacX to SingleR) 
[10,12,33]. Furthermore, SignacX outperformed SingleR at 
low sequencing depths in immune cell type classification, 
generating accurate classifications with as few as 200 unique 
genes detected per cell (95.2% average recall; 95% C.I. 
[76.2%; 99.9%], p-value < 0.001, two-sided binomial test; n = 
21 cells; Supplemental Figure 7), demonstrating that SignacX 
was robust and classified cell barcodes at low sequencing 
depths. Next, we turned our attention to the ability of 
SignacX to classify cellular phenotypes that extended beyond 
the flow cytometry panel (Figure. 3D) to the deepest level of 
SignacX annotations (Figure. 1A), resulting in new cell type 
annotations for the synovial cells (Figure 3F) [4]. To help 
validate these annotations, the IMAGES identified here were 
consistent with well-established gene markers for molecular 
phenotypes, like FOXP3 in T regulatory cells (Figyre 3G; 
Supplemental Figure 8) [11], which suggested that SignacX 
had made accurate cellular phenotype classifications. 
However, we note that CD19 transcript was detected in only 
46.9% (n = 734 / 1,564) of the flow-sorted CD45+CD3-
CD19+ B cells, which demonstrates the importance of using 
more than one gene marker to identify cellular phenotypes in 
scRNA-seq data.

In the comparison with Azimuth performed on CITE-seq 
data, the two methods were broadly consistent (Supplemental 
Figure 14). However, SignacX’s labeling of T CD4 Memory 
cells is more consistent with the expected marker expression, 
i.e. higher levels of CD45RO expression and lower levels of 
CD45RA expression. Similarly, while T-reg expression of 
TIGIT and CD25 is similar between SignacX and Azimuth, 
SignacX-annotated T-regs have a markedly higher level of 
FOXP3 gene expression. These findings suggest that the 
SignacX’s prediction of T CD4 Memory cells and T-regs 
is more conservative compared to Azimuth. Altogether, 
this demonstrated that SignacX accurately labeled cellular 
phenotypes in two distinct experiments deriving cells from 
either blood (Figure. 3A) or synovium (Figure. 3E), from 
either healthy (Figure. 3A) or diseased samples (Figure. 3E) 
and using either droplet-based (Figure. 3A) or well-based 
(Figure. 3E) technologies.
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SignacX learned and reliably classified rare 
CD56bright NK cells across tissues

Next, we challenged SignacX to learn a gene expression-
based representation of a rare cell type from single cell data. 
To explore this idea, we studied a cellular phenotype that is 
increasingly important in the study of autoimmune diseases 
and cancer, the CD56bright NK cells [34–39]. To identify 
this population, we followed a strategy typically used in flow 

cytometry; we defined CD56bright NK cells with CD16 and 
CD56 protein expression in the CITE-seq data from PBMCs 
described above (Figure. 4A-B) [34]. To help validate that 
these cells were CD56bright NK cells, we noted that these 
cells (a) were identified using CD56 and CD16 protein 
expression data similar to flow cytometry [40]; (b) expressed 
known gene markers of CD56bright NK cells, such as CCL5-
, GZMB-/H-/K+, KLRC1+, PRF1-, SELL+ and XCL1+ that 
were identified here with an unbiased, unsupervised approach 
that compared NK cells to CD56bright NK cells (Figure. 4C; 
n = 31 marker genes detected; see Methods: Differential gene 
expression analysis; Supplemental Dataset 3) [40–43]; (c) 
were a minority subset of the NK cells that were detected 
(n = 12 CD56bright NK cells out of 939 NK cells; 1.3%; 
95% C.I. [0.7%; 2.2%]; two-sided binomial test), consistent 
with the expected rarity of CD56bright NK cells in human 
blood [40]; and (d) the marker genes (n = 31) identified here 
were statistically enriched for a chemokine receptor pathway 
that includes CCL5, CCR7, XCL1 and XCL2 (see Methods: 
Gene set enrichment analysis), which is a known functional 
molecular phenotype of CD56bright NK cells in human 
blood [40]. Next, we sought to identify these cells in tissues 
that lacked protein expression data by performing additional 
training with the CD56bright NK cells serving as reference 
data for the SignacX approach (Figure 1C; see Methods: 
Establishing a predictive model for CD56bright NK cells 
from CITE-seq PBMCs). We used the “NK cell model” 
and classified additional single cell data from other tissues 
and technologies, which revealed that the CD56bright NK 
cells were a conserved molecular phenotype that appeared 
with consistent abundance and with universal expression 
of eight marker genes across data derived from kidney 
and blood: CAPG+, CST7-, FCGR3A- (CD16-), FGFB2-, 
GZMB-, IL7R+, PRF1-, TCF7+ (Figure 4D-F). Altogether, 
this demonstrated that SignacX learned a rare cell type from 
single cell data and then identified molecularly similar cells 
in other contexts [4,44].

The ability of SignacX to learn novel cell types from 
single-cell data was further demonstrated in the case of pDCs, 
which were initially flagged by the model as a potentially 
novel cell type. Since upon experimenter review these cells 
were identified as pDCs, they were subsequently incorporated 
into the model as a subtype of DCs using the learning function 
(Supplemental Figure 12).

Next, we studied the behavior of SignacX in the context of 
doublets, which are well- known artifacts in single cell data, 
by analyzing scRNA-seq data from human PBMCs that were 
analyzed previously in a study of in silico doublet detection 
using Scrublet (Supplemental Figure 9; see Methods: Doublet 
detection in scRNA-seq PBMCs) [45]. We found that every 
cellular barcode annotated as unclassified by SignacX was 
classified as a doublet by Scrublet, whereas cells classified as 
either cell types or as novel cell type populations were mostly 

Figure 5: Systematic identification of conserved immune cell 
phenotypes with trans-human single cell gene expression study. 
A, Overview of the approach (example workflow with theoretical 
data). Cells were extracted from humans (n = 15) representing four 
distinct biological phenotypes (colors: healthy blood, red; healthy 
lung, dark green; diseased lung, light green; kidney, teal), each from 
an individual human donor (n = 15). ScRNA-seq was performed for 
each donor individually followed by read mapping, normalization, 
filtering, immune cell classified by SignacX, and then IMAGES 
were identified for each donor (arrow). Scatter plot displays the 
percentage of the four phenotypes (y-axis) and the percentage of 
the donors (x-axis) for which a gene (each dot is a unique gene) 
was identified as an IMAGE (colors indicate the phenotypes for 
which the gene was an IMAGE). Legend (right) shows the possible 
combinations. B, Bar plot shows the average immune cell type 
composition of blood and organ samples classified by SignacX. 
The percentage of immune cells (y-axis) of each cellular phenotype 
(x-axis) classified by SignacX. Results were average across donors; 
error bars were determined using the standard error of the mean. C, 
Scatter plot revealed conserved IMAGES for T regulatory and T 
CD8 effector memory cells. Scatter plot as depicted in Figure 5A. 
Each dot is a conserved IMAGE. Average log2 fold-change (colors) 
and p-values (size) were computed across human donors.
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singlets. Although we recommend performing doublet 
removal upstream of SignacX, this merely demonstrates 
that SignacX accurately discerned potentially novel cellular 
phenotypes from single cell artifacts.

Conserved IMAGES for SignacX annotations across 
distinct tissues, technologies and diseases

Next, we turned our attention to characterizing the stunning 
diversity of cellular phenotypes in the human immune system. 
To help identify a universal molecular profile of immune 
cell phenotypes, we determined to what extent IMAGES 
were conserved in a trans- human study of single cell gene 
expression data across human donors (Figure 5A). To help 
validate the performance of SignacX, we note that in contrast 
with data from kidney, lung and skin, SignacX did not detect 
a single macrophage in PBMCs from any human sample, 
consistent with the idea that differentiation from monocytes 
occurs in tissue and not in blood (Figure. 5B; synovium data 
were excluded from this analysis because those cells were 
flow-sorted prior to sequencing) [4,46]. Next, we identified 
IMAGES for each human sample using the deepest SignacX 
annotations (Figure. 1A), and then pooled them to identify 
IMAGES that were highly conserved (universal markers) 
across human samples and phenotypes, revealing known and 
novel gene markers (Figure. 5C; Supplemental dataset 4; see 
Methods: Identifying IMAGES in scRNA-seq data).

SignacX identified conserved and distinct gene 
expression patterns across species

Next, we challenged SignacX to classify single cell data 
from model organisms for which flow-sorted datasets were 
generally lacking. We performed scRNA-seq of cynomolgus 
monkey PBMCs from three donors. Remarkably, SignacX 
performed cell type classification without any species-specific 
training by mapping homologous gene symbols from monkey 
to human prior to classification (Supplemental Figure 10; see 
Methods: Cross-species classification of single cell data from 
cynomolgus monkey PBMCs with human reference data).

Disease biology surfaced from single cell data with 
annotations from SignacX

To illustrate how target genes specific to pathogenic 
cell types can be built with SignacX, we sought to identify 
therapeutic opportunities for RA using single cell data. Based 
on clinician input, we postulated that the ideal treatment for 
RA would engage pathogenic immune cells precisely, and 
thereby prevent or reduce side effects and insult to host tissue, 
perhaps even eliminating the need for continuous treatment 
[47]. Although we have demonstrated that we can identify 
pathogenic immune phenotypes precisely with single cell data 
using SignacX, finding a potential gene target was challenging 
because we lacked information about the expression of each 
gene in immune cells elsewhere in the body, risking the very 
off- target effects that we sought to avoid [7,48]. To overcome 

this challenge, we identified IMAGES that were specifically 
expressed in immune cells of diseased tissues in a pan-human 
study of disease-implicated cell types.

Here, we identified n = 24 genes as potential drug targets 
for RA on the basis that these genes were (a) in the initial 
pool of drug target candidates (see Methods: Establishing 
an initial pool of drug target candidates); (b) IMAGES for 
CD8+ effector memory T or naïve B cells in biopsies from 
RA synovium; and (c) not IMAGES for T regulatory cells in 
synovium (RA and OA), PBMCs (healthy and NSCLC), lung 
(NSCLC, sarcoidosis, ILD, IPF and healthy), kidney (lupus 
nephritis, renal carcinoma, healthy), or skin (healthy, atopic 
dermatitis lesions and non- lesions); datasets as detailed in 
Table 1. Altogether, these genes were expressed specifically 
in pathogenic cellular phenotypes and not in T regulatory 
cells, and, compared to the initial pool of drug target 
candidates, the potential drug targets identified here were 
significantly enriched for therapeutic targets that were either 
in clinicals trials or FDA approved already for an immune 
condition, consistent with our expectations that robust 
immune cell phenotype classification surfaces immune-
relevant therapeutic targets (Supplemental Figure 11A-B) 
[4,18,47,49].

Discussion
The ability to identify known immune cell types 

uniformly and accurately in single cell data is a bottleneck for 
the processing of single cell data. There are several technical 
challenges in the development of a cell type classification 
algorithm, stemming from the diversity of gene expression 
across tissues and diseases, the relative paucity of unique 
gene expression-based markers for each cell category and 
the high number of dropout measurements inherent to single 
cell transcriptomic data. Here, we demonstrated that our 
approach was robust to tissue, disease status, sequencing 
depth, sequencing technology and even performed well 
with closely related species for which training data was 
not readily available. Our approach was originally trained 
on transcriptional data from sorted bulk samples, but also 
used single cell data to refine representations of existing 
categories and learn new ones. We used these annotations to 
study immune cells in different biological contexts to reveal 
conserved and distinct IMAGES, and to find gene signatures 
specific to inflamed synovium in RA. Importantly, SignacX 
also flagged potentially novel cell types (unclassified cells 
which do not match a known and well-defined cell-types in 
the reference dataset) for expert curation. These cells can be 
reviewed by the investigator post-annotation. If validated as 
truly novel, SignacX can be trained to recognize them (see 
Figure 4 and Supplemental Figure 12). Several new cell types 
have been identified recently with single cell technologies 
like CITE-seq, ATAC-seq and spatial transcriptomics. 
However, it remains unclear to what extent these cell types 
represent evidence of conserved cellular phenotypes that can 
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be observed in other assays, or phenotypes that are unique 
to a given experimental protocol or observation method. 
As several high-profile projects strive to create an atlas of 
human cells, it is becoming increasingly important to learn 
gene expression-based cell type representations from these 
technologies to identify them when and where they appear in 
other assays. Existing classification methods help to address 
this problem, but risk overfitting on a specific technology 
or tissue, as was outlined previously, and additionally need 
orthogonal approaches to manual classification to help build 
consensus in annotations, such as the approach outlined here.

SignacX algorithm identifies cell-types and sub-cell-types 
according to a binary hierarchical decision-tree model trained 
on a consensus sorted-bulk reference dataset with fixed 
nomenclature compiled from multiple studies (HPCA). We 
believe this approach is valuable because it allows linking 
cell-types in single-cell data directly to cell types historically 
defined with orthogonal modalities (such as FACS and 
functional assays). This requirement for orthogonal 
validation was recently highlighted in Cell review paper 
(Zeng, 2022) as an important check in defining a cell- type. 
However, this approach also has certain limitations, some of 
which can be overcome in the future as more data and more 
streamlined nomenclatures become available. We have only 
demonstrated the capabilities of our method with respect 
to the particular nomenclature and dataset we have chosen. 
Standardized reference datasets that the scientific community 
agrees upon are lacking, and any annotated reference data, 
including the one we chose, can be susceptible to investigator 
bias. Furthermore, our approach at present does not uncover 
potential novel cell states within already known cell types 
(such as the six distinct DC subsets identified by [48]. 
However, SignacX can be extended to discover novel states at 
the desired level of granularity. For example, we demonstrate 
that the algorithm is capable of a) identifying pDCs as a 
novel cell state and b) learning to recognize them purely from 
single-cell data. Finally, it is worth noting that the problem of 
bulk deconvolution is formally related to the problem of cell 
type annotation in single- cell data. Therefore, widely used 
deconvolution algorithms such as ImmunoStates (Vallania, 
2018) and CIBERSORT (Newman, 2015), as well as SignacX, 
can in principle be extended to serve both deconvolution and 
cell type annotation, subject to extensive benchmarking. 
This may be worthwhile subject of future development. 
The identification of gene expression-based representations 
of cell types using single cell data might also proffer new 
insights to existing bulk data. Several technologies, like gene 
expression-based biomarkers and cell type deconvolution 
algorithms like CIBERSORT, require well-established gene 
expression-based signatures for cell types, and thus we 
identified conserved and tissue-specific gene signatures for 
cell types here. Notably, all cell types were identified with the 

same semi-supervised approach described above (SignacX) 
without any changes to parameters or special considerations 
for an individual tissue or sample.

Finally, it is conventionally thought that machine learning 
methods require similar data types to train and to classify 
data. Here, we trained our models with data from microarray 
experiments with cellular ensembles and then used these 
models to classify single cell data from diverse tissues; we 
even accurately classified synovial fibroblasts in single cell 
data despite using fibroblasts isolated from human foreskin 
and then sequenced with microarrays in our training data10. 
We believe that this work is representative of a new wave 
of machine learning approaches that integrate disparate data 
types to help create more uniform and complete pictures of 
cellular biology.

Methods 
Benchmarking SignacX across sequencing 
technologies with PBMCs

To benchmark SignacX against other annotation methods, 
we accessed the “PbmcBench” data – a resource of 19,792 
human PBMCs sequenced across seven different technologies 
with cell type labels generated previously – from https://
doi.org/10.5281/zenodo.3357167 on February 5, 2021[3]. 
Next, we classified scRNA-seq data from each of the seven 
technologies with SignacX (v2.0.7) in R with the default 
parameters. Median F1 scores were computed as described 
previously [3]. Good inter-dataset classification performance 
was defined as having an average median F1-score > 0.75 as 
described previously; by this measure SignacX was the best 
performing pre-trained classifier and performed well overall 
(Supplemental dataset 1) [3]. 

Overview of the SignacX approach 
Our approach is based on an ensemble of neural network 

classifiers that were trained on reference data of bulk gene 
expression profiles for purified, sorted cell types. Let us 
define the pure, sorted reference data as Rij with genes (i = 
1,…,m genes) and samples (j = 1,…,n samples), where each 
element of Rij is the gene expression value for the ith gene 
and jth sample. Each sample in Rij has a corresponding cell 
type label that was empirically determined (e.g., by flow 
cytometry); let us define this vector as xj (j = 1,…,n samples).

Using this formalism, we split Rij into two disjoint subsets 
of samples based on a hierarchy of cell type categories 
(Figure. 1A) that divided xj into two disjoint subsets:

Where 𝑅i𝑘 is the subset of 𝑅ij that contains all samples 
sorted to cellular phenotypes that were elements of cell 
type group Gk (e.g., if Gk is “immune”, then the matrix 𝑅i𝑘 
contains data from all indices of the matrix corresponding to 
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immune cell types). Using this notation, let us define 𝑅i𝑝 as 
a disjoint subset from Gk which contains all samples of type 
Gp (e.g., all non- immune-sorted samples). Let us define a 
set of predictive features for the two groups as a subset of the 
observed features in the data: 

Where 𝑠 are the indices of features that were selected as 
predictive for the groups 𝐺𝑘 and 𝐺𝑝 . To increase the sample 
size, we next bootstrapped 𝑅𝑠𝑘 by sampling the column 
indices with replacement (n = 1,000 bootstraps) using the 
sample function in R (the random number generator seed was 
set to 42), resulting in a bootstrapped gene expression matrix 
𝑅𝑠𝑘’(k = 1,…, n bootstraps). This process was performed 
separately for 𝑅𝑠𝑝 , resulting in two bootstrapped matrices 
corresponding to disjoint cell type populations – 𝑅𝑠𝑘’ and 
𝑅𝑠𝑝 ’. To prevent overfitting, normally distributed noise was 
added to each row of 𝑅𝑠𝑘’ (and 𝑅𝑠𝑝 ’): 

Where 𝑁𝑠𝑘 is the noise-added bootstrapped training data, 
𝜇𝑠 and 𝜎𝑠 are the mean and standard deviation of the sth 
feature taken over all bootstrapped samples:

This process was repeated separately cells of group p, 
resulting in two noise-added, bootstrapped matrices: 𝑁sk and 
𝑁𝑠𝑝 , which were then augmented by features:

 

Where 𝑇𝑠j is the augmented matrix with s features and j = 
1, …, 2n bootstrapped samples. Next, each feature in 𝑇𝑠j was 
scaled using min-max normalization, yielding the training 
data set Tsj:

𝑇𝑠j − min 𝑇𝑠j

Next, we took two approaches, called Signac and 
SignacFast in the R software implementation of SignacX 
(v2.2.0). First, we trained an ensemble of n = 100 neural 
network classifiers with a single hidden layer using all of the 
features in the training data set 𝑇𝑠j. Any feature that was not 

present in test data was assumed to exhibit zero expression 
in all cells. Since no additional model training is required, 
this approach is implemented in the SignacFast function 
(SignacX R package v2.2.0). For our second approach, we 
first took the intersection of all features in the training and 
test data, and then trained models on a per-data set basis. As 
a result, the number of input neurons for each neural network 
changes, although there is still only one hidden layer. This 
approach is implemented in the Signac function, and is used 
here in this study.

Establishing the HPCA reference data for training 
SignacX

To establish a reference dataset, we accessed the HPCA 
consortium data [10], which comprised of 713 microarray 
samples annotated to 157 cell types, processed as described 
previously  [12] except that all genes that encoded for 
ribosomal proteins and mitochondrial transcripts were 
removed, all samples derived from bone marrow biopsies 
were removed, and we used a subset of genes that were 
identified as exhibiting cell type-specific gene expression 
previously (what remained was n = 10,808 genes and n = 544 
samples corresponding to 113 annotated cellular phenotypes) 
[11]. The data as well as the cell type annotations for the 
HPCA reference data were accessed in R from the SingleR R 
package (v0.2.0) [12].

To establish a set of gene markers for cellular phenotypes 
with these data, we performed differential gene expression 
analysis comparing samples annotated as different cellular 
phenotypes according to the cell type hierarchy (Figure 1A) 
and identified n = 5,620 genes that were significantly (p-value 
< 0.05, Wilcoxon-rank sum test; log-fold change > 0.25) 
differentially expressed using the Seurat package (v3.2.0) in 
R with the default settings, except that we used relative-count 
normalization instead of log normalization. This approach 
yielded no significantly differentially expressed genes for 
comparisons between memory and naïve B cells, plasma cells 
and B cells, memory and naïve CD4 T cells, T regulatory 
cells and CD4 memory T cells, memory and naïve CD8 T 
cells, and effector memory CD8 T cells and central memory 
CD8 T cells; in these cases we used n = 1,171 genes identified 
previously, which we accessed with the xCell package 
(v1.1.0) in R [12]. Altogether, the marker genes used here are 
available in Supplemental Dataset 2.

Establishing a predictive model for cellular 
phenotypes using the HPCA reference data

To establish a predictive model for cellular phenotypes, 
we first split the normalized HPCA reference data into 
disjoint subsets according to the cell type hierarchy (Figure. 
1A; Supplemental Figure 1). At each level of the hierarchy, 
the marker genes were bootstrapped by random resampling 
with replacement across samples within each cell type, 
resulting in n = 1,000 bootstrapped samples of each marker 
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gene for each cell type population. We introduced noise to 
each bootstrapped marker gene by sampling from a random 
normal distribution with mean and standard deviation set by 
the mean and standard deviation of the bootstrapped genes, 
and then we performed max-min normalization across genes 
(for additional details, see Methods: Overview of the SignacX 
approach).

Next, we constructed n = 100 neural networks in R 
with a logistic activation function and a single hidden layer 
using the neuralnet package (v1.44.2) with the neuralnet 
function with the default settings except that the linear.
output parameter which was set to false. Neural networks 
were trained with the bootstrapped reference training data 
after taking the intersection of the genes in the training data 
and the target data, as a result the number of input neurons 
changes with different test data sets [50]. Neural network 
hyperparameters were validated using the caret package 
(v6.0-86) in R for immune and nonimmune cell type 
classification, which yielded the default neuralnet settings, 
which were subsequently used for all neural network models. 
Optimization of neural network hyperparameters can yield 
overfitting in training data (e.g., fitting a technical artifact 
specific to the HCPA samples or microarray technology), 
and therefore when we observed 100% accuracy in the 
classification of a test data set that was not used during 
model training and used a different sequencing technology 
(Supplemental Figure 2), we reasoned that this was sufficient 
evidence suggesting that the hyperparameters used here were 
sufficiently optimized. SignacX classification Cell type labels 
were generated according to the maximal probability derived 
from the average of an ensemble of neural networks (n = 100) 
trained with the HPCA reference data as described above (see 
Methods: Overview of the SignacX approach). For single cell 
data, any individual cell barcode was labeled “Unclassified” 
when it exhibited large (2 standard deviations greater than 
the mean) normalized Shannon entropy within four nearest 
neighbors of the KNN network computed with immune and 
main cell type labels (Figure 1A):

Where 𝐻i is the normalized Shannon entropy for cell 
i, n is the number of unique cell type labels in the data set, 
and (𝑥i) is the observed probability distribution of cell types 
within four nearest neighbors of the ith cell. We posited that 
any cell with heterogeneous nearest neighbors would exhibit 
unusually large 𝐻i, and thus could be set to “Unclassified.” A 
user-set threshold was introduced such that any cell barcode 
with maximal average probability less than the threshold were 
labeled “Unclassified” – herein this threshold was not used 
(set to zero). In single cell data, any cell barcodes labeled 
“Unclassified” that significantly (p < 0.01, hypergeometric 

test) populated a Louvain cluster were amended a “potential 
novel cell type” label (Supplemental Figure 9).

K-nearest neighbor smoothing
To reduce classification errors of cell barcodes labeled 

by SignacX, we constructed k- nearest neighbor (KNN) 
graphs as described previously [9], and after classification 
of immune, nonimmune and major cell types as described 
above (See Methods: SignacX classification), the broad label 
for each cell barcode was assigned to the most frequent label 
of itself and of the nearest neighbors for immune cell type and 
major cell types (Figure 1A). Single cell data pre-processing. 
Unless stated otherwise, all scRNA-seq data analyzed here 
started from unfiltered count data. First, we removed all cell 
barcodes that expressed fewer than 200 unique genes and 
fewer than 500 counts. Next, we removed all cell barcodes 
with abundant (greater than 20% of the single cell library 
size) mitochondrial gene expression. Within this subset of cell 
barcodes, we removed all genes with zero detected counts, we 
removed all genes that were encoded for mitochondrial and 
ribosomal transcripts, and then library sizes were normalized 
to the mean library size of all cell barcodes. This procedure 
resulted in n = 8,920 cells in the synovium (Fig 2A), n = 
4,941 cells in the kidney (Figure 2B), n = 42,844 cells in the 
lung (Figure 2C) and n = 7,902 cells in the CITE-seq PBMCs 
(Figure 2D). In the case of CITE-seq data (Figure 2D; Figure 
3A), these same steps were performed only after setting 
aside the protein expression data. Protein expression data 
from CITE-seq were normalized with CLR normalization 
in R using the Seurat package (v3.2.0) [7]. Generation of a 
two-dimensional force-layout embedding was performed as 
described previously in Python with Jupyter notebooks that 
are available on our web-server [9].

Establishing an initial pool of drug target candidates
To establish an initial set of genes, we limited our analysis 

to genes that were druggable, associated with genetic evidence, 
or already approved by the FDA for an immunological 
condition as an established immune-relevant gene target. We 
accessed genes associated with genetic evidence from the 
GWAS catalog (version 1.0_e98_r2020-03-08) for any of the 
following immune conditions: rheumatoid arthritis, psoriatic 
arthritis, ankylosing spondylitis, giant cell arteritis, sarcoidosis, 
psoriasis, vitiligo, Crohn's disease, ulcerative colitis, systemic 
lupus erythematosus, cutaneous lupus erythematosus, 
lupus nephritis in systemic lupus erythematosus", Sjögren's 
syndrome, idiopathic pulmonary fibrosis, limited cutaneous 
systemic scleroderma, type 1 diabetes, celiac disease, asthma, 
chronic obstructive pulmonary disease, chronic rhinosinusitis 
with nasal polyps, atopic dermatitis, eosinophilic esophagitis, 
and peanut allergy. This yielded n = 2,326 unique genes. 
Next, we accessed all genes associated with genetic evidence 
and immune-relevant genes in clinical trials or approved by 
the FDA as those identified previously H. Fang et al., yielding 
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n = 720 and n = 216 genes, respectively [51]. We identified 
genes expressed on the cell surface as those annotated as being 
a receptor, transmembrane protein, exhibiting peripheral 
expression, secreted or integrin with CellPhoneDB accessing 
the “protein_cureated.csv,” yielding n = 971 genes [52]. All 
total, this yielded n = 3,304 genes, which are provided with 
annotations in the SignacX R package (v2.0.7).

Establishing a predictive model for CD56bright NK 
cells from CITE-seq PBMCs

To learn a gene-expression based representation of 
CD56bright NK cells from single cell data, we first identified 
used CITE-seq to identify these cells with protein expression 
data (Fig 4A-B). Second, we defined a set of gene markers for 
the CD56bright NK cells (p-value < 0.05, Wilcoxon-rank sum 
test; log-fold change > 1) with differential gene expression 
analysis that compared the CD56bright NK cells to the non-
CD56bright NK cells in the CITE-seq data. Differential gene 
expression analysis was performed with the Seurat package 
(v3.2.0) in R using the FindMarkers function with the default 
settings which resulted in n = 31 marker genes. Third, we took 
a subset of the CITE-seq expression matrix corresponding to 
the n = 31 marker genes, performed KNN imputation (Figure. 
1D), and then bootstrapped the single cell data as described 
above (Figure 1C). Lastly, neural network model training 
and subsequent classification was performed as described 
above (Figure. 1), except now each cell classified as “NK” 
using the HPCA reference data were further classified as 
CD56bright NK cells and non-CD56bright NK cells with the 
new neural network models. This workflow was executed 
by the SignacLearn function in R with the SignacX (v2.0.7) 
package.

Cross-species classification of single cell data from 
cynomolgus monkey PBMCs with human reference 
data

As described previously in our single-cell optimization 
study [1], cryopreserved monkey PBMCs were thawed (2 
vials at a time) in a 37oC water bath for 1-2 minutes until 
a small crystal remained. Cryovial was removed from the 
water bath and cell solution was transferred to a fresh, sterile 
2 ml Eppendorf tube using a wide bore pipet tip. The cryovial 
was washed with 0.04% BSA/PBS and the solution was 
transferred to the Eppendorf tube. Sample was centrifuged 
at 150 rcf, 5 min, at room temperature (RT). Supernatant 
was carefully removed, and sample was washed with 1 ml of 
0.04% BSA/PBS using wide bore pipet tip. Sample was re-
centrifuged using the same conditions mentioned above. The 
cells were washed one more time for a total of 3 washes. After 
the final wash, cells were resuspended in 1 ml of 0.04% BSA/
PBS and counted using manual hemacytometer and trypan 
blue. If the viability was found to be lower than 75%, the 
sample was subjected to a “clean-up” step using Dead Cell 
Removal kit (Miltenyi Biotec, Catalog #130-090-101). Cells 

were washed again and resuspended in 500 ul of 0.04% BSA/
PBS and counted. Volume was adjusted to 1 million cells per 
ml of 0.04% BSA/PBS solution. After the cell volume was 
adjusted to 1 million per ml (or 1000 cells per ul), protocol 
for 10X Genomics 5’ v1 gene expression library preparation 
was used. 10,000 cells were targeted per sample. Quality 
of uniquely-indexed libraries was determined on the 2100 
Bioanalyzer instrument (Agilent) using High Sensitivity 
DNA kit (Agilent, Catalog # 5067–4626) and quantified 
using Kapa library quantification kit (Kapa Biosystems, 
Catalog # KK4824 – 07960140001) on the QuantStudio 7 
Flex Real-Time PCR system. The libraries were diluted in 10 
mM Tris-HCl buffer and pooled in equimolar concentration 
(2 nM) for sequencing. Sequencing was performed on 
Nextseq2000. Sequencing depth and cycle number was as 
per 10X Genomics recommendations: Read 1 = 26 cycles, 
i7 index = 8 cycles, Read 2 = 98 cycles, and we aimed for a 
sequencing depth of 35,000 reads per cell. Reads were aligned 
to the cynomolgus monkey genome which was built from 
the fasta file for M. fascicularis (v5.0) with the CellRanger 
(v3.1.0) mkref command with the default settings. After 
mapping, the “raw_feature_bc_matrix.h5” files generated 
by CellRanger were used for subsequent analysis in R. To 
map gene annotations, the M. fascicularis gene symbols were 
mapped to human gene homologs using annotations from the 
2019 ensemble archive of the M. fascicularis genome and the 
2019 ensemble archive version of the homo sapiens genome 
with the getLDS function in biomaRt (v2.38.0) in R. Next, 
we used a subset of the data corresponding to only counts 
mapped to genes that had a homologous human gene pair (n = 
17,365 genes remained). When multiple M. fascicularis genes 
were homologous to a single human gene, any counts mapped 
to those genes were summed and reported as a single mapped 
gene with the homologous human gene symbol, resulting in 
n = 16,854 unique genes. Each cell barcode was then filtered 
as described previously (See Methods: Single cell data pre-
processing) and then classified with SignacX (v2.0.7) in R 
using the SignacX function with the default settings.

Comparing SignacX to SingleR

To compare SignacX to SingleR, we used the SingleR 
package (v0.2.0) in R and classified the synovium data with 
the SingleR function with the default settings, with the “ref_
data” parameter set to the HPCA reference data attached to 
the SingleR package (Figure 2D-E; Supplemental Figure 7)
[12]. We compared these results to SignacX; we used the 
SignacX package (v2.0.7) in R with the SignacX function 
with the default settings.

Differential gene expression analysis
Unless stated otherwise, differential expression analysis 

was performed with the Wilcoxon rank-sum test with an 
adjusted p-value cutoff (< 0.05), and a log-fold change cutoff 
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(> 1) in R with the Seurat package (v3.0.2) in R using the 
FindMarkers function.

Gene set enrichment analysis

Gene set enrichment analysis was performed with the 
ReactomePA package (v1.26.0) in R using the enrichPathway 
function with the default settings with thresholds of 0.05 to 
the adjusted p-value and 0.05 to the FDR [53-56]. Identifying 
IMAGES in scRNA-seq data. To identify immune marker 
genes (IMAGES) in single cell data, we identified genes that 
were significantly differentially expressed (p-value < 0.05, 
Wilcoxon-rank sum test; log-fold change > 0.25) in a “one 
verse all” comparison only among single cell transcriptomes 
that were annotated as immune cell phenotypes by SignacX 
(v2.0.7) in R. Differential expression testing was performed 
with the Seurat package (v3.2.0) in R using the default settings. 
To identify conserved IMAGES (Figure. 5), we performed 
the IMAGE analysis described above, except that it was 
performed within each human sample that had at least n = 
200 detected immune cells, resulting in n = 178,929 immune 
cell barcodes across n = 114 human samples deriving cells 
from n = 18 distinct disease-tissue phenotypes corresponding 
to PBMCs (healthy, four stages of NSCLC), kidney (healthy, 
lupus nephritis and renal carcinoma), lung (healthy, IPF, 
four stages of NSCLC), and skin (heathy, atopic dermatitis 
from lesions and non-lesions) biopsies; all from previously 
published single cell studies (Table 1) [4,18,20–23]. The 
IMAGES for each human sample were pooled together, 
and then we reported the top genes (n =100; Figure. 5C) for 
each cellular phenotype corresponding to the most fractional 
appearance of each gene as an IMAGE across distinct human 
donors.

Doublet detection in scRNA-seq PBMCs

To classify doublets in PBMCs, we used Scrublet (v0.2.1) 
in python with the Scrublet and scrub_doublets functions 
with parameters set previously in the original Scrublet study 
[45]. The scRNA-seq data from PBMCS were accessed 
from 10X genomics (https://support.10xgenomics.com/
single-cell-gene-expression/datasets/2.1.0/pbmc8k).To 
generate visualizations (Supplemental Figure 7), we used 
Seurat v3.2.0 in R with the default settings for each function: 
CreateSeuratObject, NormalizeData, FindVariableFeatures, 
ScaleData, RunPCA, FindNeighbors, FindClusters, 
RunUMAP and FindMarkers. To annotate cellular phenotypes 
(Supplemental Figure 7), we used SignacX (v2.0.7) in R 
with the SignacX function with the default settings, which 
was applied directly to the Seurat object using KNN edges 
identified with the FindNeighbors function.

KNN Imputation
To impute gene expression values, the total number of 

genes detected in each cell was set to the diagonal of a cell-

by-cell matrix 𝑊jj. Next, we established cells with direct and 
higher k- degree connections in the KNN network from the 
adjacency matrix 𝐴jj and from 𝑘𝑡3 powers of 𝐴jj, forming 
a KNN network-based imputation operator 𝐷jj which was 
weighted by the total number of genes detected in each cell, 
and normalized such that each row sums to two:

The imputed expression matrix 𝐸) is then computed 
directly by operating on the observed expression matrix 
𝐸ij. Here, we set k = 1 to use gene expression values within 
first nearest neighbors in the KNN network, resulting in the 
imputed gene expression matrix:

Data and software availability

All data reported here are publicly available (Table 1). 
The kidney and the synovium (Figure. 2) datasets were 
downloaded via ImmPort (accession codes SDY997 and 
SDY998, April 2019 release) from the AMP consortium4. 
The PBMCs CITE-seq data (Figure. 3) and healthy control 
data (Figure. 5) were downloaded from the 10X website

(https://support.10xgenomics.com/single-cell-gene-
expression/datasets/3.0.2/5k_pbmc_protein_v3 

and https://support.10xgenomics.com/single-cell- gene-
expression/datasets/3.0.2/5k_pbmc_v3). The blood and lung 
(Supplemental Figure 11) NSCLC data sets were downloaded 
from the NCBI GEO depository (accession number 
GSE127465) [18]. All software used in this study is available 
on the GitHub page for SignacX (https://github.com/Sanofi-
Public/PMCB-SignacX).. We also provide a website 

(https://sanofi-public.github.io/PMCB-SignacX/) and 
data portal for interactive access of single cell data used in 
this study (https://sanofi-public.github.io/PMCB-SignacX/
articles/dataportal.html).
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SUPPLEMENTARY FILES

 

Supplemental Figure 1: Overview of the HPCA reference data. A, Number of samples bar plot for each annotated cell type. Bar plot indicates 
the number of samples (y-axis; numbers) for each cellular phenotype (x-axis) that was in the HPCA reference data set. B, Number of samples 
bar plot for the “nonimmune” cellular phenotypes. Bar plot as depicted in Supplemental Figure 1A for the n = 91 samples in the “nonimmune” 
cell type category. C, Principal component analysis (PCA) plots revealed that the HPCA reference data and the bootstrapped training data were 
separable by immune and nonimmune gene markers. PCA plot (left) shows a gene expression sample (each dot) from the HPCA reference 
data that is either labeled as immune (red) or nonimmune (teal) based on the classification hierarchy established here and the annotated cell 
type established experimentally (Figure. 1A). PCA was performed on the marker gene that were determined by differential gene expression 
analysis comparing the samples annotated as immune and nonimmune. After bootstrapping (arrow); PCA was performed with the same marker 
genes, except with data that was bootstrapped from the immune and nonimmune samples. We note that the structure in the PCA plot prior to 
bootstrapping was largely removed, consistent with the view that bootstrapping generated what can be thought of as composite or as average 
immune and nonimmune gene expression samples.
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Supplemental Figure 2: Neural networks robustly classified validation data from the Blueprint and Encode consortia. A, UMAP plots show 
that cellular phenotypes were accurately classified by SignacX. In the scatter plot (left), each dot is a sample of pure cell type gene expression 
data that was amended labels for cellular phenotypes (colors; see legend). The data represented here are in a two-dimensional embedding 
(axes), in which distances correspond to transcriptional similarities between samples (closer samples are more similar); we determined this 
embedding with UMAP. Cellular phenotype labels (colors) were established either by the Blueprint and Encode consortium (left) with empirical 
measurements or by our computational approach (right). B, Heatmap shows that distinct immune cell phenotypes were accurately classified by 
SignacX. Heatmap displays the fraction of the samples within each cellular phenotype category (axes) that were accurately classified by our 
approach (scale bar; red is more accurate; blue is less accurate). C, Venn diagram shows that SignacX accurately identified the transcriptomes 
of nonimmune cellular phenotypes despite never being trained to recognize them. Venn diagram depicts the nonimmune cellular phenotypes 
that were specific to the HPCA reference data (left; red), that were shared between the HPCA reference and the Blueprint and Encode data 
(middle; purple), and that were distinct to the Blueprint and Encode data (right; blue).

 

Supplemental Figure 3: Protein expression SPRING plots validated the cellular phenotypes classified by SignacX for the CITE-seq PBMCs 
data. Each SPRING plot (i-ix) displays the z- score transformed CLR normalized protein expression (colors) generated for each individual cell.
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Supplemental Figure 4: IMAGES identified from immune phenotypes in CITE-seq PBMCs single cell transcriptomes. A-I, Volcano plots 
demonstrate the IMAGES identified in each cell population. Each scatter plot depicts the statistical association (y-axis) and the average fold- 
change of IMAGES (each dot is a unique gene) for immune cell phenotypes. Colors (red) indicate IMAGES that passed the thresholds applied 
to the fold-change and adjusted p-values.
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Supplemental Figure 5: Direct comparison of single cell annotation methods. A, Clear similarity between SignacX and Azimuth annotations. 
UMAP plot where each dot is an individual cell annotated (colors) by Azimuth (left) and by SignacX (right) reveals broad consistency between 
the two methods using CITE-seq data from human PBMCs (n = 1 human sample). B, Similarity between SignacX and Azimuth in cellular 
phenotype annotations. Cells were labeled to more nuanced cellular phenotypes (colors), revealing consistency between SignacX and Azimuth. 
C, scPred and SingleR were not as effective in classifying CITE-seq PBMCs. ScPred (left) left many monocytes unclassified, whereas SingleR 
(right) misclassified a large group of CD8+ T cells. D, Observed lineage-specific protein expression. Each UMAP plot displays the z-score 
transformed CLR normalized protein expression (colors) generated for each individual cell with CITE-seq. E, Exploring protein expression 
with Seurat multi-modal analysis. Venn diagram displays the number of proteins predicted with Seurat (4.0.0) as well as those measured in the 
CITE-seq panel. F, Heatmap of protein expression (measured and predicted) in CITE-seq PBMCs in cellular phenotypes labeled by SignacX. 
Color shows the scaled protein expression data (yellow is higher expression; purple is lower expression) across single-cell transcriptomes 
(columns). Annotation bar indicates the cellular phenotypes assigned by SignacX. The predicted protein expression patterns help to yield 
insight to why SignacX and Azimuth were consistent.

http://


Chamberlain M, et al., J Bioinform Syst Biol 2023
DOI:10.26502/jbsb.5107057

Citation: Mathew Chamberlain, Nima Nouri, Andre Kurlovs, Richa Hanamsagar, Frank O. Nestle, Emanuele de Rinaldis, Virginia Savova. 
Cell Type Classification and Discovery across Diseases, Technologies and Tissues Reveals Conserved Gene Signatures of Immune 
Phenotypes. Journal of Bioinformatics and Systems Biology. 6 (2023): 152-177.

Volume 6 • Issue 3 172 

 

Supplemental Figure 6: Validation for SignacX 
labeling by correspondence with Azimuth 
reference CITE-seq data. A-H, heatmaps of 
SignacX recall of Azimuth reference labels. 
Each heatmap indicates the recall of cellular 
phenotype labels by SignacX compared to the 
Azimuth CITE-seq reference data separated by 
n = 8 independent human samples, indicating no 
sample-specific bias in SignacX recall of PBMC 
labels.

 

 
Supplemental Figure 7: SignacX accurately recalled flow 
cytometry labels with few genes detected. A, Cumulative recall 
scatter plot showed that SignacX outperformed SingleR as a function 
of genes detected in immune cell transcriptomes. Plot depicts the 
cumulative recall (y-axis) of immune cell type labels. The labels 
were originally determined by flow cytometry (T cell, B cell or 
monocyte). Recall of these labels was calculated cumulatively as a 
function of the number of genes detected (x-axis) by either SignacX 
(red) or SingleR (teal). Fibroblasts were omitted from this analysis 
due to broad misclassification by SingleR. Scatter plot, bottom 
depicts the number of single cell transcriptomes (n) as a function 
of genes detected. Error bars (top) are 95% C.I.s determined by 
two-sided binomial testing. B, Inset shows stronger SignacX 
performance at low genes detected. Scatter plot (top) depicts the 
p-value for the two-sided binomial test and showed that SignacX 
(red) outperformed SingleR (teal) at low sequencing depths. Scatter 
plots (middle; bottom) are close-ups of Supplemental Figure 5A for 
data with less than 300 genes detected.
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Supplemental Figure 8: IMAGES identified from immune phenotypes in synovium single cell transcriptomes. A-I, Volcano plots demonstrate 
the IMAGES identified in each cell population. Each scatter plot depicts the statistical association (y-axis) and the average fold- change of 
IMAGES (each dot is a unique gene) for immune cell phenotypes. Colors (red) indicate IMAGES that passed the thresholds applied to the 
fold-change and adjusted p-values.
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Supplemental Figure 9: SignacX-generated “unclassified” PBMCs were all identified as doublets (Scrublet), novel and classified cell type 
populations were mostly singlets. A-I, Volcano plots demonstrate the IMAGES identified in each cell population. A, UMAP plot displays the 
cell type annotations of SignacX for PBMCs (left), and the same data but with doublets classified by Scrublet (right). Each cell barcode (n = 
8,381 from one human donor) was classified by SignacX (left), and then doublet labels were amended to each cell with Scrublet (right; red); see 
Methods: SignacX classification. B, Bar plot reveals that unclassified cells were entirely composed of doublets, whereas novel cell populations 
and classified cells were mostly composed of singlets. Each bar shows the percentage (y-axis) of each cell type (x-axis) that is a doublet (teal) 
or a singlet (red). Error bars correspond to 95% confidence intervals, two- sided binomial test. C, IMAGE expression dot plot shows that 
unclassified cells and novel cluster 2 were doublet-like, whereas novel cluster 2 and 3 were singlet-like and enriched for known platelet and 
hematopoietic stem-cell gene markers. Dot plot shows the percentage (size) of single-cell transcriptomes within a cell type (y-axis) for which 
non-zero expression of marker genes was observed (x-axis). Color displays the average gene expression (red indicates more expression) in each 
cell type category. Novel cluster 1 was enriched for IMAGES that were typically enriched in either B cells or T cells, but not both (i.e., these 
cells expressed both CD79B and TRAC), consistent with the view that these cells were doublets. Novel cluster 3 images (GNG11+ TUBB1+) 
suggested platelet-like cells, and novel cluster 2 images (CD34+ SPINK2+) suggested hematopoietic stem cell-like cells.
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Supplemental Figure 10: SignacX accurately classified primate PBMCs without any species-specific training. A, SPRING plot for PBMCs 
from cynomolgus monkey donor 3003. B, SPRING plot for PBMCs from cynomolgus monkey donor 3004. C-D, IMAGE expression dot 
plot shows that SignacX classifications for immune phenotypes were consistent with known gene markers. E, SPRING plot for PBMCs from 
cynomolgus monkey samples that were enriched for T cells during sequencing. See Methods: Cross-species classification of single cell data 
from cynomolgus monkey PBMCs with human reference data. F, IMAGE expression dot plot shows that SignacX classifications for immune 
phenotypes were consistent with T cell type enrichment assay.
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Supplemental Figure 11: Disease biology surfaced from single cell data with SignacX. A, Overlap of drug targets and IMAGES identified 
here with enrichment score. The initial set of genes (teal) contained n = 216 clinical targets in 3,304 genes (orange). We identified n = 24 RA-
specific IMAGES (purple) and this set was enriched for clinical targets. B, Volcano plot shows the IMAGES for the n = 24 potential target 
genes in RA. Scatter plot shows the IMAGES identified here colored by clinical targets (purple) and genes that were in the initial set of genes, 
but not clinical targets (teal).

 
Supplemental Figure 12: Trained annotation of pDCs consistent with expected marker expression. (a) SPRING visualization of the 
cancer lung dataset with all the cell labels predicted by SignacX based on the modified reference dataset that includes pDCs identification. 
(b) Average marker expression across the SignacX’s cell type labels, with pDCs indicated by an arrow. Sizes of circles correspond to the 
percentage of cells that express the marker gene.
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Supplemental Figure 13: Comparison between cluster-based 
annotation of PBMC CITE- seq data and SignacX. Similarity 
between the annotations was determined by calculating (a) recall, (b) 
precision, and accuracy. Precision and recall values are represented 
by the blue-to-red color scheme indicated by the color bar.
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Supplemental Figure 14: Comparison between SignacX and Azimuth annotation of the CITE-seq lung data. (a) Heatmap of 
recall values comparing SignacX labels to those of Azimuth. (b) Average expression of ADT tags (top) and genes (bottom) 
relevant to CD4+ cells.

http://

	Title
	Abstract 
	Keywords
	Introduction
	Results 
	Overview of the SignacX approach for immune cell identification 
	SignacX reliably distinguishes immune cells from non-immune cells in a variety of peripheral tissues
	Benchmarking SignacX with flow cytometry and CITE-seq data 
	SignacX accurately classified CITE-seq PBMCs 
	SignacX outperformed other pre-trained classification methods (scPred, Azimuth and SingleR) in annot
	SignacX learned and reliably classified rare CD56bright NK cells across tissues 
	Conserved IMAGES for SignacX annotations across distinct tissues, technologies and diseases 
	SignacX identified conserved and distinct gene expression patterns across species 
	Disease biology surfaced from single cell data with annotations from SignacX 

	Discussion 
	Methods
	Benchmarking SignacX across sequencing technologies with PBMCs 
	Overview of the SignacX approach  
	Establishing the HPCA reference data for training SignacX 
	Establishing a predictive model for cellular phenotypes using the HPCA reference data 
	K-nearest neighbor smoothing 
	Establishing an initial pool of drug target candidates 
	Establishing a predictive model for CD56bright NK cells from CITE-seq PBMCs 
	Cross-species classification of single cell data from cynomolgus monkey PBMCs with human reference d
	Comparing SignacX to SingleR 
	Differential gene expression analysis 
	Gene set enrichment analysis 
	Doublet detection in scRNA-seq PBMCs 
	KNN Imputation 
	Data and software availability 

	Acknowledgments 
	Declarations of Interests 
	Authors’ contributions 
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Supplementary Files
	References 

