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Abstract
The goal of this paper was to develop a machine learning (ML) platform 

for categorization of viruses using transmission electron microscopy (TEM) 
images. More efficient pathogenesis, treatment and vaccine development 
strategies become possible once the virus family is identified. We used 
three deep learning (DL) pretrained models namely AlexNet, VGG16 
and SquezzeNet. The classifier portion of the models was modified and 
trained for the available virus dataset. We used 20% of the images (320) 
for testing the DL models. The dataset included TEM images from 16 virus 
families including novel corona virus (SARS-CoV-2). We also used two 
unsupervised methods to analyze image clusters: principal component 
analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE). 
The results from PCA and t-SNE were visualized based on two components. 
The AlexNet, VGG16 and SqueezeNet models were able to predict the 
categorization of test images with accuracy 77.8±4.5%, 75.3±4.7% and 
77.8±4.5%, respectively. The receiver operating characteristic (ROC) 
curves had area under curve (AUC) greater than 0.9. Our PCA and t-STE 
results suggested SARS-CoV-2 is closest to Influenza family of viruses. 
Using DL models, TEM images can be classified into virus families. This 
ML approach may lead to more accurate and faster virus TEM image 
classification tools, which is particularly important for pandemic situations 
such as with the current SARS-CoV-2 crisis.
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Introduction
Currently, the world is fighting against novel coronavirus disease 

(Covid-19) pandemic caused by the novel corona virus (SARS-CoV-2). This 
pandemic has paralyzed economy, social activities, recreational activities, 
and many aspects of human life. Many people have died and there is an 
estimation of large number of deaths in the coming months. As of today (30 
April 2020), there are 1,069,826 confirmed cases of SARS-CoV-2 patients, in 
the US alone, and 3,257,520 confirmed cases worldwide; and there are 63,006 
deaths in US alone, and 233,416 deaths worldwide [1]. This pandemic will 
continue to take lives, if not treated. Research centers are racing against time 
to find a solution for this deadly virus in susceptible patients. 

One important tool to study a virus is transmission electron microscopy 
(TEM) which has been reported for “diagnostic modality” of all type of viruses 
[2], and “catch all method” in virology for identifying all pathogens [3]. A 
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virus TEM image includes the nucleocapsid of the virus, the 
envelop, and the envelop proteins. The nucleocapsid contains 
the virus genetic material; the envelop is a membrane that 
encloses the nucleocapsid; and the envelop proteins are 
projections outside the envelop. These projections are used 
for virus identification [4]. Classification of viruses is based 
on size and shape, chemical composition and structure of the 
genome, and mode of replication [5]. TEM images are also 
used to categorize viruses based on morphological patterns 
[3]. In fact, the morphological pattern is a powerful criterion 
to categorize viruses [3]. For example, Marburg appears 
shorter than Ebola virus with spikes different in shape [4]. 
Although these two criteria are not sufficient to distinguish 
the two viruses, virus texture has been reported to do so [6]. 
Since images obtained from TEM include all pathogens in the 
sample scanned including viruses and debris [4, 7], analysis of 
TEM images requires high level of expertise to decipher and 
interpret [8]. TEM images are low-resolution, need expertise, 
and their analysis is time-consuming [8]. Manual analysis of 
TEM images is prone to error. Human analysis can fail to 
detect a virus particle, and the virus specifications may not be 
detected thoroughly. On the other hand, a non-virus particle 
can be mistakenly categorized as virus, or a virus may be 
mistakenly categorized into a non-virus family. This false 
positive and false negative diagnosis may put high burden 
on the subject as he/she will spend time and money to visit 
clinicians and even undertake costly/harmful interventions/
medication. Also, false positive and false negative may 
mislead scientist for developing solutions for novel viruses 
including the novel corona virus.

Although machine learning (ML) has been extensively 
used for classification of images, there are few studies that 
used ML to analyze TEM virus images [4, 7]. In particular, 
in many applications deep learning (DL) has been used to 
classify images. DL has been successfully used for computer 
vision applications in self-driving cars [9] and medical 
imaging [10] such as diabetic retinopathy [11], mammography 
[12] and other applications. There are large DL models that
have been trained using large image sets, and they can be
modified to categorize new images. This approach, known as
transfer learning, is particularly important when the available
dataset is limited [13]. The pretrained models eliminate the
time required to train large DL models, which is important
given the long runtime and hardware limitations for training
these models.

The goals of this project were two folds. First, to develop 
a classifier for a dataset of viruses that includes SARS-
CoV-2, based on TEM images using pre-trained DL models. 
To the best of our knowledge, pretrained DL models have not 
been used for classification of TEM virus images. Second, 
we aimed to analyze virus TEM images by feature reduction 
methods namely principal component analysis (PCA) and a 

relatively new technique, t-distributed stochastic neighbor 
embedding (t-SNE) [14]. For classification of TEM images, 
we use three pretrained models including VGG [15], AlexNet 
[16] and SqueezeNet [17]. We will compare SARS-CoV-2
with other viruses based on the available 15 virus families.

Methods
We used a dataset including negative staining TEM 

images from 15 virus types available from Center for 
Image Analysis, Uppsala University [6]. We also used 
TEM images from SARS-CoV-2 available from National 
Institute of Allergy and Infectious Diseases Rocky Mountain 
Laboratories (NIAID-RML) [18]; created 25 images from 
this resource, and using image augmentation methods, 
generated 100 images (rotation, flip and noise). The 15 
virus families include: Adenovirus, Astrovirus, Crimean-
Congo hemorrhagic fever (CCHF), Cowpox, Dengue, Ebola, 
Influenza, Lassa, Marburg, Norovirus, Norovirus, Orf, 
Papilloma, Rift Valley, Rotavirus, West Nile. In total there 
were 1,600 images. All images were processed to have the 
same mode (grey scale) and size (41×41). We used Python 
to develop models. DL computations were performed on 
Google Collaboratory GPU processors whereas PCA and 
t-SNE computations were performed on CPU processors.

ML models
We used VGG [15], AlexNet [16] and SqueezeNet [18] 

models to classify virus TEM images, and compare SARS-
CoV-2 based on available classified TEM images. All images 
were standardized based on each model requirements (PyTorch 
documentation [19] ). Each of these models has two parts. 
One part basically learns the features in an image database, 
and the other part, classifies and learns the classification of 
images for a new dataset. Both parts can be trained for a new 
dataset, depending on the application specifications and new 
datasets. In our implementations, only the classifier part of 
the model was trained using the available virus datasets, and 
the pre-trained weights for the feature extraction part of the 
model. We used negative log likelihood loss (NLLoss) and 
Adam optimizer for the DL models (PyTorch documentation 
[19]). 

AlexNet [16] is composed of 2-dimensional convolutional 
layers (Conv2d), max-pooling (MaxPool), rectification 
(ReLU) non-linearity. The outputs of the pretrained network 
were 9,216 features. We modified the classifier network 
composed of a fully connected (FC) layer following a ReLU 
layer, a FC layer and a logarithmic softmax layer. The 
classification network input layer had 512 neurons, and the 
last layer corresponded to 16 virus images in the dataset. 
The feature extraction part weights were from the pretrained 
model based on ImageNet dataset [20]. The classifier was 
trained using the virus dataset. There are different versions 
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of VGG families [15]. The feature recognition part of the 
model is from the pretrained model wrights using ImageNet 
dataset [20]. In this project, we used VGG16 (PyTorch 
documentation [15, 19]). The feature recognition part of this 
model is composed of Conv2d, MaxPool, and ReLU layers. 
The 25,088 outputs form the first part were connected to 
4,096 neurons in the input of the second part, the classifier. 
We modified the classifier to have FC layers, ReLU and 
logarithmic softmax layers (one FC layer followed by ReLU, 
followed by a FC layer followed by a softmax layer). The final 
softmax layer corresponded to 16 virus family TEM images. 
In the feature learning part, SqueezeNet is composed of 
Conv2d, MaxPool and ReLU layers. The classifier part of the 
model is composed of Conv2d, ReLU and adaptive average 
pooing. We also added a logarithmic softmax layer for 
inference purposes. Number of output classes were adjusted 
to match 16 virus types in the dataset which was connected 
to 512 channels from previous layer using a conv2d operator. 

PCA and t-SNE
We used PCA and t-SNE to assess the clustering of 

viruses based on the TEM images. For this purpose, we used 
PCA class in sklearn library [21]. This feature reduction 
method finds the orthogonal components of maximum 
variance in the data [22].  This method is used in this paper 
to visualize different virus types based on TEM images. 
We use the pixel values of images as the features of each 
image. The top PCs and the variance ration by each PC were 
computed. To visualize image proximity, we used the top two 
principal components (PCs) that were associated with the 
largest variability in images. The images were transformed 
into directions of the PCs, and the results were plotted. We 
also used t-SNE to visualize the clustering of images [14]. 
This method aims to map the images into two dimensions 
in such a way that it preserves proximity of points [23]. In 
regard to manifest algorithms, number of nearest points can 
be adjusted using a parameter called “perplexity” [23]. Also, 
number of iterations and learning rate can be adjusted. We 
tried different numbers as indicated in Table (1).

Statistical Analysis
To assess the performance of each DL model, confusion 

matrix and Receiver Operating Characteristic (ROC) curve 
were used. The ROC curve was created by two parameters 
as follows [24]:

True Positive Rate = 

False Positive Rate = 

We also used accuracy, precision and recall of test data 
results, as indicated below [24]:

Accuracy = 

Precision = 

Recall = 

To determine the performance of our DL models for a 
TEM virus image population, we computed the confidence 
interval (CI) of the accuracy provided by each model with 
95% probability. For this purpose, we used the equation 
below [25]:

where  is the accuracy of DL models for TEM 
images population,  is the DL accuracy for the 
test images sample considered in our study, and  is sample 
number which is equal to 320 in our study. It should be noted 
that the term population here refers to the population of virus 
families considered in this the present study.

Results 
DL models produced results for the 16 virus types (Figs. 

1 and 3), for which the performance was evaluated by test 
set results, confusion matrix and ROC curve. The training 
loss consistently decreased as number of epochs increased 
whereas, generally, test loss initially decreased but then 
increased. The results were used for the epoch where test 
loss was minimized (Fig. 2). The prediction accuracy by all 
models was larger than 0.7 (for the 2000 epochs considered). 
The confusion matrixes showed relatively high values of 
correct predictions for each virus family. The ROC curve for 
all DL models showed area under curve (AUC) larger than 
0.9 for all virus families (Fig. 3). The Squeeze Net provided 
highest accuracy (Table 2). When randomly selected test 
images were fed into the DL models, they provided correct 
predictions with relatively high probabilities (Fig. 1). For 
example, we input one image from West Nile group to the 
SqueezeNet model. The model predicted that the image 
belongs to West Nile group with a probability greater than 
other families (Fig. 1).

Perplexity Number of iterations Learning rate

30 1000 10

40 5000 50

50 10000 100

Table 1: Parameters used in t-SNE in sklearn

Classification Algorithm Accuracy (%) 95% CI
AlexNet 77.8 ±4.5%
VGG16 75.3 ±4.7%

SqueezNet 77.8 ±4.5%

Table 2: Training and test loss and accuracy (based on test data) for 
classification of 16 virus families using TEM images.
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Dengue Virus 

Probability Dengue Virus 

Probability 
West Nile Virus 

Probability 
Figure 1: Sample results for prediction of DL models. Top: AlexNet, middle: VGG, bottom: SqueezeNet. Images were available 
from Center for Image Analysis, Uppsala University [6] and NIAID-RML [18].
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Figure 2: Train (blue) and test (orange) loss during training. The train loss consistently decreased with epoch numbers. The epoch number 
where test error was minimized was used for inference.

Figure 3: The heat map and ROC for prediction by AlexNet (top), VGG (middle) and SqueezeNet (bottom). The AUC was larger than 0.9 for 
all cases. For the heat maps, the vertical and horizontal axes are actual and predicted values. The dashed diagonal line shows the random guess 
[24]. The class numbers are related to virus names as follows: Adenovirus: 0, Norovirus: 1, Orf: 2, Papilloma: 3, Rift Valley: 4, Rotavirus: 5, 
West Nile: 6, SARS-CoV-2: 7, Astrovirus: 8, CCHF: 9, Cowpox: 10, Dengue: 11, Ebola: 12, Influenza: 13, Lassa: 14, Marburg: 15, SARS-
CoV-2: 16.
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For all viruses, confusion matrixes were visualized with 
heat maps (Fig. 3). The prediction performance for the SARS-
CoV-2 image was better than other virus families for AlexNet 
and SqueezeNet. Although there were virus families from 15 
other groups that were misclassified as a SARS-CoV-2 virus, 
all SARS-CoV-2 viruses were correctly identified (confusion 
matrixes in Fig. 3, AlexNet and SqueezeNet).  The AlexNet 
and SqueezeNet models false positive (misclassification of a 
virus as SARS-CoV-2) and false negative (misclassification 
of a SARS-CoV-2 to another virus family) were both 0. The 
VGG model false positive and false negative were 2 and 0, 
respectively. The SqueezeNet model false positive and false 
negative were both 0. In terms of precision and recall, AlexNet 
and SqueezeNet both had precision = 1 and recall = 1. For 
VGG, precision and recall were 1, and 0.92, respectively. For 
all models and virus families, the AUC was greater than 0.9 
for all models (Fig. 3).

According to PCA analysis, the first 5 PCs contributed 
to 68.2% of total variance. The ratios of variance provided 
by the first 5 PCs were as follows: 24.7%, 14.3%, 11.5%, 
10.9%, 4.1%. With using only two PCs, the SARS-CoV-2 
was relatively closer to Influenza than other virus families 
(Fig. 4). Moreover, among the other 15 viruses, it was noticed 
that some virus families were relatively closer to others. For 
example, Marburg and Ebola were closer to each other than 
other virus families (Fig. 4).

The results from t-SNE analysis did not noticeably change 
after the parameters were altered (Table 1, Fig. 5). The 
results from t-SNT analysis showed that the SARS-CoV-2 
is more closely to Influenza virus among 15 viruses families 
considered, as it can be seen in three t-SNE plots (Fig. 5). The 
t-SNE plot also showed proximity of the virus families. For
example, Marburg and Ebola were close to each other, and
the Orf virus was closer to Dengue virus.

Discussion
Since the COVID-19 pandemic is currently threatening 

many human lives, there is an immediate need for better tools to 
identify novel viruses for pathogenesis, treatment and vaccine 
development for current pandemic and potential pandemics 
in future. We used DL for classification of SARS-CoV-2 
virus and 15 other types of viruses. We also showed that PCA 
and t-SNE can provide information about the similarity of a 
novel virus to other virus families. Using TEM images PCA 
and t-SNE, clustering results showed SARS-CoV-2 is closest 
to Influenza among 15 virus families considered in our study. 
Our approach helps to provide more accurate identification 
of a virus from TEM images, given high level of expertise 
required for analysis of TEM images, and also high chances 
of false positive or false negative in manual analysis of TEM 
images. To the best of our knowledge, this is the first study 
that uses pretrained DL models for classification of viruses 
from TEM images. 

The DL models used in this paper are relatively large 
models in terms of model parameters. Training of these 
models will need large datasets as well as time. Using 
pretrained models, we developed DL frameworks for 
identification of TEM images more efficiently in terms of 
time and data required to train the models. These models are 
pretrained using large datasets; i.e., the ImageNet dataset 
[20]. All the three DL models considered in this paper 
provided predictions with accuracy larger than 70.6% (at 
95% CI, Table 2), and the ROC curve showed areas larger 
than 0.9 (Fig. 3). Therefore, these DL models can be suitable 
candidates to further improve identification of viruses from 
TEM images. 

The results from PCA and t-SNT provided the closest 
family of SARS-CoV-2. According to PCA and t-SNT 
visualizations, the novel virus is close to Influenza family of 
viruses (Figs. 4 and 5). These results should be interpreted by 
caution, however, as more computational and experimental 
investigations are needed to assess the similarities between 
SARS-CoV-2 and Influenza. As observed from PCA and 
t-SNT results (Figs. 4 and 5), Marburg and Ebola are also
similar to each other. Because Marburg and Ebola are from
Filoviridae family virus families [26, 27], our PCA and t-SNE 
are in line with literature. Our results can provide insights
in future novel viruses to enable more rapid treatment and
vaccine development.

Figure 4: Clustering of virus families using PCA. According to this 
analysis, the SARS-CoV-2 (corona) is closer to Influenza than other 
virus families. Virus names are located at the average of viruses for 
the corresponding cluster.
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Params t-SNE

Perplexity: 40
iterations: 1500
learning rate: 50

Perplexity: 40
iterations: 5000
learning rate: 50

Perplexity: 50
iterations: 10000
learning rate: 100

Figure 5: Visualization of virus families based on TEM images, using t-SNE. In all plots, the SARS-CoV-2 is closer to Influenza than other 
virus families. Virus names are located at the average of viruses for the corresponding cluster.

One future advancement may be using our methodology 
for TEM images without negative staining [28]. If ML 
algorithms can classify TEM images without staining, it could 
further reduce time for virus studies. The virus images used in 
our study were negative staining TEM images as the dataset 
we had was composed of this kind of images [6]. Application 
of our methodology to TEM images without negative staining 
could show the capability of ML in classifying them if the 
dataset without staining becomes available. One of the 
limitations of this study was the limited number of SARS-

CoV-2 images (n=25 before image augmentation). We used 
image augmentation to generate more SARS-CoV-2 images 
from available TEM images. The results for prediction 
of SARS-CoV-2 family were relatively better than other 
families (AlexNet and SqueezeNet, Fig. 3). This result 
may be due to limited number of SARS-CoV-2 images, 
and using augmentation to produce more images. If we had 
more images, the images used for training would have more 
variability. Having more images can lead to more accurate 
predictions for future SARS-CoV-2 images. This limitation 
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can be addressed as more image data from this novel virus 
become available. 

Also, the dataset used in this study has limitations. The 
dataset can be larger in which case the DL classification 
predictions for the SARS-CoV-2 can be made more 
generalized. Moreover, there could be other virus families that 
were not considered in the dataset. Those virus families can be 
closer to the SARS-CoV-2 than 15 virus families considered 
in this study. As such, inclusion of more virus families would 
improve our SARS-CoV-2 clustering outcomes. Our results 
may be improved by adding more images from 15 viruses 
as well as by adding more virus families. The DL models 
predicted the family of each TEM image. In this study, we 
used three pretrained models namely AlexNet, VGG and 
SqueezeNet. Based on our approach, more pretrained models 
can be used to predict the virus families from TEM images. 
The final result can be based on the predictions by several 
DL models. Using this “ensemble approach”, the net outcome 
would classify a TEM image with higher accuracy than just 
using one model. 

In this study, we used three DL models. As indicated 
above, by considering more DL models, the results can be 
improved. Also, other ML models such as decision three 
algorithms and support vector machine algorithms can be 
added to the models. The results obtained from single models 
or ensemble of models can be compared to develop better 
models for classification of viruses based on TEM images. 
Our approach can lead to faster, more convenient and more 
reliable automatic methods for classification of TEM images. 
These automatic methods can contribute to overt pandemics 
by early identification or speed up recovery by targeting the 
precise structure of the virus.

Conclusions
The present findings suggest that transfer learning can be 

used to develop DL models for classification of viruses from 
TEM images, including the SARS-CoV-2 virus. Also, our 
results suggest that SARS-CoV-2 virus belongs to Influenza 
family of viruses. This result needs further investigation. We 
used 16 virus families. Our approach can be improved once 
we have more TEM images from SARS-CoV-2, and 15 virus 
families as well as more family of viruses. The closeness of 
Ebola and Marburg in PCA and t-SNE visualizations in our 
results, was in agreement with literature. Our study showed 
pretrained DL models as well as clustering methods can 
provide reliable classification of virus from TEM images.
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