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Abstract
The transmission of Escherichia coli (E. coli) bacteria to humans 

through infected fruits, such as citrus, can lead to severe health issues, 
including bloody diarrhea and kidney disease (Hemolytic Uremic 
Syndrome). Therefore, the implementation of a suitable sensor and 
detection approach for inspecting the presence of E. coli colonies on fruits 
and vegetables would greatly enhance food safety measures. This journal 
article presents an evaluation of SafetySpect's Contamination, Sanitization 
Inspection, and Disinfection (CSI-D+) system, comprising an UV 
camera, an RGB camera, and illumination at two fluorescence excitation 
wavelengths: ultraviolet C (UVC) at 275 nm and violet at 405 nm. To 
conduct the study, different concentrations of bacterial populations were 
inoculated on black rubber slides, chosen to provide a fluorescence-free 
background for benchmark tests on E. coli-containing droplets. A VGG19 
deep learning network was used for classifying fluorescence images with 
E. coli droplets at four concentration levels. Discrete wavelet transforms 
(DWT) were used to denoise the images and then generative adversarial 
networks (StyleGAN2-ADA) were used to enhance dataset size to 
mitigate the issue of overfitting. It was found that VGG19 with SoftMax 
achieved an overall accuracy of 84% without synthetic datasets and 94% 
with augmented datasets generated by StyleGAN2-ADA. Furthermore, 
employing RBF SVM increased the accuracy by 2% points to 96%, while 
Linear SVM enhanced it by 3% points to 97%. These findings provide 
valuable insights for the detection of E. coli bacterial populations on citrus 
peels, facilitating necessary actions for decontamination.

Keywords:  Discrete wavelet transform; Fluorescence images; E. coli; 
Food safety; StyleGAN2-ADA; Support vector machine (SVM); VGG19.

Introduction
The consumption of fresh vegetables and fruits has been on the rise, 

leading to an increased risk of foodborne disease outbreaks caused by 
bacterial contamination [1]. Between 1990 and 2005, fresh fruits and 
vegetables accounted for 12% of reported foodborne disease outbreaks in the 
United States [2]. Moreover, bacterial pathogens were responsible for 60% of 
all foodborne disease outbreaks in the United States from 1973 to 1997 [3]. 
Escherichia coli (E. coli) O157:H7, in particular, is a common contributor to 
such outbreaks. For example, multiple incidents of E. coli-related foodborne 
disease outbreaks were traced back to contaminated apple cider between 1991 
and 1996 [4,5]. These pathogens typically originate from healthy animals 
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and can be transmitted to fruits and vegetables through the 
feces of birds, domestic animals, and wild animals like deer 
[5-7]. Another potential source of contamination is through 
irrigation water that has been contaminated [8]. In a study 
conducted by Solomon et al. [9], it was discovered that 
spray-irrigation posed a higher risk of E. coli contamination 
in vegetable crops compared to surface irrigation methods. 
Citrus fruits are also susceptible to E. coli contamination, 
primarily through the presence of fecal matter from birds, 
domestic animals, and feral animals in orchards during both 
pre and post-harvest stages, as well as irrigation practices. 
Various factors, including fruit ripeness, environmental 
conditions, and the ability of E. coli bacteria to withstand 
citrus plants' metabolic processes, can significantly influence 
their survival and proliferation. Once these fruits are 
harvested and transported to processing plants, they undergo 
washing treatments and industrial sanitization procedures. 
However, despite these measures, complete eradication 
of E. coli bacteria cannot be guaranteed [2, 10]. In fact, if 
the water used at different stages of the processing plants is 
contaminated with E. coli bacteria, it can serve as a potential 
source of citrus fruit contamination. During the post-harvest 
handling of citrus fruits from orchards to processing plants, 
humans can become infected due to the release of E. coli 
bacterial cells from drops present on the fruit's surface [11]. 
These pathogens can lead to severe health issues such as 
hemorrhagic colitis and gastroenteritis in affected individuals 
[12].  Consequently, there is a pressing need for more reliable 
and robust technology to ensure food safety by detecting the 
presence of E. coli bacterial colonies on citrus fruit surfaces, 
particularly at processing plants. Traditional microbial testing 
methods involving swabbing in a laboratory setting can be 
time-consuming and costly [11, 13]. Therefore, an effective 
solution is required that offers real-time detection of bacterial 
drops (E. coli colonies) on citrus fruit surfaces, followed by 
a rapid disinfection process. Researchers have successfully 
utilized fluorescence imaging systems for detecting bacterial 
drops [14, 15]. Additionally, previous studies have shown that 
ultraviolet light type C (UV-C) with a wavelength below 280 
nm is the most effective method for bacterial decontamination 
[16]. Gorji et al. [17] demonstrated the successful application 
of a hand-held fluorescence imaging system (CSI-D) 
developed by SafetySpect Inc. (Grand Forks, ND, U.S.A.) for 
detecting bacterial contamination on equipment and surfaces 
in kitchen and restaurant areas. 

In this paper, which is a derivative of our previous work 
[18], we show the efficacy of the newer version of the system: 
CSI-D+ (SafetySpect Inc., Grand Forks, ND, U.S.A.) for 
detecting a non-pathogenic E. coli  strain ATCC 35218 [19] 
inoculated at four different concentration levels- : 108 , 107.7, 
107.4, and 107 CFU/drop in addition to the control on an inert 
rubber surface as well as citrus peel plugs. Gorji et al. [17] 

showed that by developing deep learning algorithm, it may 
be possible to do real-time detection of E. coli drops with 
fluorescence imaging system (CSI-D+) in a non-destructive 
way. Therefore, the overall goal of the study presented in this 
paper was to develop an artificial intelligence (AI) algorithm 
based on combination of classical machine learning: Support 
Vector Machine (SVM) [20] as well as modern deep learning 
based on convolution neural networks (CNNs) -: VGG16 [21] 
to detect E. coli drops on fluorescence images. The reason we 
chose to use CNN was because it can do automatic feature 
extraction which is a requirement for developing real-time 
detection system [22]. Similarly, in order to harness the power 
of both classical machine learning and CNNs, a combination 
of both was used in this study as it has been found in many 
cases that combining both of them can provide improved 
results [23-25]. VGG16 is a popular CNN architecture 
that has been successfully used in wide variety of image 
classification tasks [26-29].  The performance of CNN-based 
AI algorithms can be negatively impacted by noisy images 
especially in the cases of lower concentrations of E. coli 
bacterial drops [30]. This is why it was required to denoise 
fluorescence images using discrete wavelet transformation 
(DWT) before they were used to train the VGG19 and SVM 
for classification tasks. Demir and Erturk [31] were able to 
improve the performance of SVM for hyperspectral image 
classification using wavelet transform (WT). Similarly, Serte 
and Demirel [32] were able to show that by denoising images 
with WT, the classification performance of deep learning 
models ResNet-18 and ResNet-50 were improved. There 
are many families of DWT available out of which four were 
used in this study: Biorthogonal (bior), Reverse biorthogonal 
(rbio), Daubechies (db) and Symlets (sym) [30]. Hence, 
it was required to find the best performing family of DWT 
based on reconstructed denoised images and peak signal to 
noise ratio (PSNR) metric so that instead of using all the four, 
only the best performing family was used for denoising all the 
images. Apart from denoising the images, there was another 
challenge in increasing the number of image datasets for 
training the VGG19 and SVM as smaller datasets generally 
affects the generalization and robustness of CNN-based AI 
algorithms [33]. It was challenging to prepare large samples 
of inoculated E. coli drops to train the VGG19 and SVM. 
In the cases of data scarcity like ours, generative adversarial 
networks (GANs) are widely used [34-37]. An improved 
version of GAN known as Style generative adversarial 
networks-adaptive discriminator augmentation (StyleGAN2-
ADA) has been shown to generate realistic synthetic images 
that can be used for generating larger datasets for training 
deep learning and machine learning models [36]. Based on 
their findings, we used StyleGAN2-ADA for generating 
larger datasets for training the VGG19 and SVM algorithms. 
In this study, the specific objectives were: (i) to determine the 
top performing family of DWT among the four (Biorthogonal 
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E. coli  Cell Preparation and Inoculation
A non-pathogenic E. coli strain (ATCC 35218) was used 

in this study. This E. coli strain has also been demonstrated 
as a surrogate for Salmonella spp. on grapefruit [19].  The 
E. coli strain was streaked on tryptic soy agar and incubated 
at 35oC for 24 h. The single colony was transferred into 10 
mL of tryptic soy broth (TSB) in a test tube and incubated 
at 35oC for 24 h, and then 10 µL of this E. coli suspension 
was transferred to another 10 mL of TSB medium and 
incubated at 35oC for another 24 h. The E. coli suspension 
was centrifuged at 6000 rpm for 5 min, and the supernatant 
was discarded and participated E. coli cells were resuspended 
with sterilized distill water. Repeat this step one time. Under 
these conditions, E. coli cell concentrations were at about 109 
cells/mL. The actual E. coli concentrations of the suspensions 
were confirmed and verified using dilution plate, incubation, 
and colony forming units (CFU) accounting method. A serial 
dilution of this stock suspension of E. coli (~109 cells/mL) 
was made to yield needed E. coli cell concentration levels 
such as 108.7, 108.4 and 108 cells/mL for various applications. 
E. coli cell suspensions at different concentration levels were 
transferred onto inert rubber slides or citrus fruit peel discs (2 
cm in diameter) by peppering 10 individual E. coli suspension 
drops (10 uL each) as a group on each slide or citrus peel disc, 
giving a total E. coli cell concentrations at 108, 107.7, 107.4, and 
107 per slide or citrus fruit peel disc, respectively. At least 
4 replications were used for each E. coli cell concentration 
level and carrier material (rubber slide or citrus fruit peel 
disc).  The E. coli suspensions on rubber slides or citrus fruit 
peel discs were dried in air with some heat applied for at least 
2 h before image processing.

Image Data Preparation
The CSI-D+ system initially captured fluorescence 

images measuring 256 x 256 pixels in grayscale format 
with 8-bit depth. Each image contained three blocks of inert 
rubber slides, each hosting ten droplets of E. coli bacteria at 
identical concentration levels. Consequently, four images 
were obtained, each corresponding to a distinct concentration 
level. To introduce randomness in droplet placement and 
expand the dataset, background images representing rubber 
slides (256 x 256 pixels) were generated. A Python script 
was subsequently developed to extract the regions containing 
all 30 droplets from each image and randomly position them 
on the background images. The droplets were partitioned 
into groups ranging from 3 to 10, generating a total of 200 
images measuring 256 x 256 pixels for each concentration 
level (800 images in total). These images were then subjected 
to denoising using the Wavelet Transform (WT) for further 
processing.

Wavelet Transform (WT)
Wavelet transform is a popular technique to remove noise 

from continuous or discrete signals and has been widely used 

(bior), Reverse biorthogonal (rbio), Daubechies (db) and 
Symlets (sym)) for denoising fluorescence images with E. 
coli drops at four different concentration levels based on 
PSNR metric, (ii) to generate large dataset with StyleGAN2-
ADA  using the reconstructed denoised images based on 
the top performing DWT family and (iii) to train VGG19 
for classifying the fluorescence images with E. coli drops at 
four different concentration levels with and without SVM 
classifier and do the comparative analysis based on accuracy, 
precision, recall and F1-score

Materials and Methods
Contamination, Sanitization Inspection, and 
Disinfection (CSI-D+) System

Figure 1 shows the CSI-D+ system that was used to 
collect fluorescence images of rubber slides as well as citrus 
fruit peel plugs on which E. coli cells  were inoculated at nine 
different concentration levels. The CSI-D+ system consists of 
arrays of two types of light emitting diodes (LEDs): 275-nm 
and 405-nm, heat sink and a driver circuit for LEDs. The 275-
nm LEDs are the closest UV-C type that are commercially 
available for bacterial decontamination [38]. The 405-nm 
wavelength has been found to be effective in detection of 
organic residues containing fluorophores which is why 
another set of LEDs at this wavelength range were used for 
fluorescence imaging purpose in the system [38]. During 
fluorescence imaging, the LEDs at 405-nm are sequentially 
turned on and off (275-nm are turned on and off for saliva and 
respiratory droplets) whereas the LEDs at 275-nm are turned 
on for 2-5 seconds during the disinfection mode. The RGB 
camera in the system collects responses from the fluorophores 
like bacterial contaminants while the UV camera collects 
responses from saliva and respirator droplets.

Figure 1: The new CSI-D+ system which was used to collect 
fluorescence images of E. coli bacterial drops inoculated on inert 
rubber surface.
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for different applications [39-41]. WT decomposes a signal 
into wave-like oscillations that are localized in time called 
wavelets. This makes it advantageous over Fourier Transform 
which fails to capture local frequency information. As opposed 
to the continuous wavelet transform, DWT is the most widely 
used which decomposes wavelet coefficients by a factor of 2 
at each level of decomposition [41]. 2D DWT was used for 
image data and, it was implemented by using Python package 
PyWavelets [42]. Four families of wavelets were used and 
tested in this study: Biorthogonal (bior), Reverse biorthogonal 
(rbio), Daubechies (db) and Symlets (sym) at decomposition 
level of 3. Each of the transformations generated two sets 
of coefficients “Approximation” and “Detail”. The Detail 
coefficients are of three types viz. horizontal, vertical, and 
diagonal. The “Approximation” coefficients were generated 
by passing the original image signal through low pass-low 
pass (LL) filters while the detail coefficients are generated by 
passing through high pass-low pass (HL), low pass-high pass 
(LH) and high pass-high pass (HH) filters. The coefficients 
were also used to reconstruct and obtain denoised images 
after 2D inverse WT (IDWT). Mathematically, DWT is 
defined by equation 1 [39].

Where j = 1,2...,J (maximum decomposition level), k = 
1,2…N (number of wavelet coefficients), x(n) is the original 
signal i.e., image data in this study and ψj,k (t) is the wavelet 
at time ‘t’. The denoised images that were reconstructed by 
IDWT were analyzed based on peak signal to noise ratio 
(PSNR) metric. PSNR is a metric that is used to test the 
quality of denoised image with respect to that of the original 
noisy image [43,44]. Mathematically PSNR is calculated by 
using equation 2 [45, 46].

Where R is the maximum fluctuation in the input data 
type which equals to 255 for 8-bit unsigned integer data type 
and MSE is the mean squared error which is mathematically 
defined by equation 3 [45], [46].

Where M and N are number of rows and columns in an 
image, I and Io are original noisy and denoised images while 
x and y are pixel row and column indices respectively. Out 
of the 200 denoised images for each concentration level, 10 
of them were randomly chosen and then the mean PSNR 
was calculated for each of the wavelet family for each 
concentration level. Then based on the highest value of the 
mean PSNR, the denoised images from the corresponding 
wavelet family were used for further processing. 

StyleGAN2-ADA for Synthetic Dataset Generation
 Generative Adversarial Networks (GANs) are ML 

algorithms that can generate large amount of  synthetic datasets 

to train ML and DL algorithms for various classification and 
detection tasks. Among the many types of GANs, StyleGAN 
developed by NVIDIA researchers is quite popular due to 
its ability to generate realistic high quality synthetic images 
[34,47]. By incorporating progressive growing and adaptive 
instance normalization (AdaIN) at each convolution layer, 
StyleGAN can generate high quality synthetic images 
[34,48,49]. An improved version of StyleGAN called 
StyleGAN2 was introduced in 2019 that improved the 
shortcomings of the previous version by restructuring AdaIN 
with weight demodulation that essentially scales the feature 
maps based on input styles. Another improvement is done 
by replacing progressive growing structure with ResNet-like 
connections between the feature maps of low-resolution in its 
architecture as it introduced artifacts in generated synthetic 
images. Some other improvements were also made including 
the loss function, but it still had the challenge of training 
the network with smaller datasets. It was found that the 
discriminator part of the network could adopt to the training 
dataset quickly to result in overfitting issues which is why 
further improvement was done in the form of StyleGAN2-
ADA (https://github.com/NVlabs/stylegan2-ada-pytorch) 
which is currently state-of-the-art GAN [34].

Figure 2 shows a simplified network architecture of both 
generator and discriminator parts of StyleGAN2-ADA. The 
network architecture consists of a generator with a mapping 
and synthesis network and a discriminator. The generator 
is responsible for generating high dimensional synthetic/
fake images from a latent space while the discriminator is 
responsible for classifying if the generated images are real 
or fake. The goal of generator is to keep improving over 
different iterations in such a way that the discriminator 
starts failing to distinguish between real and fake datasets. 

Figure: 2 Network architecture of StyleGAN2-ADA showing both 
generator and discriminator parts along with sample real and fake 
images.
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However, over each iteration, the discriminator keeps 
improving by readjusting its parameters to correctly classify 
fake images from the real ones. This is analogous to a min 
max game in which each of the two players try to outperform 
the other. Considering G(z) as the generator function that 
learns to map a latent space z ∈ N (0, I) so that it can take 
real image data X := x and output generated/fake image data 
X := x̂. Similarly, consider D(x) as the discriminator function 
that represents x’s probability belonging to the real class x 
and not the generated/fake class x̂. When StyleGAN2-ADA 
is trained, the loss of G(z) i.e., log(1-D(G(z))) is minimized 
while D(x) is maximized [34]. The generator uses Inception 
V3 as feature extractor in its network architecture [50]. The 
quality of generated/fake images is measured by a feature 
distance metric called Fréchet Inception Distance (FID). 
Mathematically, for univariate normal distributions X and Y, 
FID is given by equation 4 [51].

                             (4)

Where µ and σ are mean and standard deviation of X 
and Y. Similarly, in the context of StyleGAN2-ADA i.e., for 
multivariate distributions, FID is given by equation 5.

          (5)

Where X and Y are multivariate feature vector distributions 
from real and generated/fake images i.e., activations from 
the Inception V3 network. µX and µY are means of X and 
Y respectively while Tr is the trace of the matrix and ∑X 
and ∑Y are covariance matrices of the feature vectors. The 
training parameters that were used to train the StyleGAN2-
ADA are summarized in table 1.

VGG19 and support vector machine (SVM)
VGG19 is a popular CNN network widely used for 

varieties of image classification tasks and is  an improved 
version of its predecessor VGG16 [52-57]. Both VGG16 and 
VGG19 were developed by Simonyan and Zisserman (2014) 
at the Visual Geometry Group at Oxford University [59]. The 
VGG19 was chosen for this study due to its additional three 
CNN layers which  improves its  ability for feature extraction 
and classification. The original architecture is designed for 
classifying 1000 classes by its last fully connected (FC) 
layer which uses SoftMax as the classifier; however, in our 
application, we customized it for four classes as shown in 
figure 3. The original network accepts input of shape 224 x 
224 x 3 so it was customized to accept input of shape 256 

x 256 x 3 to match the shape of our image datasets. This 
essentially implied that we had to train the full network 
without using the transfer learning approach because the 
pretrained weights from ImageNet [60] dataset were of the 
shape 224 x 224 x 3.The second and third channels of our 
datasets were copies of the pixel values of the first channel 
because of which the channel number wasn’t modified in the 
custom VGG19 network. VGG19 uses SoftMax classifier 
in its architecture as the last FC layer (Figure 3) which is 
a generalized version of logistic regression for multi-class 
classification [18, 58, 61, 62]. In our application, in the first 
approach, we used the SoftMax classifier and in the second 
approach, it was replaced by linear and non-linear (i.e., with 
radial basis function (RBF) kernel) support vector machine 
(SVM) classifiers. Assuming xi as an i-th element of the 
input feature vector, SoftMax function is defined as given in 
equation 6 [63].

             (6)

Where K is equal to the number of classes, j Є [1,K], then 
the SoftMax classifier is defined as given in equation 7.

                                 (7)

Where f(xi) can also be considered as the probability 
of xi belonging to the class j and F(xi) is the largest 
calculated probability of xi belonging to all the j classes. The 
performance of VGG19 with SoftMax classifier is measured 
in terms of metrices like accuracy, precision, recall, F1-score, 
sensitivity, and specificity as defined in equations 8-13.

Where, TP,TN,FP, and FN represent true positives, true 
negatives, false positives, and false negatives respectively. 
SVM classifier that was used in the second approach tries 
to find an optimal separating hyperplane with maximum 
margin between classes by focusing on training data located 
at the edges of the distribution [64]. SVM classifier was 
originally designed for binary classification tasks; it however 
can be used for multi-class problems. The basic linear SVM 
classifier can be defined by equation 14 [65].

       (14)

Parameters Values
Seed 600

Kimg 2000

Learning rate 0.0025

Snap 50

Table 1: Training parameters that were used for StyleGAN2-ADA 
for the generation of synthetic E. coli datasets.
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Where w and b are weights and biases, and x Є Rd  is 
the input feature vector. 1 represents a positive class while 
-1 represents a negative class. A non-linear SVM uses RBF 
kernel function given by equation 15 [65].

Where σ is called the kernel width parameter and it 
plays a significant role in the performance of non-linear 
SVM classifier [64, 65]. The entire process from image data 
preparation to classification is shown by a workflow pipeline 
in figure 4.

Results and Discussion
Image Data Distribution on Rubber Surface

Once the images with randomly placed droplets containing 
E. coli population at four different concentration levels were 
generated, the distribution of pixel intensities were analyzed 
with 3D plots as shown in Figures 5 and 6. Figure 5 shows 
image data distribution of original noisy images while Figure 
6 shows the same for reconstructed denoised images using 
IDWT. The maximum pixel intensity values remained around 
100 (Figure 5) for most of the images on noisy images while 
it reached more than 200 (Figure 6) for the denoised images 
in higher concentration levels of E. coli bacterial population. 
This means that DWT was able to enhance pixels containing 
information relevant to the regions of bacterial population. 
The peaks in the 3D plots represent regions with E. coli 
bacterial population.

Discrete Wavelet Transform (DWT)
An example of reconstructed denoised images using 

DWT followed by IDWT and the corresponding distribution 

of pixels is shown in Figure 7. A study was conducted to 
determine the most effective family of DWT among the four: 
Biorthogonal (bior), Reverse biorthogonal (rbio), Daubechies 
(db) and Symlets (sym). In all the cases of four concentration 
levels, it was found that sym was the best performing in 
terms of PSNR values. An example of distribution of PSNR 
values obtained when tested on 10 randomly selected images 
belonging to 108 CFU/drop is shown in Figure 7. The mean 
PSNR for sym was found to be 27.84 ± 4.56 dB which is 
higher than the remaining three (Figure 7). Similarly, the 
mean PSNR values with sym for 107.7 , 107.4 and 107 CFU/
drop were found to be 24.43 ± 4.61, 24.77 ± 4.42 and 25.34 ± 
2.31 dB respectively.

Synthetic Data Using StyleGAN2-ADA
The StyleGAN2-ADA (https://github.com/NVlabs/

stylegan2-ada-pytorch) network was trained on NVIDIA 
Tesla P100-PCIE GPU 343 (Santa Clara, CA) running 
Compute Unified Device Architecture (CUDA) version 11.2 
and driver 344 version 460.32.03 using the Google Colab 
Pro+ (Google LLC., 342 Melno Park, CA) platform. The 
parameters used for training the network are shown in Table 
1. The best FID values that were obtained for each of the four 
concentration levels are shown in Table 2.

The plots showing changes in the FID values over different 
training Kimg for each concentration level are shown in 
Figure 8. Once the best trained network was determined 
based on the lowest observed FID values as shown in Table 
2, synthetic images (800 for each concentration level) were 
generated. In this way, a total of 3,200 synthetic images 
were generated that were later used in combination with the 
sym-based reconstructed denoised images (Figure 9; 200 for 

Figure 3: A customized VGG19 network architecture that was used to classify fluorescence images of E. coli bacterial population at four 
different concentration levels.
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Figure 4: Workflow pipeline showing all the steps involved from image data preparation to image data classification for all the four concentration 
levels of E. coli bacterial populations.

 
Figure 5: 3D plots of original noisy images showing regions of E. coli bacterial drops for each of the four concentration levels.

 
Figure 6: 3D plots of reconstructed denoised images using IDWT showing regions of E. coli bacterial population for each concentration level.
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each concentration level). This implied that, there were 1000 
(800+200) images for each concentration level i.e., a total of 
4,000 images to train the VGG19 network with SoftMax and 
SVM classifiers.

The generated synthetic images were realistic and very 
close to the real images and therefore they were used to train 
the VGG19 network with SoftMax and SVM classifiers for 
improved accuracy and better generalization as shown by 
Giuffrida et al. [68] and Fawakherji et al. [69].

VGG19 with SoftMax Classifier

The custom VGG19 network with SoftMax classifier was 
also trained on NVIDIA Tesla P100-PCIE GPU (Santa Clara, 
CA) using the Google Colab Pro+ (Google LLC., 342 Melno 
Park, CA) platform. The network was trained from scratch 
using adaptive learning rate method called Adadelta [70] at 
learning rate value of 0.001. It was trained for 50 iterations 
with a batch size of 8. The different types of graphs that were 
obtained as part of the training and validation process are 
shown in Figure 10.

From the accuracy and loss graphs, the network was able 
to reach convergence within 50 iterations and beyond this, 
and it showed a trend for overfitting (Figure 10). The training 
accuracy reached 100% while validation accuracy maxed 
out at 94%. Similarly, the training loss reached 0 while the 
validation loss remained around 0.2. The true positive rate 
(sensitivity) and false negative rate (specificity) both reached 
100% on the training dataset while on the validation dataset, 
the true positive rate could reach a little over 90% whereas the 
false negative rate was around 100%. On both the datasets, 
the trained VGG19 model could classify almost perfectly 
the false negatives. The confusion matrix shows number of 
correctly and misclassified images for each concentration 
level. Based on this, its summary is given in Table 3 where 
values of precision, recall and F1-score for each concentration 
level are shown.

It is evident that images belonging to 108 CFU/drop were 
most precisely classified with highest weighted accuracy 
i.e., F1-score. The majority of the misclassifications were 
observed in images belonging to 107.7 and 107.4 CFU/drop. 
This essentially means that the features of E. coli populations 
at these two concentration levels were very much like each 
other. The overall accuracy was found to be 94% which is 
10% more than the results obtained when trained without 
synthetic dataset generated by StyleGAN2-ADA. This was 
similar to the results obtained by Liu et al. [71] in which 
they were able to improve grape leaf disease classification 
accuracy by increasing the training dataset with GANs. In 
addition to accuracy, areas under the ROC curve (i.e., AUC) 
were also used to measure the performance of the VGG19 
network. This was done because it considers the entire range 
of threshold values between 0 and 1 and is not affected by 
class distribution and misclassification cost [18, 58, 62, 72, 
73]. The AUC can be treated as a measure of separability and 
the lines belonging to a class that reaches close to the top-left 
corner is the most separable one. From Figure 10, the images 
belonging to 107 were the most separable followed by 108, 
107.7 and 107.4 CFU/drop. 

VGG19 with SVM Classifier
In our second approach, VGG19 was used as feature 

extractor and Linear and RBF SVM were used as classifiers. 
Dey et. al [74] had shown that SVM classifier when used 
with VGG19 improved pneumonia detection in chest 
X-rays. Similar improvement was found in early detection of 
Glaucoma by Raja et al [75]. In our approach, feature vectors 
were extracted from the last Max Pooling layer i.e., ‘block5_
pool’ and then both linear and RBF SVM were trained using 
C parameter value as 150 and gamma parameter as ‘auto’. We 
also used 10 fold cross validation error estimates to determine 
the scores of the SVM classifiers. It was found that linear 
and RBF SVM classifiers were able to classify the images 
of all the four concentration levels with an overall accuracy 
of 97 ± 0.01% and 96 ± 0.01% respectively. This implied 
that VGG19 improved the overall classification accuracy 
by 3% points with linear SVM and by 2% points with RBF 
SVM classifiers  as compared to the VGG19 with SoftMax 
classifier. The classification reports for both linear and RBF 
SVM classifiers are summarized in Tables 4 and 5.

Figure 11 shows that by adjusting k-fold values the error 
estimates for SVM classifiers can be adjusted. However, 

 

Figure 7: Box plots showing PSNR distribution of E. coli 
concentration at 108 CFU/drop  using all the four wavelet families.

Concentration Levels (CFU/drop) FID

108 21.99

107.7 19.44

107.4 20.52

107 16.52

Table 2: The best FID values that were obtained for each 
concentration level after training with StyleGAN2-ADA
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Figure 8: Plots showing FID values that were recorded every 200 Kimg during training process of StyleGAN2-ADA for all the four 
concentration levels.

 

A B C D 

E F G H 

Figure 9: Images A, C, E and G are the sym-based reconstructed denoised real images for 107, 107.4, 107.7 and 108 CFU/drop concentrations 
respectively while the images B, D, F and H are the synthetic images generated by StyleGAN2-ADA for the four concentration levels 
respectively.
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Figure 10: Accuracy, loss, sensitivity and specificity graphs for training and validation datasets including the confusion matrix and receiver 
operating characteristics (ROC) curves that were obtained when VGG19 was trained with SoftMax classifier.
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Class Label Concentration(CFU/Drop)     Precision Recall F1-Score

0 108 0.97 0.95 0.96

1 107.7 0.87 0.93 0.90

2 107.4 0.94 0.90 0.92

3 107 0.96 0.95 0.96

Table 3: Summary of confusion matrix showing values of precision, recall and F1-score for each concentration level after training the VGG19 
network with SoftMax classifier.

Class Label Concentration(CFU/Drop)     Precision Recall F1-Score

0 108 1.0 1.0 1.0

1 107.7 0.93 0.93 0.93

2 107.4 0.92 0.93 0.93

3 107 1.0 1.0 1.0

Table 4: Classification summary report of Linear SVM using VGG19 as feature extractor

Class Label Concentration(CFU/Drop)     Precision Recall F1-Score

0 108 1.0 1.0 1.0

1 107.7 0.94 0.93 0.93

2 107.4 0.92 0.94 0.93

3 107 1.0 1.0 1.0

Table 5: Classification summary report of RBF SVM using VGG19 as feature extractor

 
Figure 11: Plots showing cross validation error estimates for different k-folds with linear and 
RBF SVM.
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in most of the cases, the error estimates for linear SVM 
remained lower than the RBF SVM which explains the 1% 
higher overall accuracy. Confusion matrices for both Linear 
and RBF SVM classifiers are shown in Figure 12.

It is evident that there were more misclassifications 
for class 2 i.e., 107.4 CFU/drop using the RBF SVM than 
the Linear SVM. For the remaining classes, both the SVM 
classifiers performed the same.

Conclusion
This paper successfully demonstrates the effectiveness 

of the new CSI-D+ system in accurately detecting E. coli 
bacterial populations at various concentration levels. The use 
of VGG19 with Softmax classifier achieved a noteworthy 
accuracy of 94%. Moreover, employing RBF and Linear 
SVM classifiers further improved the accuracy to 96% and 
97% respectively. Additionally, the study highlights the 
potential of discrete wavelet transform for image denoising, 
leading to enhanced performance of deep learning models in 
classification tasks. Furthermore, the utilization of synthetic 
datasets generated by StyleGAN2-ADA proved beneficial 
in improving the performance of the VGG19 model. Future 
work aims to implement a workflow pipeline for classifying 
E. coli bacterial populations on citrus fruit peels, including 
concentrations lower than 107 CFU/drop. 
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