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Abstract
The rise of mobile electrocardiogram (ECG) devices came with the rise 

of frequent large magnitudes of noise in their recordings. Several artificial 
intelligence (AI) models have had great success in denoising, but the 
model’s generalizability and the enhancement in clinical interpretability 
are still questionable. We propose Cardio-NAFNet, a novel AI-based 
approach to ECG denoising by employing a modified version of Non-Linear 
Activation Free Network (NAFNET). We conducted three experiments for 
quantitative and qualitative evaluation of denoising, clinical implications 
and generalizability. In the first experiment, Cardio-NAFNet achieved 
53.74dB average signal to noise ratio across varying magnitude of noise 
in beat-to-beat denoising, which is a significant improvement over the 
current state of the art model in ECG denoising. In the second experiment, 
we tested the enhancement in clinical interpretation of the ECG signals by 
utilizing a pretrained ECG classifier using 8second long noise-free ECG 
signals. When the classifier was tested using noisy ECG signals and their 
denoised counterparts, Cardio-NAFNet's denoised signals provided 26% 
boost in classification results. Lastly, we provide an external validation 
dataset composed of single-lead mobile ECG signals along with signal 
quality evaluation from physician experts. Our paper suggests a settling 
method to capture and reconstruct critical features of ECG signals not 
only in terms of quantitative evaluation, but also through generalizable 
qualitative evaluation. 

Introduction
With digital health evolution and numerous consumer electronics 

providing electrocardiograms (ECG), ECG denoising plays a pivotal role 
in standardizing and stabilizing the signals recorded amongst a multitude of 
devices and patients. Beyond providing a level of reliability of the mobile 
ECG recordings for physician’s interpretation, ECG denoising can play a 
critical role in translating the innovative artificial intelligence approaches 
using 12-lead ECG signals to the digital health realm. Previously, to reach 
beyond traditional use cases of electrocardiograms (ECG), numerous 
groups across the globe have provided methods to automate the processes 
typically done by subject matter experts and method to augment undiscovered 
knowledge about ECG signal’s discriminative features. For automated 
methods, a cardiologist-level arrhythmia detection and classification accuracy 
has been achieved using deep neural network [1]. Furthermore, the clinical 
implications of ECG signals has been expanded by an AI model detecting low 
ejection fraction using 12-lead ECG signals[2]. However, the AI models that 
were trained on clean 12-lead ECG in a hospital environment are bound to 



Lim C, J Biotechnol Biomed 2024
DOI:10.26502/jbb.2642-91280124

Citation:	Chanho Lim, Yunsung Chung, Jihun Hamm, Zhengming Ding, Mario Mekhael, Charbel Noujaim, Ala Assaf, Hadi Younes, Nour Chouman, 
Noor Makan, Eoin Donnellan, Nas-sir Marrouche. Generalizability and Clinical Implications of Electrocardiogram Denoising with Cardio-
NAFNet. Journal of Biotechnology and Biomedicine. 7 (2024): 21-32.

Volume 7 • Issue 1 22 

be inaccurate when tested with mobile ECG recorded during 
a patient or a consumer’s daily lives. Although measuring 
ECG signals has become more available to the public than 
ever, these recordings are frequently measured without any 
clinical staff’s oversight and more easily exposed to various 
types of noise. We learned throughout the years that ECG 
recordings are prone to three main types of noise - electrode 
motion (EM), baseline wandering (BW) and muscle artifacts 
(MA). Hence, effective methods to denoise ECG signals 
and experiments to evaluate its enhancements in clinical 
interpretability and generalizability in digital health realm are 
imperative. 

ECG denoising methods can be largely divided into two 
categories - traditional denoising that relies on statistical 
methods and deep learning-based denoising models[3]. 
For example, traditional methods have seen success in 
ECG denoising using bandpass filters[4], empirical mode 
decomposition (EMD), Wavelet transformation methods[5, 
6], adaptive filtering[7-10], and Bayesian filtering 
methods[11]. Simple bandpass filtering may be capable of 
rejecting low frequency noise like small baseline wandering 
and some high frequency noise such as jitters, but it often 
fails to cope with muscle artifacts and electrode motion 
artifacts that sporadically create false peaks and valleys. 
Kabir et al suggested an approach based on noise reduction 
algorithms in EMD and discrete wavelet transform domains, 
but the method is also limited to noise reduction with jitters 
and baseline wandering[12]. The recent advances in deep 
learning has impacted how ECG signals are processed, 
through new deep learning models such as autoencoders[13, 
14], long short-term memory (LSTM)[15], generative 
adversarial network (GAN)[16, 17]. For example, Xiong et 
al utilized a combination of wavelet transform to deconstruct 
the signals and deep autoencoders (DAE)[18] to enhance 
the quality of corrupted signals. Others have also proposed 
stacked contractive denoising auto-encoder[19]. Both 
autoencoder based approaches were capable of removing 
BW, MA, EM and mixed noises at varying magnitudes. 
The generalizability of these models has been questioned by 
Wang et al., as autoencoder’s performances can be sensitive 
to its sample selection, which led them to suggest a GAN 
based method. Since introduced by Goodfellow et al in 2014, 
GAN variants have had remarkable contributions to the 
advancements of generative models. Pratik et al proposed 
a GAN framework that contains convolution layers in its 
generator and discriminator[20], but the model was only 
tested to prove its applications with individual types of noise, 
not any mixtures at varying magnitude. Xu et al utilized 
ResNet based GAN model but has demonstrated that that 
the model’s denoising capabilities diminished with larger 
noise samples at lower signal to noise ratio[17]. Wang et al 
proposed a conditional generative adversarial network (CAE-
CGAN) framework where they utilize a convolutional U-Net 

architecture as a generator, a discriminator with least squared 
loss, and a pretrained support vector machine (SVM) based 
classifier that learns to classify each beat[21]. Upon our 
review, CAE-CGAN’s methods were deemed the most sound 
as it demonstrated promising improvement in SNR across 
individual and mixture of noise at varying SNR while also 
proving that the denoised signal also enhances classification 
accuracy for each denoised beat. 

We note that the majority of the denoising work has been 
done by combining the noise from MIT-BIH noise stress 
database with clean ECG signals from various ECG databases 
in Physionet’s MIT-BIH Databases[22, 23], specifically the 
Arrhythmia Database. Despite numerous authors highlighting 
the rise of wearables and other mobile devices for ECG 
recordings as one of the primary motivations for denoising, 
the majority of the models are only evaluated internally 
within the arrhythmia database that was collected during 
1970s. Also, most of the models prioritize on the quantitative 
evaluation of denoising using signal to noise ratio (SNR), but 
the qualitative evaluation of the signals is often missing as 
only a few have performed tests to confirm that denoising 
also improves clinical interpretability. To address these 
issues, we propose Cardio-NAFNet, a non-linear activation 
free network for ECG denoising. Cardio-NAFNet utilizes the 
current (SOTA) framework used in image denoising domain 
with reduced dimensionality and complexity along with 
separate loss functions to tailor the framework towards ECG 
signal denoising. We conducted three experiments designed to 
independently prove Cardio-NAFNet's superior performance 
to the current SOTA model in an identical environment using 
the arrhythmia database, enhanced clinical interpretability 
through rhythm-based classification, and generalizability 
with an external validation dataset composed of real-world 
mobile ECG signals. 

Method
Experiment Design

The first experiment’s objective is to evaluate Cardio-Net’s 
performance against that of the current SOTA model (CAE-
CGAN)[21] in an identical testing environment. We prepared 
10 records from Physionet’s arrhythmia database[24]. The 
10 records are 100, 101, 106, 112, 117, 121, 123, 209, 220, 
and 228 and uses MLII lead. Then we split each record into 
samples with lengths of 512, which is about 1.2 seconds with 
the dataset’s sampling rate of 360Hz. For training and testing, 
we used 8:2 random split. The second experiment’s objective 
is to validate our argument that denoised samples should not 
only have enhanced SNR, but also improved interpretability. 
We aim to demonstrate improved classification results with 
beat and rhythm labels. The records were resampled to 64Hz, 
then split into samples length of 512, which is 8 seconds long. 
To split the signals, we visited every annotation point, which 
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exists with every beat, then chose point at random to be the 
center of the sample, where the distance from the center to 
the annotation point was always less than the quarter of the 
total sample length. With this method, we were able to create 
samples that were multi-labeled with their rhythm types and 
their beat types. We trained a convolution neural network 
(CNN) classifier with clean ECG samples from the arrhythmia 
database, then evaluated its performance using unseen clean 
samples, noisy samples, and denoised samples. The third 
experiment was designed to highlight the generalizability 
of our model by utilizing an independent dataset from 
DECAAF-II[25]. We retrained Cardio-NAFNet to suit the 
samples from DECAAF-II[25], which are measured at 200Hz 
with a 20 second window, providing sample length of 4000. 
The training data was generated using the same framework 
as the second experiment, but with sampling rate of 200Hz 
and sample length of 20 seconds. After the samples were 
denoised, we handed the samples over to the expert reviewers 
at Tulane University’s Heart and Vascular Institute. 

Study Data
The internal training and validation data are from two 

databases on Physionet. We pulled the ECG recordings from 
MIT-BIH Arrhythmia Database[24], and the three different 
types of noises from MIT-BIH Noise Stress Database[26]. 
The MIT-BIH Arrhythmia database is from 4000 long-
term Holter recordings that were obtained from Beth Israel 
Hospital Arrhythmia Laboratory. The arrhythmia database 
contains 23 records that were chosen at random from the 
aforementioned dataset, and 25 recordings that were selected 
for containing clinically important phenomena. Overall, the 
database contains 48 records where the average length of the 
records is around 30 minutes long. While most records have 
modified limb lead II (MLII) as the first lead, a few records 
did not contain MLII due to surgical dressings on the patients, 
hence we removed records 102, and 104 from the dataset. 
All recordings are digitized at a sampling rate of 360Hz. The 
recordings in the database are labeled with 20 categories of 
beat annotations and 15 categories of rhythm annotations. 
The subjects were 25 men aged 32 to 89 years, and 22 women 
aged 23 to 89 years. The MIT-BIH Noise Stress Database 
includes three half hour recordings of 3 types of noise typical 
in ambulatory ECG recordings. The three noise records are 
baseline wander (BW), muscle artifact (MA), and electrode 
motion (EM) artifact. To evaluate the denoising capabilities 
of our model in comparison with the results in CAE-
CGAN[21], we created 42 different scenarios of denoising 
which are combinations of the three noise types (EM, BW, 
MA, EM+BW, MA+BW, EM+MA, EM+MA+BW) and 
varying levels of signal to noise ratio (SNR) from 0dB to 5dB. 

An external validation dataset was prepared to ensure the 
generalizability of Cardio-NAFNet. We randomly selected 
222 ECG strips from the DECAAF-II Trial[25], which are 
the recordings used to track the outcome of 843 patients who 

received atrial fibrillation ablation from 44 sites around the 
world. The strips are recorded using single-lead handheld 
devices called “ECG Check”. The length of the recordings are 
generally around 30 seconds with a sampling rate of 200Hz. 
As the strips are unfiltered raw recordings from a handheld 
device, we deem the recordings here to be “real world” 
examples of noisy ECG signals with large variance in noise 
types and magnitude. The strips were thoroughly reviewed 
by intra and inter reviewers that were all expert physicians. 

Preprocessing
As the objective of the three experiments differ, the 

length of the samples in each experiment also differs. In the 
first experiment, we pulled record 103, 105, 111, 116, 122, 
205, 213, 219, 223, 230 for training and sliced the records 
to sample lengths of 512. Considering the sampling rate of 
360Hz in the arrhythmia database, each input signals are 
roughly 1.4 seconds long. For the second experiment, we 
wanted to preserve the rhythm labels; hence, we resampled 
the records to 64Hz, then the sample lengths of 512 again, 
resulting with 8 second strips. For the final experiment, we 
resampled the signals to 200Hz to match the sampling rate of 
the records in the external validation dataset, then sliced the 
records to sample lengths of 4000, resulting with 20 second 
strips. After resampling and slicing, all training and internal 
validation samples went through the steps below to generate 
simulated noisy signals. 

The generation of the training data is intuitive. We inject 
the combinations of noise into the clean ECG samples from 
the arrhythmia database, arriving at three different variations 
of the signals – the clean ECG samples, the injected noise, 
and the simulated noisy ECG sample. The objective of the 
Cardio-NAFNet is to receive simulated noisy ECG samples 
and generate denoised samples that closely resemble their 
corresponding original ECG samples. When injecting the 
noise into the original ECG signals, we measure the signal to 
noise ratio (SNR) by the following equation. 

To provide various mixtures of noise by providing a 
random length, a random signal to noise ratio (SNR) to 
a randomized segment in an ECG signal. For validating 
samples, we created 42 different testing environments by 
fixing the signal to ratio to integers from 0dB to 5dB and 
providing all combinations of baseline wander, muscle 
artifacts, and electrode motion artifacts. We fixed the signal 
to ratio of generated noisy signals by calculating a that is 
provided by the following equation: 
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where  represents the simulated noisy signals,  represents 
individual clean ECG sample from the arrhythmia database,  

 is the noise,  is the number of samples, and represents 
the constant that is multiplied to the noise to generate noisy 
samples at fixed SNR. With the formulas above, we generate 
combinations of simulated noisy ECG samples at fixed SNR 
from 0dB to 5dB with all combinations of noise types. We 
then normalized the signals using min-max normalization:

For the external validation dataset, we chose to slice the 
recordings into 20 second windows by choosing the starting 
point of the window to be a random point in the first 10 
seconds of the signal due to a small variance in the length of 
the recordings. We also performed min-max normalization to 
all samples. 

Network architecture
Our Cardio-NAFNet resembles the original structure 

of NAFNet [27] with reduced complexity and dimension 
to transform the model’s original framework dedicated to 
2-dimentional image restoration to ECG signal restoration. 
The network follows U-Net architecture where we utilize an 
encoder and a decoder with skip connections. The encoder is 
comprised of 10 NAFBlocks and the decoder is comprised 
of 4 NAFBlocks as shown in Figure 1b. The generalizability 
of encoder-decoder architecture has been questioned before, 
and we provide evidence that model performance holds 

with an external validation dataset. For training, Cardio-
NAFNet receives batches that comprise pairs of noisy ECG 
signal generated from the preprocessing steps and their 
corresponding original ECG strips unaltered by noise. The 
matching original ECG signals are only used to calculate 
the loss by taking the distance of the denoised output to the 
original signal. Each NafNet’s Block consists of layers without 
nonlinear activation functions (e.g., sigmoid, softmax, ReLu, 
etc). The block consists of Layer Normalization, pointwise 
convolution, depth wise convolution, simple channel 
attention, simple gate, elementwise multiplication/addition, 
and dropout layers in the order described in figure. The core 
difference between NAFNet’s Block versus the feed forward 
networks (FFN) in transformers is in the simple gate, which 
allows the entire block to be free of nonlinear activation 
functions. See Figure 1a for the structure of NAFBlock.

Mean Squared Error (MSE)  is adopted to measure 
the differences between denoised signals and clean signals. 
Similar to Wang et al., is used to measure the maximum 
difference between denoised and clean signals. It helps the 
model to capture the local characteristics of ECG signals. 

where  indicates denoised signals and  indicates clean 
signals. N represents the total number of samples. Our total 
loss function is defined as:

Figure 1: Figure 1a describes the structure of the Block using Mobile Convolution (MB Block) and Feed Forward Network (FFN) Block with 
changes to the attention layers using simple channel attention (SCA) and simple gate along with drop out layers.  Figure 1b describes the overall 
U-shaped architecture of Cardio-NAFNet where the left side represents encoder with 10 NAFBlocks and the right side is the decoder with 4 
NAFBlocks. The decoder also receives maps from the encoder blocks using skip connection.
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where  and  are weighted coefficients. Through our 
experiments, we chose  and .

We train models with AdamW optimizer with learning 
rate of 0.0001 ( ). The batch size is 256. 

Evaluation
The performance is measured by root mean square error 

(RMSE) and SNR as follows:

where  is the original clean signal,  is denoised signal, 
and  is the number of samples. RMSE indicates the 
difference between two signals. While the SNR formula for 
the evaluation may seem different from the one introduced 
to prepare the training samples, both formulas essentially 
represent the same ratio of the ECG signal to the noise as  

 is the remaining noise after the signal was denoised. 
The RMSE and SNR possess an inverse relationship where 
smaller RMSE values indicate larger SNR. Cardio-NAFNet’s 
objective is to minimize RMSE and maximize SNR, which 
indicates a stronger power of the ECG signal to the noise.  

The samples from DECAAF-II dataset were only used 
for external validation. We highlight that the samples from 
DECAAF-II dataset are real world examples of unfiltered 
mobile ECG samples as the patients submitted the data from 
home during the follow up period of the trial; thus, it is 

impossible to measure the SNR of these samples as we do not 
have a clean version, nor the noise separated from the signal. 
We provided 222 original samples and their corresponding 
denoised samples to the physicians at Tulane University’s 
Heart and Vascular institute to review the quality of denoising 
with the following scale. 
Signal Quality Scale:
1.	 Uninterpretable
2.	 Signal suffers from heavy combinations of baseline 

wandering, muscle artifacts and etc. Some beats are not 
recoverable, but the trend of the rhythm is identifiable to 
make an educated guess

3.	 Signal demonstrates heavy amplitudes of noise, but all 
beats are clear and rhythm is identifiable

4.	 Signal contains very minor noise but the rhythm is 
interpretable 

5.	 Signal shows no presence of noise

Results
In the first experiment, we created an identical 

environment to that of CAE-CGAN’s experiment to provide 
a direct comparison of Cardio-NAFNet’s performance to 
CAE-CGAN’s performance[21]. Table 1 demonstrates that 
Cardio-NAFNet’s performance has a significant improvement 
in all noise combinations at all noise levels, resulting in a 
combined average difference of 11.76dB. In the supplement, 
we also provide results to compare the results with not only 
CGAN, but also with Improved denoising autoencoder[13], 
and adversarial method [21, 28, 29]. We note that while our 
model follows the general autoencoder architecture, the skip 
connections from the encoder to the decoder and utilizing 
NAFBlocks instead of ConvBlocks provide a significant 
improvement in results. 

 
Figure 2: The denoised outputs from Cardio-NAFNet are in green, the clean ECG signals from the arrhythmia database are in blue, and the 
simulated noisy signals are in red. Cardio-NAFNet takes the signals in red as an input and uses the signals in blue only to calculate the loss to 
produce the signals in green. The denoised outputs here are nearly indistinguishable from the original clean ECG samples.
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Figure 3: The denoised outputs from Cardio-NAFNet are in green and the unfiltered mobile ECG signals from DECAAF-II trial are in red. 
The records are in an order by their original signal quality score ranging from one to four.
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SNR Methods Denoised
Metrics

Noise Type
BW EM MA BW+EM BW+MA MA+EM BW+MA+EM Avg.

0dB
CGAN

SNR(dB) 39.59 40.09 39.09 40.08 40.43 40.38 39.49 39.88
RMSE 0.0031 0.0029 0.0033 0.0029 0.0028 0.0029 0.0031 0.0030

Cardio-NAFNET
(proposed)

SNR(dB) 53.38 52.97 51.70 51.80 52.19 51.31 51.55 52.13
RMSE 0.0027 0.0014 0.0024 0.0018 0.0026 0.0016 0.0017 0.0020

1dB
CGAN

SNR(dB) 41.29 42.31 41.21 42.42 42.57 42.67 41.92 42.06
RMSE 0.0025 0.0022 0.0025 0.0022 0.0021 0.0022 0.0023 0.0023

Cardio-NAFNET
(proposed)

SNR(dB) 54.69 54.45 53.27 53.05 53.75 52.75 53.04 53.57
RMSE 0.0016 0.0010 0.0018 0.0013 0.0020 0.0013 0.0013 0.0015

2dB
CGAN

SNR(dB) 41.87 43.04 41.78 43.22 43.23 43.38 42.66 42.77
RMSE 0.0023 0.0020 0.0023 0.0020 0.0020 0.0020 0.0021 0.0021

Cardio-NAFNET
(proposed)

SNR(dB) 55.39 54.89 53.89 53.54 54.52 53.28 53.66 54.17
RMSE 0.0013 0.0010 0.0014 0.0012 0.0015 0.0013 0.0011 0.0013

3dB
CGAN

SNR(dB) 42.09 43.26 41.96 43.41 43.36 43.65 42.86 42.94
RMSE 0.0023 0.0020 0.0023 0.0019 0.0020 0.0019 0.0021 0.0021

Cardio-NAFNET
(proposed)

SNR(dB) 55.86 55.07 54.10 53.72 54.99 53.47 53.96 54.45
RMSE 0.0010 0.0009 0.0013 0.0011 0.0012 0.0013 0.0010 0.0011

4dB
CGAN

SNR(dB) 41.96 43.04 41.74 43.20 43.13 43.40 42.65 42.73
RMSE 0.0023 0.0021 0.0024 0.0020 0.0020 0.0020 0.0021 0.0021

Cardio-NAFNET
(proposed)

SNR(dB) 55.92 54.95 54.04 53.63 55.09 53.37 53.87 54.41
RMSE 0.0012 0.0010 0.0021 0.0014 0.0017 0.0014 0.0012 0.0014

5dB
CGAN

SNR(dB) 41.10 41.75 40.59 41.80 41.93 42.03 41.28 41.50
RMSE 0.0026 0.0024 0.0027 0.0024 0.0023 0.0023 0.0025 0.0025

Cardio-NAFNET
(proposed)

SNR(dB) 55.52 54.26 53.14 53.04 54.41 52.56 53.17 53.73
RMSE 0.0024 0.0011 0.0033 0.0017 0.0021 0.0016 0.0014 0.0019

Table 1: Denoising results of 360Hz sampling rate by noise type and SNR

Methods Input 
SNR

Denoised
Metrics

Record Number
103 105 111 116 122 205 213 219 223 230 Avg.

Improved DAE

0dB

SNR(dB) 22.75 23.70 23.39 21.34 17.70 23.47 19.33 18.38 23.17 22.40 21.56
RMSE 0.0290 0.0330 0.0340 0.0350 0.0500 0.0330 0.0400 0.0410 0.0310 0.0390 0.0365

Adversarial 
Method

SNR(dB) 38.09 34.27 33.07 30.02 28.74 38.44 30.27 28.24 31.75 30.87 32.38
RMSE 0.0050 0.0080 0.0093 0.0115 0.0134 0.0048 0.0125 0.0150 0.0101 0.0119 0.0102

CGAN
SNR(dB) 39.49 38.89 39.65 40.97 39.76 38.45 41.28 40.40 39.72 42.34 40.09

RMSE 0.0022 0.0032 0.0040 0.0027 0.0026 0.0026 0.0031 0.0027 0.0029 0.0034 0.0029
Cardio-NAFNET
(proposed)

SNR(dB) 51.73 47.30 45.46 46.97 49.21 53.04 46.09 47.95 49.16 49.82 48.67
RMSE 0.0022 0.0036 0.0058 0.0045 0.0039 0.0017 0.0054 0.0042 0.0061 0.0036 0.0041

Improved DAE

1.25dB

SNR(dB) 22.97 23.94 23.57 21.82 18.76 23.57 19.79 19.07 23.55 22.54 21.96
RMSE 0.0290 0.0330 0.0330 0.0330 0.0420 0.0330 0.0370 0.0380 0.0300 0.0380 0.0346

Adversarial 
Method

SNR(dB) 38.56 34.79 33.45 30.77 29.28 38.96 30.68 29.21 32.19 31.11 32.90
RMSE 0.0049 0.0075 0.0089 0.0105 0.0126 0.0046 0.0119 0.0134 0.0096 0.0116 0.0096

CGAN
SNR(dB) 42.34 42.26 42.75 44.20 43.00 41.46 44.93 43.69 42.74 45.48 43.28

RMSE 0.0016 0.0021 0.0027 0.0018 0.0018 0.0017 0.0020 0.0018 0.0020 0.0023 0.0020
Cardio-NAFNET
(proposed)

SNR(dB) 53.32 49.05 48.91 49.03 51.06 54.98 47.31 49.31 51.15 52.57 50.67
RMSE 0.0016 0.0030 0.0059 0.0025 0.0021 0.0013 0.0053 0.0037 0.0034 0.0036 0.0032

Improved DAE

5dB

SNR(dB) 23.45 24.66 23.65 23.08 20.81 23.66 20.69 21.01 24.00 22.81 22.78
RMSE 0.0270 0.0300 0.0330 0.0300 0.0350 0.0300 0.0340 0.0300 0.0280 0.0370 0.0314

Adversarial 
Method

SNR(dB) 39.39 35.67 34.10 21.72 30.01 39.89 31.37 31.23 32.96 31.53 32.79
RMSE 0.0044 0.0068 0.0082 0.0095 0.0116 0.0041 0.0110 0.0106 0.0088 0.0111 0.0086

CGAN
SNR(dB) 41.05 40.72 41.18 42.65 41.89 40.29 42.72 42.03 41.43 43.56 41.75

RMSE 0.0018 0.0033 0.0056 0.0022 0.0020 0.0021 0.0026 0.0022 0.0024 0.0029 0.0027
Cardio-NAFNET
(proposed)

SNR(dB) 54.31 50.01 51.37 50.20 52.12 55.79 49.42 51.08 52.45 52.93 51.97
RMSE 0.0010 0.0028 0.0016 0.0015 0.0011 0.0008 0.0023 0.0023 0.0013 0.0012 0.0015

Table 2: Comparison of EM denoising results.
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Methods Input 
SNR

Denoised
Metrics

Record Number
103 105 111 116 122 205 213 219 223 230 Avg.

Improved DAE

0dB

SNR(dB) 23.78 25.40 23.31 23.51 20.07 20.07 21.30 23.02 24.25 22.72 22.74
RMSE 0.0260 0.0280 0.0340 0.0270 0.0500 0.0500 0.0320 0.0240 0.0270 0.0370 0.0340

Adversarial 
Method

SNR(dB) 40.26 39.49 34.13 32.81 32.09 39.70 31.64 31.23 34.59 32.36 34.83
RMSE 0.0032 0.0035 0.0066 0.0068 0.0075 0.0034 0.0086 0.0086 0.0059 0.0081 0.0062

CGAN
SNR(dB) 38.62 39.07 39.44 39.99 39.31 37.74 40.86 39.70 39.64 41.52 39.59
RMSE 0.0025 0.0031 0.0040 0.0030 0.0027 0.0027 0.0032 0.0030 0.0028 0.0039 0.0031

Cardio-NAFNET
(proposed)

SNR(dB) 53.29 48.96 49.13 46.49 50.25 54.30 45.68 44.19 51.66 51.02 49.50
RMSE 0.0023 0.0038 0.0070 0.0083 0.0026 0.0019 0.0105 0.0119 0.0034 0.0026 0.0054

Improved DAE

1.25dB

SNR(dB) 22.82 25.42 23.32 23.59 20.08 20.08 21.36 23.31 24.41 22.74 22.81
RMSE 0.0260 0.0280 0.0340 0.0270 0.0500 0.0500 0.0320 0.0270 0.0370 0.0370 0.0330

Adversarial 
Method

SNR(dB) 40.72 39.87 34.53 33.51 32.42 40.34 32.05 32.09 35.12 32.44 35.31
RMSE 0.0031 0.0034 0.0063 0.0063 0.0072 0.0031 0.0082 0.0078 0.0056 0.0080 0.0059

CGAN
SNR(dB) 40.83 41.56 42.42 42.68 41.70 40.06 43.63 41.95 41.92 44.47 42.12
RMSE 0.0019 0.0023 0.0028 0.0021 0.0021 0.0020 0.0023 0.0023 0.0022 0.0026 0.0022

Cardio-NAFNET
(proposed)

SNR(dB) 53.92 50.29 49.66 48.59 51.38 55.06 47.87 46.93 52.16 51.78 50.76
RMSE 0.0025 0.0029 0.0077 0.0066 0.0014 0.0024 0.0076 0.0104 0.0035 0.0036 0.0049

Improved DAE

5dB

SNR(dB) 23.89 25.45 23.35 23.76 20.08 20.08 21.46 24.08 24.64 22.79 22.96
RMSE 0.0250 0.0270 0.0340 0.0260 0.0500 0.0500 0.0310 0.0210 0.0260 0.0370 0.0330

Adversarial 
Method

SNR(dB) 41.60 40.56 35.27 34.99 32.89 41.73 32.89 34.05 36.33 35.58 36.29
RMSE 0.0027 0.0031 0.0058 0.0053 0.0068 0.0027 0.0074 0.0062 0.0048 0.0079 0.0053

CGAN
SNR(dB) 40.09 40.29 41.18 41.79 40.72 39.52 42.63 40.71 40.87 43.15 41.10
RMSE 0.0021 0.0027 0.0033 0.0024 0.0023 0.0022 0.0026 0.0027 0.0025 0.0031 0.0026

Cardio-NAFNET
(proposed)

SNR(dB) 54.25 50.20 51.37 48.87 51.56 55.23 49.96 49.25 52.65 52.04 51.54
RMSE 0.0016 0.0027 0.0045 0.0094 0.0012 0.0009 0.0040 0.0051 0.0021 0.0015 0.0033

Table 4: Comparison of BW denoising results.

Methods Input 
SNR

Denoised
Metrics

Record Number
103 105 111 116 122 205 213 219 223 230 Avg.

Improved DAE

0dB

SNR(dB) 21.38 24.72 23.15 19.22 19.57 24.23 19.59 18.80 22.91 22.58 21.62
RMSE 0.0340 0.0300 0.0350 0.0450 0.0400 0.0310 0.0380 0.0390 0.0320 0.0380 0.0360

Adversarial 
Method

SNR(dB) 41.36 36.49 35.90 35.47 31.06 40.58 33.73 32.37 33.46 33.98 35.14
RMSE 0.0042 0.0073 0.0079 0.0107 0.0126 0.0045 0.0100 0.0112 0.0100 0.0098 0.0088

CGAN
SNR(dB) 37.94 38.28 39.21 39.81 38.28 36.98 40.31 39.65 39.00 41.42 39.09

RMSE 0.0027 0.0035 0.0042 0.0030 0.0031 0.0029 0.0035 0.0030 0.0031 0.0039 0.0033
Cardio-NAFNET
(proposed)

SNR(dB) 53.66 50.29 51.20 49.55 51.19 54.73 48.74 50.14 52.49 52.28 51.43
RMSE 0.0023 0.0025 0.0030 0.0025 0.0019 0.0017 0.0047 0.0039 0.0013 0.0020 0.0026

Improved DAE

1.25dB

SNR(dB) 22.41 24.86 23.27 20.22 20.02 24.49 19.78 19.63 23.41 22.60 22.07
RMSE 0.0310 0.0290 0.0340 0.0400 0.0380 0.0300 0.0370 0.0340 0.0300 0.0380 0.0340

Adversarial 
Method

SNR(dB) 42.10 37.46 36.16 33.67 31.88 41.19 34.26 33.40 34.36 34.22 35.87
RMSE 0.0038 0.0065 0.0076 0.0093 0.0115 0.0042 0.0094 0.0100 0.0090 0.0096 0.0081

CGAN
SNR(dB) 40.59 41.43 42.74 42.50 41.33 39.67 43.79 42.68 41.75 44.88 42.14

RMSE 0.0019 0.0023 0.0027 0.0022 0.0021 0.0021 0.0022 0.0021 0.0022 0.0024 0.0022
Cardio-NAFNET
(proposed)

SNR(dB) 55.02 51.66 52.12 50.72 52.18 56.21 49.86 51.15 53.75 53.26 52.59
RMSE 0.0010 0.0020 0.0019 0.0021 0.0019 0.0009 0.0039 0.0047 0.0010 0.0019 0.0021

Improved DAE

5dB

SNR(dB) 23.33 25.13 23.33 22.41 20.63 24.67 20.63 21.97 24.21 22.63 22.89
RMSE 0.0270 0.0280 0.0340 0.0310 0.0360 0.0300 0.0340 0.0270 0.0280 0.0380 0.0310

Adversarial 
Method

SNR(dB) 43.24 39.55 36.66 35.88 33.50 42.22 34.95 35.38 36.35 34.55 37.23
RMSE 0.0033 0.0050 0.0072 0.0072 0.0096 0.0037 0.0087 0.0080 0.0072 0.0092 0.0069

CGAN
SNR(dB) 39.34 39.65 40.66 40.92 40.08 38.25 42.18 41.08 40.42 43.23 40.59

RMSE 0.0023 0.0030 0.0035 0.0026 0.0025 0.0026 0.0028 0.0025 0.0025 0.0030 0.0027
Cardio-NAFNET
(proposed)

SNR(dB) 55.50 51.77 53.28 51.37 52.84 56.33 51.24 52.36 54.16 53.79 53.26
RMSE 0.0008 0.0016 0.0011 0.0013 0.0010 0.0008 0.0014 0.0012 0.0009 0.0011 0.0011

Table 3: Comparison of MA denoising results.
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Input SNR Denoised
Metrics

Noise Type

BW EM MA BW+EM BW+MA MA+EM BW+MA+EM Avg.

0dB
SNR(dB) 49.33 51.00 46.81 51.70 49.47 50.99 51.34 50.09

RMSE 0.0019 0.0015 0.0029 0.0013 0.0018 0.0015 0.0014 0.0018

1dB
SNR(dB) 50.98 52.52 49.22 52.71 51.35 52.79 52.86 51.78

RMSE 0.0015 0.0013 0.0021 0.0012 0.0015 0.0012 0.0012 0.0014

2dB
SNR(dB) 51.69 53.22 50.38 53.33 52.19 53.24 53.14 52.47

RMSE 0.0014 0.0012 0.0017 0.0011 0.0013 0.0011 0.0013 0.0013

3dB
SNR(dB) 51.75 53.52 50.69 53.72 52.03 53.42 53.61 52.68

RMSE 0.0014 0.0011 0.0016 0.0011 0.0014 0.0011 0.0012 0.0013

4dB
SNR(dB) 51.19 53.89 50.55 53.51 51.71 53.38 53.33 52.51

RMSE 0.0015 0.0011 0.0016 0.0012 0.0014 0.0011 0.0011 0.0013

5dB
SNR(dB) 50.41 53.11 49.54 52.82 51.05 53.31 52.88 51.87

RMSE 0.0017 0.0012 0.0018 0.0012 0.0015 0.0011 0.0012 0.0014

Table 5: Denoising results of 8 secs samples with 64Hz sampling rate by noise type and SNR.

Noise Type Denoised
Metrics

Record Number

103 105 111 116 122 205 213 219 223 230 Avg.

BW
SNR(dB) 54.22 48.74 51.10 48.60 51.84 53.96 48.64 48.30 51.64 49.79 50.68

RMSE 0.0010 0.0028 0.0015 0.0019 0.0011 0.0011 0.0019 0.0019 0.0013 0.0018 0.0016

EM
SNR(dB) 55.90 54.38 53.86 49.46 53.66 55.75 50.48 51.33 53.08 52.93 53.08

RMSE 0.0008 0.0011 0.0010 0.0019 0.0009 0.0008 0.0016 0.0013 0.0011 0.0012 0.0012

MA
SNR(dB) 51.93 49.55 50.08 47.10 50.70 52.71 47.14 47.90 50.72 48.43 49.63

RMSE 0.0015 0.0020 0.0019 0.0022 0.0014 0.0016 0.0022 0.0020 0.0014 0.0021 0.0018

BW+EM
SNR(dB) 55.76 52.45 53.93 50.01 54.26 55.58 50.53 51.32 53.23 53.72 53.08

RMSE 0.0008 0.0016 0.0010 0.0018 0.0008 0.0009 0.0016 0.0013 0.0011 0.0011 0.0012

BW+MA
SNR(dB) 53.72 50.16 51.65 48.60 52.06 53.94 49.40 49.14 52.04 48.03 50.87

RMSE 0.0011 0.0021 0.0014 0.0020 0.0011 0.0011 0.0017 0.0016 0.0012 0.0021 0.0015

MA+EM
SNR(dB) 55.64 52.23 53.91 50.13 53.69 55.78 50.62 51.55 53.23 52.54 52.93

RMSE 0.0009 0.0016 0.0010 0.0017 0.0009 0.0008 0.0015 0.0012 0.0011 0.0013 0.0012

BW+MA+EM
SNR(dB) 55.99 52.75 53.97 49.93 53.96 55.66 50.54 51.26 53.14 50.97 52.82

RMSE 0.0008 0.0014 0.0010 0.0019 0.0009 0.0008 0.0015 0.0013 0.0011 0.0015 0.0012

Table 6: Denoising results of 8 secs samples with 64Hz sampling rate by record number and noise type.

Table 7: Classification comparison between clean, noisy, and 
denoised signals

Clean Noisy Denoised Improved

BW 98.03% 73.27% 97.90% 24.62%

EM 98.02% 71.42% 97.88% 26.46%

MA 97.91% 73.10% 97.52% 24.42%

BW+EM 98.05% 70.25% 97.97% 27.72%

BW+MA 98.04% 73.36% 97.93% 24.57%

MA+EM 97.76% 70.28% 97.58% 27.30%

BW+MA+EM 97.83% 69.73% 97.83% 27.99%

For the second experiment, we demonstrate that not only 
our model performance holds when we stretch the input to 8 
seconds, but also the ECG rhythm classifications drastically 
improved after denoising. The detailed SNR and RMSE 
results with 8 second samples can be found in Table 5 and 6. 
Figure 2 shows the original clean ECG from the arrhythmia 
database, a simulated ECG through our preprocessing, and 
the output of Cardio-NAFNet when it receives the simulated 
ECGs. As shown in the figure, while the simulated noisy 
signals contain a significant amount of noise, the denoised 
samples are nearly indistinguishable from the clean ECG 
signals during validation. Also, a pretrained 4 label classifier 
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that achieved .98 F-1 score with clean signals from the 
arrhythmia database was applied to the noisy signals and 
corresponding denoised signals. When applied with different 
noise types demonstrated in Table7, denoised signals had 
26% average improvement compared to the noisy signals. 

For the third experiment, we highlight the generalizability 
of Cardio-NAFNet’s by providing the denoised results from 
single-lead mobile ECG samples. The original samples and 
corresponding denoised examples can be found in Figure 
3. Above visual representation, the denoised signals were 
reviewed by expert physicians with the metric provided in 
Evaluation. The improved results can be found in Table 
3. In our proposed metric scaling from 1 to 5, the expert 
physicians’ scored the unfiltered signals from the DECAAF-
II a mean of 3.18 with a variance of 0.94, while the denoised 
signals achieved 4.46 with a variance of 0.91. We noticed 
that majority of the unfiltered recordings that were in 3 or 4 
range, meaning individual beats were identifiable, but with 
the presence of noise, was scored 5 after denoising.

Discussion
In this work, we present Cardio-NAFNet that outperforms 

existing state-of-the-art methods in quantitative measures. 
We also augment the conventional experiment design of 
quantitative ECG denoising performance evaluation by 
qualitative evaluation methods and an external validation 
of mobile ECG signals for generalizability. SNR served as 
a popular metric to evaluate the quality of a signal or image 
samples, but we believe that the most critical piece of ECG 
denoising is not to generate signals that are just visibly good, 
but to enhance the clinical interpretability of the signals. 
Previous literature demonstrated the average SNR and the 
classification results of the model’s denoised outputs when 

the ECG records are broken down into nearly a single second 
[20, 21, 30, 31], containing one to two beats. While Wang 
et al created an extensive design to test CAE-CGAN, we 
believe that the model performance should be also evaluated 
with longer signals as the irregularities in rhythm that cannot 
be captured in a single beat can have significant clinical 
implications. Also, generalizability has been regularly 
concerned in numerous publications when it comes to the 
AI models used in medicine [29, 32, 33]. AI models within 
ECG domain are no exception as different device types and 
patient population can cause AI models to underperform 
when it is exposed to an unseen dataset. Demonstrating the 
generalizability of denoising models with mobile ECGs 
has been a difficult task due to a limited number of datasets 
with clean ECG samples and noise samples that are publicly 
available. Since the rise of consumer level ECG devices such 
as AliveCor Kardia or Apple Watch, the validation of AI-
based ECG model’s generalizability with single lead mobile 
ECG signals has been imperative. Numerous authors have 
addressed the generalizability of their models by stratifying 
the dataset at a patient level and providing unseen leads to the 
model during tests using MIT-BIH Physionet’s Arrhythmia 
database [5-10, 12-14, 17-21, 30, 31, 34-37]. Despite the 
attempt, these models prove its generalizability within the 
Arrhythmia database, which contains Holter recordings from 
48 patients recorded at a single lab during 1975 to 1979.  We 
argue that previously suggested experimental framework does 
not suffice to prove the model’s generalizability, especially 
when the large demands arise from mobile ECG signals. 

Cardio-NAFNet, with three experiments, validated its 
performance and addressed all the limitations above. The three 
experiments were designed with the following objectives:

1.	 Confirm superior performance in an identical training and 
testing environment to the current SOTA model. 

2.	 Validate Cardio-NAFNet’s capabilities with 8 second 
recordings with SNR and enhanced classification results. 

3.	 Prove the generalizability of Cardio-NAFNet through an 
external validation. 

Our external validation highlights Cardio-NAFNet’s 
generalizability not only at the device level, but also at a 
patient population level as the data was collected from 44 
sites around the world. We also note that most of the original 
samples that were hardly interpretable stayed uninterpretable 
after denoising, which is reasonable.

Conclusion
In this paper, we propose a novel AI ECG denoising 

method based on NAFNet architecture and extensive 
experiment designs to evaluate the denoised signal’s clinical 
interpretability and generalizability. Cardio-NAFNet further 
contributes to ECG denoising where the previous methods 

 

Table 8: The histogram demonstrates the distribution of signal 
quality when the unfiltered mobile ECG samples and their 
corresponding denoised outputs from Cardio-NAFNet when 
reviewed by physicians. While the majority of the signals that were 
uninterpretable stayed uninterpretable, Cardio-NAFNet was able to 
significantly improve the quality of the signals as shown in figure 3.
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have been limited by employing the structure of simplified 
attention blocks in a U-Net architecture with loss functions 
tailored to ECG denoising. Cardio-NAFNet consistently 
achieved SNR above 50dB in majority of the extensive testing 
environment, which is a mark that no other model in literature 
has achieved so far. The ECG denoising performance was 
not only evaluated by SNR, but also qualitatively with a pre-
trained ECG classification model and expert physicians to 
demonstrate improved classification results and enhanced 
signal quality. Overall, Cardio-NAFNet shows promising 
results in ECG denoising in both Holter recordings and 
mobile single lead recordings, proving its generalizability 
and clinical significance. Overall, Cardio-NAFNet provides 
a denoising method to standardize and stabilize the ECG 
recordings from mobile devices. In our future studies, we 
plan to apply Cardio-NAFNet to the mobile ECG data and 
translate innovative AI works that have been done with 12-
lead ECG signals in clinics or labs to be applicable to the 
mobile ECG recordings. 
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