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Abstract
Rotator Cuff Injuries (RCI) are highly prevalent and characterized by 

shoulder pain, restricted shoulder movement, and difficulty with overhead 
activity, radiating pain in the deltoid muscle, and atrophy of the rotator 
cuff muscles. Increasing age, hand dominance, smoking, hypertension, 
hyperlipidemia, and obesity are common risk factors. Chronic inflammation 
plays a critical role in the underlying pathogenesis. RCI accounts for 
massive healthcare expenditure costing about $15,000 per repair, and over 
4.5 million physician visits per year, however, there is still no therapeutic 
target to improve clinical outcomes. Mitochondrial biogenesis in response 
to inflammatory stimuli supports increased cellular energy requirements, 
cell proliferation, and differentiation. This suggests that mitochondrial 
biogenesis may play a role in healing RCI by serving as a protective factor 
against free oxygen species and promoting homeostasis within the rotator 
cuff. There is evidence highlighting the potential therapeutic benefits 
of mitochondrial biogenesis in various inflammatory diseases, but no 
study explored the role of mitochondrial biogenesis in rotator cuff tears. 
Since hypercholesterolemia is a risk factor for RCI, we investigated the 
effects of hypercholesterolemia on the expression of PGC-1α, a marker 
of mitochondrial biogenesis, in rotator cuff muscle. The findings revealed 
an increased gene and protein expression of inflammatory mediators and 
PGC-1α, suggesting enhanced inflammation and increased mitochondrial 
biogenesis due to hypercholesterolemia. Additional studies are warranted 
to further investigate the chronic effect of hyperlipidemia induced RCI 
to elucidate the cause of insufficient mitochondrial biogenesis unable to 
protect the rotator cuff and the therapeutic effect of promoting mitochondrial 
biogenesis.
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Introduction
Rotator Cuff injury (RCI) is a prevalent cause of shoulder pain, with 

population studies suggesting that over 20% (16% to 34%) of the US 
population have a full-length tear throughout their lifetime [1-3]. RCI has 
many burdensome effects on activities of daily living due to shoulder pain, 
restricted shoulder movement to avoid pain, pain and difficulty with overhead 
activity, radiating pain in the deltoid muscle, and atrophy of the rotator cuff 
muscles (supraspinatus, subscapularis, infraspinatus, and teres minor) [4-6].  
This can cause psychological and financial distress to patients affecting their 
earnings, missed workdays, and disability payments as more than two-thirds 
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of RCI patients are of working age [7]. Overall, RCI accounts 
for massive healthcare expenditure costing about $15,000 per 
repair, and over 4.5 million physician visits per year [1].

Risk factors associated with RCI include age, hand 
dominance, smoking, hypertension, and body weight; obesity 
is of particular interest as its molecular association with 
RCI has not been defined [8-13]. Hyperlipidemia, directly 
related to obesity, is a metabolic disease characterized by 
increased blood lipids leading to inflammation, oxidative 
stress, and tissue degradation [3]. Hyperlipidemia interferes 
with the repair process via a variety of mechanisms involving 
inflammation, osteoclast migration, xanthoma accumulation, 
and extracellular matrix disorganization [13-15]. However, 
there is still no therapeutic target to improve clinical outcomes 
and thus, there is a need for a deeper understanding of the 
underlying molecular mechanism of RCI in hyperlipidemic 
patients.

Mitochondrial biogenesis typically increases in response 
to acute stressors within cells, serving as a protective factor 
against free oxygen radicals and promoting homeostasis 
within the rotator cuff [16]. However, chronic hyperlipidemia 
may cause persistent low-grade inflammation within rotator 
cuff tendons, leading to stiffness, and oxidative stress and 
ultimately overwhelming the ability of cells to effectively 
generate mitochondria and their biological activity and 
response to stress [17,18]. Mitochondrial biogenesis has an 
acute role in protecting cells from ischemic damage following 
oxidative stress. Within the brain, markers for mitochondrial 
biogenesis (PGC-1 α, NRF- 1, and mitochondrial transcription 
Factor A) are elevated within a week following an ischemia-
inducing events. This serves as a neuroprotective mechanism 
that may be beneficial for brain recovery following ischemia 
[19]. Data also reveal that mitochondrial biogenesis is also 
activated in diverse inhalation-induced lung injuries and 
oxidative stress [20]. Furthermore, there has been evidence 
for implementing mitochondrial biogenesis as a protective 
strategy for preventing multiple organ dysfunction syndrome 
[21]. Impairment of mitochondrial biogenesis has been linked 
to a variety of adverse effects including right ventricular 
hypertrophy in congenital heart disease [22]. Mitochondrial 
biogenesis is increased in skeletal muscle in exercised patients 
and patients experiencing mitochondrial myopathy [23].

While these studies exist highlighting the potential 
therapeutic benefits of mitochondrial biogenesis, there 
are no studies on its role in rotator cuff tears. Since 
hypercholesterolemia is a risk factor for RCI, we investigated 
the effects of hypercholesterolemia on the expression of 
PGC-1α, a marker of mitochondrial biogenesis, in rotator cuff 
muscle.

Material and Methods
Tissue collection and processing: This study 

used collected muscle tissues from the rotator cuff of 
hypercholesterolemic (blood cholesterol level 480-1100 mg/
dL) Yucatan microswine (n=7) and control muscle tissues 
collected from Yucatan miniswine (n=7) on a normal diet 
(blood cholesterol level <120 mg/dL) to compare the effect 
of hypercholesterolemia on rotator cuff muscles. We did 
the power analysis with an α value of 0.05, the sample size 
necessary to have at least 90% power to detect a change of 
at least 30% between the groups is 7 in each group. Yucatan 
miniswine and microswine are involved in other ongoing 
studies in the lab and tissues were collected following 
euthanasia after completion of the experiments. The 
protocols were approved by the institutional animal care and 
use committee (IACUC) at the Western University of Health 
Sciences (Protocols No. R20IACUC038 and R19IACUC026) 
[24,25]. The collected tissues were processed using a tissue 
processor following standard protocol in our laboratory and 
5μm thin sections were used for all experiments.

Hematoxylin and eosin (H&E) and Trichrome staining. 
H&E staining was done following the standard protocol in 
our lab. Briefly, after deparaffinization and rehydration of 
the slides through a series of xylene, alcohol, and distilled 
water, the tissue sections were stained with hematoxylin (45 
seconds) followed by eosin (8-10 dips). The stained slides 
were mounted with xylene-based mounting media. Masson 
Trichrome staining was done using a modified Trichrome kit 
(HT-15 Sigma Aldrich) following the manufacturer's protocol 
and following standard lab procedure. Stained tissue sections 
were scanned at 100µm using a light microscope (Leica 
DM6). All the scanned images were blindly reviewed by at 
least two observers with less than 5% variability between the 
observers.

Quantitative Real-Time Polymerase Chain Reaction: 
Total RNA was extracted using TRIZOL reagent (#T9424, 
Sigma, St. Louis, MO, USA) following manufacturer’s 
instructions, and RNA yield was measured using Nanodrop 
2000. The cDNA was prepared using an iScript kit 
(#1708891, BioRad, USA) following the manufacturer’s 
instructions. Real-time PCR (RT-qPCR) was performed in 
triplicate using SYBR Green (# 1708884, BioRad, USA) 
using the CFX96 RT-PCR system (BioRad Laboratories, 
Hercules, CA, USA). The forward and reverse primers were 
obtained from Integrated DNA Technologies (Coralville, 
IA, USA) (Table 1). The PCR cycling conditions were 5 
min at 95°C for initial denaturation, 40 cycles of 30s each 
at 95°C (denaturation), 30s at 55–600C (according to the 
primer annealing temperatures), and 30s at 72°C (extension) 
followed by melting curve analysis. Fold change in mRNA 
expression relative to controls was analyzed using 2-^^ct after 
normalization with housekeeping gene 18S. Each experiment 
was repeated for three biological replicates (n = 3).
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Immunohistochemistry (IHC): IHC was performed 
using the peroxidase anti- peroxidase method using a 
secondary antibody conjugated to horseradish peroxidase. 
The paraffin fixed sections were deparaffinized, rehydrated, 
and antigen retrieved using 1% citrate buffer (Sigma Aldrich 
# C9999) before immunostaining as per the standard protocol 
in our laboratory. Briefly, the slides were washed with 1X 
phosphate-buffered saline (PBS) after antigen retrieval. The 
tissue was encircled using a Pap Pen. The tissue samples 
were incubated with 3% hydrogen peroxide (Sigma Aldrich 
# H1009) for 15 minutes and washed with PBS for 5 minutes 
each three times. Blocking was done using the blocking 
solution from Vectastain kit (PK-6102 or PK-6101) and 
the tissues were incubated for 1 hour at room temperature. 
After tipping off the blocking solution, the tissue sections 
were incubated overnight at 4°C with the primary antibodies 
including tumor necrosis factor (TNF)-α (ab1793), c-Jun 
N-terminal kinases (JNK), myeloid differentiation primary 
response 88 (MyD88; sc-136970), peroxisome proliferator-
activated receptor-gamma coactivator (PGC)-1α (sc-
517380), and NF-E2–related factor 2 (NRF2; ab89443) after 
titrating for dilution. A dilution of 1:50 to 1:200 was used 
for various antibodies. After overnight incubation, the slides 
were washed 3 times 5 minutes each with 1X PBS and then 
incubated with the secondary antibody for 1 hour at room 
temperature. The slides were rinsed 3 times with 1X PBS, 
followed by incubation with the ABC solution for 30 minutes 
at room temperature. The tissue sections were then rinsed with 
1X PBS followed by incubation with 3,3′-diaminobenzidine 
(DAB) (Thermo Scientific, Cat # 34002) for 2 to 5 minutes 
until the development of the brown color of the DAB. Tissue 
sections were washed with water once and then stained with 

hematoxylin for 20-30 seconds. The slides were rinsed in 
running tap water for 5 minutes and mounted with a xylene-
based mounting medium. The stained slides were imaged 
with a Leica DM6 microscope at a scale of 100 µm. The high-
magnification images from each tissue section were manually 
analyzed for average stained intensity and percent-stained 
area using Fiji Image J. Three sections from each swine and 
three random images from each stained section were used for 
statistical analysis.

Statistical analysis: Data are presented as the mean 
± SEM. Data were analyzed using GraphPad Prism 9. The 
comparison between the two groups for the expression of 
the protein of interest was performed using Student's t-test 
and more than two groups using One-way ANOVA with 
Bonferroni’s post-hoc correction. A probability (p) value of 
< 0.05 was accepted as statistically significant.

Results
Hematoxylin and Eosin (H&E) and trichrome staining: 

H&E staining demonstrated a marked increase in muscle and 
tendon tissue loss and disorganization of the extracellular 
membrane (ECM) and matrix in the hypercholesterolemic 
rotator cuff tissues (Figure 1 (i) panels C-F) compared to 
the control (non-hypercholesterolemic) rotator cuff tissues 
(Figure 1 (i) panels A and B). In control tissues, there were 
clear borders that define the muscular fibers from the fascia 
compared to the irregular tissues in the hypercholesterolemic 
rotator cuff tissues with disorganized fascia infiltrated with 
fat (Figure 1 (i) panels C-F). Hypercholesterolemic rotator 
cuff tissues showed increased adipose tissue infiltrate in the 
muscle and fascia region (Figure 1(i) panels C-F). There 
was minimal fatty infiltration in non- hypercholesterolemic 
swine (Figure 1 (i) panels A and B). Trichrome staining 
demonstrated increased collagen disorganization, and fatty 
infiltration in the hypercholesterolemic group (Figure 1(i) 
panels C-F) compared to the non-hypercholesterolemic group 
(Figure 1(ii) panels A and B).

Immunohistochemistry: Immunohistochemistry (IHC) 
revealed immunopositivity for JNK, MyD88, PGC-1α, 
TNF-α, and NRF2 and the immunoreactivity was significantly 
higher in muscle tissues from hypercholesterolemic swine 
(Figure 2 panels B, D, F, H, and J) compared to control swine 
(on normal diet) (Figure 2 panels A, C, E, G, and I). Image 
analyses showed significantly increased average stained 
intensity and average stained area (percent area) for JNK, 
MyD88, PGC-1α, TNF-α, and NRF2 in hypercholesterolemic 
swine compared to control swine (Figure 2 panels K-T).

Real-Time Polymerase Chain Reaction: PCR analysis 
reveals significantly increased fold changes in mRNA 
expression of TNF-α, TRAF6, NRF2, and PGC-1α in 
hypercholesterolemic swine compared to control swine 
(Figure 3 panels A-D).

Nucleotide Sequence

18S F 5'-CCCACGGAATCGAGAAAGAG-3'

18S R 5'-TTGACGGAAGGGCACCA-3'

TRAF6 F 5'-ATGCATCTGGACGCCCTAAG-3'

TRAF6 R 5'-CCCGAGTCTGTACTTCGTGG-3'

TNF-α F 5'-CATCTACCTGGGAGGGGTCT-3'

TNF-α R 5'-CCAGATAGTCGGGCAGGTTG-3'

MyD88 F 5'-CCATTCGAGATGACCCCCTG-3'

MyD88 R 5'-TGCACAAACTGGGTATCGCT-3'

NRF2 F 5'-AAACCAGTGGATCTGCCGAC-3'

NRF2 R 5'-GGGAATGTCTCTGCCAAAAGC-3'

PGC-1α F 5'-AGCTTGACGAGCGTCATTCAG-3'

PGC-1α R 5'-AGCACACTCGATGTCAGTCC-3'

F, Forward; R, Reverse; MyD88, Myeloid differentiation primary response 
88; NRF2, NF-E2–related factor 2; PGC-1α, peroxisome proliferator-
activated receptor-gamma coactivator-1α; TNF-α, Tumor necrosis 
factor-α; TRAF6, tumor necrosis factor receptor- associated factor 6.

Table 1: Nucleotide sequence of genes evaluated by polymerase 
chain reaction.
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Discussion
The results of this study revealed increased 

immunopositivity for TNF-α suggesting the presence of chronic 
inflammation in hypercholesterolemiic swine compared to 
non-hypercholesterolemic control swine. The persistent low-
grade inflammation in the hypercholesterolemic samples 
may be associated with increased activation of nuclear factor 
kappa beta (NF-κB) followed by subsequent activation 
of proinflammatory cytokines TNF-α and IL-6 [26,27]. 
Increased expression of TNF-α in hypercholesterolemic 
rotator cuff muscle tissues is supported by our previous in-
vivo and in-vitro reports that hypercholesterolemia increases 

the expression of TLR-4, TIRAP, TRAF6, pIkB, RelA, 
IL-6, and TNF-α and contributes to inflammation [25]. 
Further, increased expression of pattern recognition receptors 
within hypercholesterolemic tendon fibroblast ultimately 
contributes to tendinopathy. Moreover, the production of 
IL-6 has been reported to stimulate the recruitment of T-cells 
and macrophages.

The presence of TNF-α further triggers the activation 
of additional inflammatory pathways. The association of an 
increase in TNF-α with myocyte apoptosis, disorganized 
ECM, and increased nonorganized collagens is supported 
by previous reports that inflammation is associated with 

 
Figure 1: Hematoxylin and Eosin (H&E) and Masson’s trichrome staining in rotator cuff muscle tissues. (i) 
H&E staining: panels A and B in non-hypercholesterolemic swine and panels C-F in hypercholesterolemic 
swine. (ii) Masson’s trichrome staining: panels A and B in non- hypercholesterolemic swine and panels C-F in 
hypercholesterolemic swine. All images were scanned with a scale of 100μm. These are representative images from 
all swine.
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Figure 2: Immunohistochemistry (IHC) for c-Jun N-terminal kinases (JNK), myeloid differentiation primary response 88 (MyD88), 
peroxisome proliferator-activated receptor- gamma coactivator (PGC-1α), tumor necrosis factor (TNF)-α, and NF-E2–related factor 2 (NRF2) 
in hypercholesterolemic (panels B, D, F, H, and J) and control (panels A, C,  E, G, and I) swine. Average stained intensity (panels K, M, O, Q, 
and S) and average stained area (percent) (panels L, N, P, R, and T). Data are presented as the mean ± SEM. *p< 0.05 and **p< 0.01. These 
are representative images from all swine.

Figure 3: Real-Time Polymerase chain reaction (RT-PCR) for mRNA transcript. Tumor necrosis factor (TNF)-α (panel A), tumor necrosis 
factor receptor (TNFR)-associated factor (TRAF) 6 (panel B), NF-E2–related factor (NRF)2 (panel C), and peroxisome proliferator-activated 
receptor-gamma coactivator (PGC)-1α (panel D). Data are presented as the mean ± SD. ***p < 0.001 and ****p < 0.0001.
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catabolism of intramyocellular proteins and dysregulation 
of regeneration pathways [28,29]. The presence of chronic 
inflammation reinforces the idea that hypercholesterolemia 
diminishes the levels of IκBα, which is an anti-inflammatory 
agent inhibiting the action of NF-κB and is prominently 
found in type II muscle fibers [26]. Within our study, the 
heightened expression of TNF-α and TRAF6 coupled with the 
loss of muscle fibers within supraspinatus muscles suggests 
that inflammation significantly impacts the development of 
rotator cuff tears [26,30-32].

Hypercholesterolemia-mediated chronic inflammation 
may be mediated by multiple factors involving TLRs, DAMPs, 
and TREM-1 signaling [33], and increased expression of 
MyD88, a downstream signaling molecule in TLR4 signaling, 
suggests the involvement of TLR-4 in hypercholesterolemia-
mediated chronic inflammation in rotator cuff muscles 
causing rotator cuff tear [34]. The involvement of TLR-4 
signaling in rotator cuff inflammation is further supported 
by increased mRNA expression of TRAF6, a downstream 
signaling molecule in TLR4 signaling, and of TNF-α in RT-
PCR studies.

Rotator cuff tendonitis, an inflammation of the rotator cuff 
tendons is frequently seen along with shoulder impingement 
and can occur due to chronic repetitive overuse activities 
or following an injury [5]. Increased expression of TNF-α, 
TRAF6, and MyD88 in hypercholesterolemic muscle 
tissues suggests the presence of chronic inflammation. 
Chronicity is because the tissues were collected after 12 
months of a hypercholesterolemic diet. Further, significantly 
elevated oxidative stress (reactive oxygen species; ROS) 
is associated with both acute and chronic tendon injuries 
[35]. Furthermore, hypercholesterolemia is associated 
with oxidative stress [36] and increased oxidative stress is 
associated with mitochondrial biogenesis and mitochondrial 
DNA maintenance [37]. Our study revealed an increased 
gene and protein expression of PGC-1α, a marker of 
mitochondrial biogenesis. Increased expression of PGC-
1α suggests the presence of oxidative stress in the muscle 
tissues and sustainably increased oxidative stress may lead 
to RCI [35]. The study demonstrates the deleterious role 
of sustained oxidative stress and its implications in tendon 
fibrosis, adhesions, and scarring leading to acute tendon 
injuries, as revealed by histological studies. The reactive 
oxygen species generated because of foam cells aggregates 
within tendon xanthoma which can trigger an inflammatory 
response, causing tendon damage. Hypercholesterolemia 
promotes ROS activation of the mTOR pathway leading to 
fatty infiltration, metaplasia, and heterotopic ossification. 
mTOR signaling is worsened by increased expression of 
nesfatin-1, a neuropeptide involved in suppressing the 
autophagy-lysosomal pathway used to suppress oxidative 

stress and tendon degeneration. High cholesterol also triggers 
ROS production, histopathological abnormalities, apoptosis, 
and autophagy within tendons via activation of the AKT/ 
FOXO1 pathway and the NF-kB pathway [38]. Additionally, 
peritendinous adhesions due to oxidative stress exacerbate 
inflammation involving TNF-α, IL-1β, TGF-β, SOD1, 
SOD2, COL1, and HIF1α [13]. The chronic inflammation 
in tendons leads to macrophage recruitment triggered by 
TREM-1, which results in disorganization of the extracellular 
matrix. This disorganization, in turn, further upregulates 
inflammatory cytokines, causing increased oxidative stress 
[13] and contributing to rotator cuff injury.

Cholesterol is an important determinant of muscle atrophy 
[39]. We recently reported that hyperlipidemia lowers the 
biomechanical properties of rotator cuff tendon [40]. In the 
rotator cuff tendon injury following repair, we found large 
amount of fibrosis, increased water content, and significant 
fatty infiltration [41]. It is very likely that the disorganization 
of extracellular matrix and oxidative stress could have 
resulted in altered biomechanical properties of the rotator 
cuff tendons in hyperlipidemic swine. Thus, the strategies 
to reduce oxidative stress and enhance re-organization of 
extracellular matrix would support the regeneration of tendon 
tissue following injury [42].

The NLRP3 pathway, involving IL-1β, plays a role in 
inducing the degradation of connective tissue in tendons 
and bones. Hypoxia within the tenocytes can lead to the 
persistent activation of the NLRP3 pathways, perpetuating 
inflammation, mitochondrial dysregulation, and ECM 
degradation within the rotator cuff [17,33]. Furthermore, 
following rotator cuff tears, mechanical unloading of the 
tissue can shift muscle cell metabolism from anabolic to 
catabolic, a process expedited by mitochondrial dysfunction. 
The presence of damage-associated molecular patterns and 
pro- inflammatory recruitment (e.g., TNF-α, IL-1, IL-6) 
stimulates catabolic processes within the intramyocellular 
proteins of the rotator cuff muscle [28]. This metabolic 
alteration may be due to mitochondrial dysfunction ultimately 
leading to mitochondrial biogenesis as a compensatory 
mechanism. NRF2 controls the cellular oxidant level and 
oxidative signaling and is activated in response to oxidative 
stress [43,44]. This suggests that NRF2-mediated oxidative 
signaling may be an attractive therapeutic target [45,46] in 
pathologies involving inflammation and oxidative stress. 
An increased expression of NRF2 in hypercholesterolemic 
muscle tissues in association with increased PGC-1α, TNF- α, 
and TRAF6 suggests that targeting NRF2-mediated oxidative 
signaling and mitochondrial biogenesis may be attractive 
therapeutic strategies in rotator cuff treatment. However, this 
hypothesis warrants investigation.
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Conclusion
Hypercholesterolemia is associated with rotator cuff 

muscle inflammation, fibrosis, oxidative stress, and 
mitochondrial biogenesis which in turn is associated 
with rotator cuff tendon tear. Thus, oxidative stress and 
mitochondrial biogenesis may be attractive therapeutic 
targets, however, this association warrants further research. 
The focus should be on the chronicity of inflammation because 
in acute settings, mitochondrial biogenesis is beneficial, but 
we need to investigate the effect of chronicity.
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