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Abstract
Mitochondrial diseases (MDs) are the most common group of inherited 

metabolic disorders and are often challenging to diagnose due to extensive 
genotype-phenotype heterogeneity. MDs are caused by mutations in 
the nuclear or mitochondrial genome, where pathogenic mitochondrial 
variants are usually heteroplasmic and typically at much lower allelic 
fraction in the blood than affected tissues. Both genomes can now be 
readily analyzed using whole genome sequencing (WGS), but most 
nuclear variant detection methods fail to detect low heteroplasmy variants 
in the mitochondrial genome. We developed mity, a bioinformatics 
pipeline for detecting, annotating, and interpreting heteroplasmic single 
nucleotide variants and insertion/deletion variants in the mitochondrial 
genome from WGS data. We optimized mity to accurately detect variants 
from high mitochondrial DNA sequencing depth (>3000x) obtained by 
WGS of blood from 13 control cell line replicates, 10 patients, and 2,570 
healthy controls. mity can detect pathogenic mitochondrial variants, with 
heteroplasmy ranging from <1% to 100%. Through extensive variant 
annotations, mity enables easy interpretation of mitochondrial variants 
and can be incorporated into existing diagnostic WGS pipelines. WGS 
combined with mity could simplify the diagnostic pathway for MDs, avoid 
invasive tissue biopsies and increase the diagnostic rate for mitochondrial 
diseases and other conditions caused by impaired mitochondrial function.

Keywords:  Mitochondrial Disease; Whole genome sequencing; Analytical 
pipelines; Mitochondrial DNA; Variant; Heteroplasmy

Introduction
Mitochondrial diseases (MDs) are highly heterogeneous genetic disorders, 

characterized by mitochondrial respiratory chain impairment [1] and caused 
by pathogenic variants in either the mitochondrial (MT) or nuclear genome. 
Pathogenic variants associated with MDs have been reported [2] in over 300 
nuclear and almost all mitochondrial genes [3]. Few treatments exist for 
MDs, but it is critical to obtain a precise molecular diagnosis by identifying 
the causative variant(s), as this may guide appropriate treatment, clinical 
trial eligibility, therapeutic development, family planning and reproductive 
options [4, 5].

The human MT genome is a 16,569bp circular chromosome encoding 
rRNA, tRNA and protein coding genes [3] and has a mutation rate 19× higher 
than the nuclear genome [6]. Each cell has tens to thousands of MT genome 
copies, in which a pathogenic variant can be present in all (homoplasmy) or 
a proportion (heteroplasmy). Heteroplasmy varies within and between tissues 
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and changes with age, generally being higher in disease-
affected tissues and lower in more accessible tissues, such as 
blood, due to selection seen in dividing cells [7]. 

Current clinical-grade whole genome sequencing (WGS) 
at 30–40× average nuclear coverage provides high coverage 
of the MT genome (1,000–100,000× dependent on tissue), 
suggesting very low levels of heteroplasmy could be reliably 
detected. However, with high coverage, systematic sequencing 
errors accumulate, particularly in certain sequence contexts, 
making it challenging to discern true pathogenic variants 
from noise [8]. Most WGS variant callers are optimized for 
diploid analysis and are thus incapable of identifying low 
heteroplasmy MT variants. Existing approaches for MT-
DNA analysis are web-based [9, 10] or GUI-based [11] and 
are therefore less amenable to high-throughput, reproducible 
analysis, are only validated on high heteroplasmy variants 
[12]. Recent developments include MitoHPC [13], which 
down-samples reads and has a lower heteroplasmy limit of 
3%, but addresses some of the challenges with MT-DNA 
being a circular chromosome and having read homology with 
the nuclear genome.

Here, we present mity, a bioinformatics pipeline to 
detect MT single nucleotide variants (SNVs) and insertion/
deletion variants (indels) from WGS, to assist clinicians and 
researchers with the diagnosis of MDs. mity was optimized 
to identify low heteroplasmy variants (below 1%), generate 
a highly interpretable report to aid molecular diagnosis, and 
be easily integrated into existing high-throughput analysis 
pipelines. 

Materials and Methods    
Patient recruitment

We recruited 10 adult MD patients reviewed at the 
Mitochondrial Disease Clinic at Royal North Shore 
Hospital, Sydney, Australia, between 2013-2015. The 
research was approved by the Northern Sydney Local Health 
District Human Research Ethics Committee (HREC/10/
HAWKE/132) and all participants provided written informed 
consent. Total genomic DNA was isolated from peripheral 
blood using standard methods. NA12878 reference material 
was sourced from Genome in a Bottle.

Sequencing and read alignment
Sequencing libraries were created from nine patients in 

singlicate, one patient in duplicate, and 13 replicates from 
NA12878, using Illumina TruSeq Nano HT v2.5 library 
preparation kits and Hamilton Star instruments. Sequencing 
was performed on Illumina HiSeq X instruments, following 
the manufacturer’s specifications, at the Kinghorn Centre for 
Clinical Genomics, Sydney. Sequence reads were aligned 
to the human genome reference assembly GRCh37 decoy 
genome (hs37d5) using BWA-MEM (v0.7.12-r1039, settings 
-M) [40]. Reads were further processed using GATK Indel 

Realignment, and GATK Base Recalibration (version 3.3; 
[14]). Depth of coverage was performed using bedtools 
genomecov [15].

Variant detection and benchmarking
For initial benchmarking experiments, SNV and indel 

variants were detected using GATK HaplotypeCaller (version 
3.3) with default settings, LoFreq (version 2.1.2) with default 
settings, or FreeBayes (version 1.2.0) with -F 0.005 -C 4 
settings. The default mapping (-m) and base quality filter (-q) 
settings, and minimum alternate reads (-C) and variant allele 
frequency (VAF) (-F), were varied during benchmarking. 
The VAF is the fraction of sequencing reads carrying the 
alternate base compared to all reads, which we use as a direct 
measure of mitochondrial heteroplasmy, usually expressed as 
a percentage.

Variant quality score q and noise threshold p
The variant quality score, q, is defined as the Phred-scaled 

probability of seeing at least the observed number of alternate 
reads by chance, given a noise threshold and assuming a 
binomial distribution. That is, given a noise threshold p and 
position i, and ni alternate bases, from a total depth of Ni, the 
variant quality qi is:

where F is the binomial cumulative distribution function. 
To assess the level of noise in each dataset, we used samtools 
mpileup [16] to calculate the heteroplasmy of all three 
alternate bases at every position in the MT genome. This 
was visualised genome-wide (Figure 1B) and/or summarised 
(Supplementary Figure 3), and we set p to a level slightly 
higher than the noise floor, which in our experience was 
~0.002 in cell lines or ~0.003 in blood DNA from patients 
(see results). Extensive manual review of candidate variants 
above and below this threshold confirmed these settings were 
appropriate (data not shown). As with any classification 
problem, there is a need to balance sensitivity with specificity. 
We therefore set the default threshold as q≥30 for use in mity, 
which favours sensitivity over specificity; higher thresholds 
will have fewer false positives at the risk of missing some 
pathogenic variants with low heteroplasmy. The lower the 
heteroplasmy of a candidate variant, the more likely it is to 
be a false positive, so we recommend manually reviewing 
all candidate variants [17] and if used in a clinical context, 
orthogonally validate in a secondary or disease relevant 
tissue.

mity implementation
mity was implemented in python v3.7.4, packaged 

using pip under the name mitylib, and containerized using 
Docker (for more details see GitHub link in data availability 
statement). The variant caller used in mity-call is FreeBayes 
(version 1.2.0) and employs the following settings as 
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defaults: -F 0.005 -C 4 -m 30 -q 24 -r MT:1-16569. Variant 
impact was estimated using Variant Effect Predictor [18], 
with annotations from MITOMAP [19], MitoTIP [20] and 
population allele frequency information from the Medical 
Genome Reference Bank (MGRB) [21]. Ancestral variants 
used for mitochondrial haplogroups were obtained from 
PhyloTree build 17 [22].

Performance
mity can operate on either a WGS or MT-only BAM or 

CRAM file, with a run-time of <10 minutes per sample using 
a single-core and <8Gb RAM. This run-time can rise to 2 
hours per sample for analysis of solid tissues with higher than 
30× average coverage, such as tumors, when MT depth may 
be >100,000×.

Results
Variant caller selection and optimization

We reasoned that sensitive MT variant detection required 
a variant caller that could accurately identify very low 
heteroplasmy SNVs and indels (<1%) from very high depth 
sequencing data. GATK HaplotypeCaller v3 [14] is a popular 
genome-wide SNV and indel variant caller, but it has three 
major limitations for MT variant calling: 1) it down-samples 
the reads to a maximum of 500× depth, 2) it uses a diploid 

model by default, which is insensitive to low heteroplasmy 
variants and 3) does not provide a minimum heteroplasmy 
setting. FreeBayes [23] is a haplotype-aware, genome-wide 
variant caller, which allows for control over the minimum 
heteroplasmy and the minimum number of alternative-
reads. Whilst FreeBayes and HaplotypeCaller both have 
ploidy parameters that can theoretically be tuned to prioritise 
low heteroplasmy variants from a high-ploidy sample, the 
resultant execution runtime becomes exponentially slower 
and computationally impractical for MT analysis. LoFreq was 
developed specifically for detecting low-frequency variants 
in next-generation sequencing data, with benchmarking data 
supporting sensitivity down to 0.05% heteroplasmy [24].

To determine the optimal MT variant caller, we compared 
the performance of HaplotypeCaller, FreeBayes and LoFreq 
on variant detection from 10 MD patients. A median of 28, 
41 and 56 MT variants were identified, respectively. We 
manually inspected every variant and found LoFreq to be 
overly susceptible to systematic sequencing artefacts in our 
real-world data, and HaplotypeCaller to be insensitive to 
variants with low heteroplasmy (Supplementary Figure 1). 
FreeBayes produced very few false positives and was sensitive 
to variants with high and low heteroplasmy (Supplementary 
Figure 1) and was thus selected as the variant caller upon 
which we based mity.

Figure 1: The high average depth across the MT genome in WGS data means that mity can detect very low heteroplasmy 
variants.
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A: The average depth of sequencing coverage along the 
MT genome from 2,570 healthy controls with WGS. With 
no read filtering (blue) the average genome coverage was 
3,666x, and with filtering to high quality reads (BQ ≥24, 
MQ ≥30; red), the coverage was reduced to 3,166x. The 
coverage in the D-loop (grey) drops off artificially due to 
alignments to a linear version of the MT genome. B: From 
one replicate of NA12878 with WGS, the variant allele 
frequency (VAF; analogous to heteroplasmy) of all three 
possible non-reference bases, at each position in the MT 
genome is typically below 0.0005, and far lower than the 
VAF corresponding to 10 high-quality reads (black). Spikes 
of alternate reads with VAF>0.002 outside the D-loop (grey) 
correspond to true genetic variants. Similar patterns of noise 
were observed in other replicates of NA12878, MT patients 
and healthy controls (data not shown).

Using default FreeBayes settings, the reproducibility of 
variant calling from WGS of 13 replicates of DNA from the 
NA12878 cell line was poor (data not shown). We sought 
to optimise the mapping quality (MQ) and base quality 
(BQ) filters, first by assessing the distribution of these 
parameters (Supplementary Figure 2A and B), and then by 
quantifying the number of variants above 1% heteroplasmy 
when simultaneously varying MQ (≥ 20, 30 and 41) and 
BQ (≥ 18, 20, 22, 24 and 26) (Supplementary Figure 2C). 
We then assessed the variability in the numbers of variants 
identified in these replicates, for three tiers of variants: those 
with heteroplasmy >1% (tier 1), heteroplasmy <1% but 
with at least 10 supporting reads (tier 2), and fewer than 10 
supporting reads (tier 3) (Supplementary Figure 2D); these 
tiers are also used in the mity-report module (see below). As 
expected, at more stringent quality settings the variability 

 
Figure 2: Variant heteroplasmy is highly reproducible even for low heteroplasmy variants in control cell lines and 
MT patient material
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decreased (fewer false positives), and variant detection 
variability was much higher in tiers 2 and 3. Taken together, 
a threshold of BQ≥24 and MQ≥30 was an optimal trade-off 
of variant reproducibility and retaining sufficient reads to 
perform the analysis (red values in Supplementary Figure 2). 
To ensure that these quality filters didn’t discard too many 
reads in real-world MT data, we applied mity to WGS data 
from a large cohort of 2,570 elderly Australians deplete of 
cancer, cardiovascular disease, and dementia [21]. This filter 
combination resulted in a minimal reduction of sequencing 
depth from 3,666× with no filters, to 3,166× for MQ ≥30 and 
BQ ≥24 (Figure 1A).

A: To evaluate the reproducibility and limit of detection 
of heteroplasmy estimation by mity in control cell lines, 
mity was run on WGS data from 13 replicates of DNA from 
NA12878: the VAF of 18 variants were compared between 
the replicates, showing a high level of reproducibility evident 
at homoplasmy (left) mid-range (middle) and low (right) 
heteroplasmy levels. B: Similar to panel A, using WGS data 
from two replicates of DNA from an MD patient: 59 variants 
were compared between the two patient replicates, showing 
a high level of reproducibility evident at homoplasmy (top 
left), mid-range (15%; top right), low-range (<10%; bottom 
left) and ultra-low (<1%) heteroplasmy. The previously 
known pathogenic m.3243A>G variant is shown (top right).

The default variant quality score in FreeBayes penalizes 
low heteroplasmy variants, due to the overwhelmingly high 
number of reference reads. However, we reasoned that the 
evidence to support low heteroplasmy MT variants should 
1) only consider the alternate read count, 2) scale with the 
alternate read count, and 3) be reported using a similar scale 
to other variant quality methods. To achieve this, we used a 
binomial model to implement a Phred-scaled variant quality 
score, q. Assuming a noise level p, q is the Phred-scaled 
probability of observing at least n alternate reads by chance, 
given the total number of reads covering the variant position 
(see methods). The calculation of q is fast, heteroplasmy 
independent, and has a default threshold of q≥30, which can 
be tuned to favor sensitivity or specificity. 

To determine the noise floor, p, we plotted the VAF of 
all three alternate bases at every position in the MT genome 
from WGS data obtained from NA12878, which appeared 
to be below VAF = 0.0005 in this sample (Figure 1B). For 
reference, the VAF of 10 high-quality reads was also plotted 
and was found to be considerably higher than the noise floor 
across the genome (black line; Figure 1B), which we adopted 
as the threshold for tier 2 variants (see mity-report below). 
When we aggregated data from 13 replicates of NA12878 
(Supplementary Figure 3A), we determined a noise floor of 
p=0.002. Similarly, by aggregating data from two replicates 
of DNA from an MD patient, we estimated a noise floor 
of p=0.003 in this dataset (Supplementary Figure 3B). In 
practice these thresholds work well, though occasionally a 

WGS dataset has higher error rates that requires increasing p 
accordingly (data not shown).

We next investigated the reproducibility, and limit of 
detection of variant heteroplasmy estimation. We ran mity on 
13 replicates of NA12878 and identified 18 MT variants in all 
samples with q>30, with highly reproducible heteroplasmy 
(Figure 2A); 5 additional variants were seen in a subset of 
replicates that all failed manual review. One variant had 
heteroplasmy just below 1% with q>30 in all replicates. In 
two independent replicates of DNA from an MD patient, 
we found 59 variants in both replicates with q>30 (Figure 
2B). This included a known pathogenic m.3243A>G variant 
(heteroplasmy = 15%). There were one and three variants 
private to each replicate, of which two passed manual review, 
but just failed the q>30 threshold in the other sample. Twenty 
variants had heteroplasmy below 1% in at least one replicate, 
with q>30 and all passed manual review. Furthermore, 
from 50 MD patients with known m.3243A>G pathogenic 
variants, we demonstrated that mity was able to identify low 
heteroplasmy variants down to below 1% (specifically 0.35%) 
with very high correlation to pyrosequencing (R2=0.994) [25]. 
Collectively these results suggest that MT variants with q>30 
are highly reproducible and enables detection of variants to 
below 1% heteroplasmy.

mity analysis pipeline

mity consists of three modules that easily integrate MT 
sequence analysis into existing nuclear WGS analysis 
pipelines (Figure 3). The first module, mity-call, analyses a 
BAM or CRAM file to call, filter and normalize MT SNVs 
and indels, to produce a mity VCF. The second module, mity-
report, creates easily interpretable spreadsheet reports with 
extensive annotations, and the third module, mity-merge, 
combines nuclear and mity VCFs to produce a single high-
quality VCF. This allows for seamless integration of mity into 
existing production or clinical-grade analysis pipelines for 
subsequent variant interpretation. mity has been designed for 
30–40× depth Illumina short-read sequencing data (2×150bp 
paired-end reads) aligned to the GRCh37 + decoy (hs37d5) 
or GRCh38 reference genome using BWA-MEM. It has been 
tested on WGS from tumors with 100–120x depth (data not 
shown).

mity consists of three modules (pink): mity-call, to 
call, filter and normalise (mity-normalise) variants in the 
mitochondrial genome; mity-report, to produce a clinician 
and researcher-friendly annotated mitochondrial variant 
spreadsheet report (Annotated .xlsx); mity-merge, to integrate 
mity variant lists into nuclear variant lists for a combined high 
quality variant call format (VCF) file. mity-call can analyse 
whole genome sequencing or mitochondrial-only alignment 
file inputs (BAM and CRAM). The output mity VCF can then 
be used as an input by both mity-report and mity-merge.
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mity-call and mity-normalise

The first module, mity-call, initially runs FreeBayes in a 
highly sensitive mode, with the optimized settings informed 
by the benchmarking experiments above, of MQ ≥30, BQ ≥24 
and minimum heteroplasmy of 0.5% or at least 4 supporting 
alternate reads. After selecting a noise floor, p (generally 
p=0.002–0.003), the custom quality score, q, is automatically 
calculated for each variant in each sample. Two additional 
filters are applied: (1) a strand bias filter to exclude variants 
with >90% or <10% alternative reads from one strand, and 
(2) a region filter to exclude variants in the homopolymeric 
regions at m.302–319 and m.3105–3109, where there is 
an ‘N’ at m.3107 in the rCRS of mitochondrial DNA. The 
benchmarking experiments above demonstrated highly 
reproducible and sensitive variant detection from cell lines 
and patients, with minimal overall impact on sequencing 
depth in cell lines and blood (Supplementary Figures 1–3).

At high sequencing depth, introduction of sequencing 
errors is more likely and can artificially inflate the rate of 
multinucleotide variants (MNVs), which are more difficult to 
annotate using standard variant annotation tools. In one MD 
patient, mity initially missed a known m.3243A>G pathogenic 
variant because of one read that carried a sequencing error 
two bases upstream, creating an MNV (Supplementary 
Figure 4) [25]. Furthermore, existing variant decomposition 
methods, including vt normalize [26] and vcflib [23], do 
not decompose all the INFO and FORMAT annotations of 
MNVs, which are required for mity-report and downstream 
analysis tools. We thus implemented a custom method, mity-
normalise (operates by default within mity-call; Figure 3), to 
decompose and normalise all variants, as well as propagate 
the variant metadata within the INFO and FORMAT fields in 
the VCF (Supplementary 4C).

mity-report
Intended end-users of mity include genome researchers 

and clinicians, so mity-report was developed to produce easily 

interpretable spreadsheet reports containing comprehensively 
annotated MT variant lists. As an alternative to selecting 
variants with high q scores, variants are also automatically 
tiered to aid prioritization: tier 1, heteroplasmy ≥1%; tier 2, 
heteroplasmy <1% with >10 supporting reads (e.g., black line 
Figure 1B); and tier 3 are the remaining variants; by default, 
only tier 1 variants are reported. 

mity-merge
In order to integrate mity into existing WGS analysis 

pipelines, mity-merge replaces the MT variants from a 
genome-wide VCF (e.g., GATK HaplotypeCaller), with 
those from the mity VCF to merge nuclear and MT variants 
into a single VCF that can be used with downstream tools for 
annotation and filtering.

NUMT homology
Nuclear mitochondrial DNA segments (NUMTs) are 

homologous fragments of the mitochondrial genome that 
have been integrated into the nuclear genome [27] and can 
potentially confound heteroplasmy estimation [28, 29, 30]. 
For decades it has been unclear what the extent of common, 
rare and ultra-rare NUMT formation has been. However, a 
recent study has shown that NUMT formation is ongoing, 
with a de novo rate of 1 new NUMT per 104 live births [31]. 
It is thus challenging to rule out whether a rare variant with 
only a few supporting reads could be from a NUMT. When 
analyzing DNA extracted from blood using WGS with 30× 
nuclear depth, there is typically >3000× MT depth (and often 
much higher depending on tissue used). Thus, all tier 1 MT 
variants will have at least 30 supporting reads, making it highly 
unlikely that these are caused by a NUMT, which would be 
on one chromatid, with ~15 supporting reads. We recommend 
that low heteroplasmy variants of interest, particularly those 
in tier 2 and 3 be validated using orthogonal approaches, and 
that the clinical phenotype of the patient be used to guide 
whether a candidate variant could explain disease if it were 
present at a higher heteroplasmy in a secondary or disease-
relevant tissue.

 
Figure 3: The mity analysis pipeline
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Application of mity to different cohorts
Since developing mity [32], we have employed the analysis 

pipeline to detect pathogenic MD variants in 242 adult MD 
patients [25] and 40 paediatric MD patients [33], individual 
cases [34], as well as comprehensive variant detection and 
heteroplasmy estimation in a control cohort of 2,570 healthy 
elderly adults in the MGRB [21]. In the adult MD cohort, an 
overall diagnostic rate of 53.7% was achieved, of which over 
half (56%) were attributed to mtDNA variants detected by 
mity ranging from homoplasmy down to 0.35% heteroplasmy 
[25]. In the MGRB cohort, mity variant analysis identified an 
age-related increase in somatic MT variation occurs after the 
age of 60 [21].

Discussion
We present mity, a highly sensitive mitochondrial 

variant caller that can detect SNVs and indels to below 
1% heteroplasmy. The mity analytical pipeline is easily 
incorporated into existing nuclear variant pipelines and 
provides a comprehensively annotated report of all tiered 
variants. As genome sequencing costs decrease and analytical 
capability increases, integration of comprehensive MT 
genome sequencing analysis into clinical diagnostic pipelines 
is rapidly becoming a priority. In Australia, a Medicare rebate 
is now available for WGS-based testing of the nuclear and 
mitochondrial genome for the diagnosis of patients with a 
suspected MD [35], in part informed by our previous research 
[25, 33] based on earlier versions of mity [32]. 

There are now numerous mitochondrial variant detection 
tools (for a comprehensive review see [36]), which are pushing 
down the limit of heteroplasmy detection and increasing the 
diversity of analytical capabilities, such as copy number 
estimation, variant phasing and improving read alignment 
on the circular MT contig [13]. We agree with a recent 
benchmarking study that advised caution when considering 
low level heteroplasmic variants [37], and we recommend 
that low heteroplasmy variants should be considered in the 
context of a constellation of patient characteristics, and then 
validated using an orthogonal test in a disease-relevant tissue. 
Greater validation of low-heteroplasmy variants in multiple 
tissues and with more accurate methods, such as error 
corrected sequencing [38] or droplet digital PCR would help 
set robust thresholds for low heteroplasmy detection. 

There are several future improvements to increase the 
functionality of mity. First, mity does not calculate MT 
deletions, instead we relied on dedicated copy number 
variation detection tools like ClinSV [39] to identify MT 
deletions, as demonstrated elsewhere [25]. Second, adding 
comprehensive catalogues of variation in the population, 
and large catalogues of known common, rare, and ultra-rare 
NUMT [31] would help filter down to fewer novel candidate 
disease causing variants. Third, wrapping the mity tool in a 
workflow language, such as nextflow will make it easier for 

researchers to run the tool on their local or cloud computing 
environment.

Conclusion
mity overcomes many of the challenges of accurate low 

heteroplasmy variant identification in the MT genome. mity 
can be easily incorporated into existing high-throughput 
analysis pipelines, while simultaneously producing user-
friendly reports. By extending the scope of variants from 
WGS data, mity helps support further adoption of clinical 
WGS as a first-line diagnostic tool.

Data availability
Raw MGRB data is available upon application to the 
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mity is freely available from https://github.com/KCCG/
mity under an MIT license.

This manuscript originally appeared as a pre-
print on bioRxiv in 2019 (https://www.biorxiv.org/
content/10.1101/852210v1)

Acknowledgements
We thank members of the Kinghorn Centre for assistance 

with data generation and patients for contributing their 
samples to this research.

MJC and RLD were supported by NSW Health Early-
Mid Career Fellowships. KRK was supported by an NHMRC 
Early Career Fellowship (APP1091551). CMS was supported 
by an NHMRC Practitioner Fellowship (APP1008433). This 
work was supported by a NSW Genomics Collaborative 
grant (CMS, MED, RLD, KRK) and the NSW Health-
funded Medical Genomics Reference Bank (DT, MED). We 
acknowledge financial support from the Kinghorn Foundation, 
without which this research would not have been possible. 
The authors would like to acknowledge Luminesce Alliance 
– Innovation for Children’s Health for its contribution and 
support. Luminesce Alliance is a not-for-profit cooperative 
joint venture between the Sydney Children’s Hospitals 
Network, the Children’s Medical Research Institute, and the 
Children’s Cancer Institute. It has been established with the 
support of the NSW Government to coordinate and integrate 
paediatric research. Luminesce Alliance is also affiliated with 
the University of Sydney and the University of New South 
Wales, Sydney.

Conflicts of Interests 
The authors declare no competing interest.

References
1. Gorman G S, Chinnery PF, DiMauro S, et al. Mitochondrial 

diseases. Nat Rev Dis Primers 2 (2016):  16080. 

http://
https://www.biorxiv.org/content/10.1101/852210v1
https://www.biorxiv.org/content/10.1101/852210v1


Puttick C, et al., J Bioinform Syst Biol 2024
DOI:10.26502/jbsb.5107074

Citation: Clare Puttick, Ryan L Davis, Kishore R Kumar, Julian MW Quinn, Trent Zeng, Christian Fares, Mark Pinese, David M Thomas, Marcel E 
Dinger, Carolyn M Sue, Mark J Cowley. mity: A Highly Sensitive Mitochondrial Variant Analysis Pipeline for Whole Genome Sequencing 
Data. Journal of Bioinformatics and Systems Biology. 7 (2024): 05-06.

Volume 7 • Issue 1 12 

2. Wallace D C. Mitochondrial genetic medicine. Nat Genet 
50 (2018): 1642-1649. 

3. Davis R L, Liang C, & Sue C M. Mitochondrial diseases. 
Handb Clin Neurol 147 (2018): 125-141. 

4. Smeets HJM, Sallevelt SCEH & Herbert M. Chapter 14 
- Reproductive options in mitochondrial disease. In R. 
Horvath, M. Hirano, & P. F. Chinnery (Eds.), Handbook 
of Clin Neurol 194 (2023): 207-228.

5. Tinker R J, Lim A Z, Stefanetti RJ, et al. Current and 
Emerging Clinical Treatment in Mitochondrial Disease. 
Mol Diagn Ther 25 (2023): 181-206. 

6. Tuppen H A, Blakely EL, Turnbull DM, et al. 
Mitochondrial DNA mutations and human disease. 
Biochim Biophys Acta 1797 (2013): 113-128. 

7. Sue C M, Quigley A, Katsabanis S, et al. Detection of 
MELAS A3243G point mutation in muscle, blood and 
hair follicles. J Neurol Sci 161 (1998): 36-39. 

8. Griffith M, Miller CA, Griffith OL, et al. Optimizing 
Cancer Genome Sequencing and Analysis. Cell Systems 
1 (2015): 210-223. 

9. Lee H Y, Song I, Ha E, et al. mtDNAmanager: a Web-
based tool for the management and quality analysis of 
mitochondrial DNA control-region sequences. BMC 
Bioinformatics 9 (2008): 483. 

10. Weissensteiner H, Forer L, Fuchsberger C, et al. mtDNA-
Server: next-generation sequencing data analysis of 
human mitochondrial DNA in the cloud. Nucleic Acids 
Res 44 (2016): 64-69. 

11. Ishiya K & Ueda S. MitoSuite: a graphical tool for human 
mitochondrial genome profiling in massive parallel 
sequencing. PeerJ 5 (2017): e3406. 

12. Santorsola M, Calabrese C, Girolimetti G, et al. A 
multi-parametric workflow for the prioritization of 
mitochondrial DNA variants of clinical interest. Hum 
Genet 135 (2016): 121-136. 

13. Battle S L, Puiu D, Group TO, et al. A bioinformatics 
pipeline for estimating mitochondrial DNA copy number 
and heteroplasmy levels from whole genome sequencing 
data. NAR Genom Bioinform 4 (2022): lqac034. 

14. DePristo M A, Banks E, Poplin R, et al. A framework for 
variation discovery and genotyping using next-generation 
DNA sequencing data. Nat genet 43 (2011): 491-498. 

15. Quinlan AR. BEDTools: The Swiss-Army Tool for 
Genome Feature Analysis. Curr Protoc Bioinformatics 47 
(2014): 11.12.1-34. 

16. Li H, Handsaker B, Wysoker A, et al. The Sequence 
Alignment/Map format and SAMtools. Bioinformatics 25 
(2009): 2078-2079. 

17. Barnell EK, Ronning P, Campbell KM, et al. Standard 
operating procedure for somatic variant refinement of 
sequencing data with paired tumor and normal samples. 
Genet Med 21 (2019): 972-981. 

18. McLaren W, Gil L, Hunt S E, et al. The Ensembl Variant 
Effect Predictor. Genome Biol 17 (2016): 122. 

19. Brandon MC, Lott MT, Nguyen KC, et al. MITOMAP: 
a human mitochondrial genome database--2004 update. 
Nucleic Acids Res 33 (2005): 611-613. 

20. Sonney S, Leipzig J, Lott M T, et al. Predicting the 
pathogenicity of novel variants in mitochondrial tRNA 
with MitoTIP. PLoS Comput Biol 13 (2017): e1005867. 

21. Pinese M, Lacaze P, Rath EM, et al. The Medical Genome 
Reference Bank contains whole genome and phenotype 
data of 2570 healthy elderly. Nat Commun 11 (2020): 
435. 

22. Van Oven M & Kayser M. Updated comprehensive 
phylogenetic tree of global human mitochondrial DNA 
variation. Hum Mutat 30 (2009): 386-394. 

23. Garrison E & Marth G. Haplotype-based variant detection 
from short-read sequencing (2012). https://arxiv.org/
abs/1207.3907 

24. Wilm A, Aw P P K, Bertrand D, et al. LoFreq: a sequence-
quality aware, ultra-sensitive variant caller for uncovering 
cell-population heterogeneity from high-throughput 
sequencing datasets. Nucleic Acids Res 40 (2012): 
11189-11201.

25. Davis R L, Kumar K R, Puttick C, et al. Use of Whole-
Genome Sequencing for Mitochondrial Disease 
Diagnosis. Neurol 99 (2022): 730-742. 

26. Tan A, Abecasis GR & Kang H M. Unified representation 
of genetic variants. Bioinformatics 31(2015): 2202-2204. 

27. Lopez J V, Yuhki N, Masuda R, et al. Numt, a recent 
transfer and tandem amplification of mitochondrial DNA 
to the nuclear genome of the domestic cat. J Mol Evol 39 
(1994): 174-190. 

28. Maude H, Davidson M, Charitakis N, et al. NUMT 
Confounding Biases Mitochondrial Heteroplasmy Calls 
in Favor of the Reference Allele. Front Cell Dev Biol 7 
(2019): 201. 

29. Parr R L, Maki J, Reguly B, et al. The pseudo-
mitochondrial genome influences mistakes in 
heteroplasmy interpretation. BMC Genomics 7 (2006): 
185. 

30. Santibanez-Koref M, Griffin H, Turnbull DM, et al. 
Assessing mitochondrial heteroplasmy using next 
generation sequencing: A note of caution. Mitochondrion 
46 (2019): 302-306. 

http://


Puttick C, et al., J Bioinform Syst Biol 2024
DOI:10.26502/jbsb.5107074

Citation: Clare Puttick, Ryan L Davis, Kishore R Kumar, Julian MW Quinn, Trent Zeng, Christian Fares, Mark Pinese, David M Thomas, Marcel E 
Dinger, Carolyn M Sue, Mark J Cowley. mity: A Highly Sensitive Mitochondrial Variant Analysis Pipeline for Whole Genome Sequencing 
Data. Journal of Bioinformatics and Systems Biology. 7 (2024): 05-06.

Volume 7 • Issue 1 13 

31.  Wei W, Schon KR, Elgar G, et al. Nuclear-embedded 
mitochondrial DNA sequences in 66,083 human genomes. 
Nat 611 (2023): 105-114. 

32. Clare Puttick, Kishore R Kumar, Mark J Cowley, et al. 
mity: A highly sensitive mitochondrial variant analysis 
pipeline for whole genome sequencing data (2019). 
https://doi.org/10.1101/852210.

33. Riley L G, Cowley M J, Gayevskiy V, et al. The diagnostic 
utility of genome sequencing in a pediatric cohort with 
suspected mitochondrial disease. Genet Med 22 (2020): 
1254-1261. 

34. Rius R, Compton AG, Baker NL, et al. Application 
of Genome Sequencing from Blood to Diagnose 
Mitochondrial Diseases. Genes (Basel) 12 (2021): 607.

35. Committee MSA. 1675 – Whole Genome Sequencing for 
the diagnosis of mitochondrial disease (2023). 

36. Macken W L, Falabella M, Pizzamiglio C, et al. 

Enhanced mitochondrial genome analysis: bioinformatic 
and long-read sequencing advances and their diagnostic 
implications. Expert Rev Mol Diagn 23 (2023): 797-814. 

37. Ip EKK, Troup M, Xu C, et al. Benchmarking the 
Effectiveness and Accuracy of Multiple Mitochondrial 
DNA Variant Callers: Practical Implications for Clinical 
Application. Front Genet 13 (2022): 692257. 

38. Schmitt MW, Kennedy SR, Salk JJ, et al. Detection of 
ultra-rare mutations by next-generation sequencing. Proc 
Natl Acad Sci U S A 109 (2012): 14508-14513. 

39. Minoche AE, Lundie B, Peters GB, et al. ClinSV: clinical 
grade structural and copy number variant detection from 
whole genome sequencing data. Genome Med 13 (2011): 
32. 

40. Li H. Aligning sequence reads, clone sequences and 
assembly contigs with BWA-MEM (2018). https://arxiv.
org/abs/1303.3997

http://


Puttick C, et al., J Bioinform Syst Biol 2024
DOI:10.26502/jbsb.5107074

Citation: Clare Puttick, Ryan L Davis, Kishore R Kumar, Julian MW Quinn, Trent Zeng, Christian Fares, Mark Pinese, David M Thomas, Marcel E 
Dinger, Carolyn M Sue, Mark J Cowley. mity: A Highly Sensitive Mitochondrial Variant Analysis Pipeline for Whole Genome Sequencing 
Data. Journal of Bioinformatics and Systems Biology. 7 (2024): 05-06.

Volume 7 • Issue 1 14 

SUPPLEMENTARY FILES

 

Supplementary Figure 1: Variant callers identify markedly different mitochondrial variants
A density plot of the variant allele frequency (VAF; comparable to heteroplasmy) for variants detected by FreeBayes (red), GATK 
HaplotypeCaller (green) and LoFreq (blue). FreeBayes identified variants at both low and high heteroplasmy, as well as having the lowest false 
positive rate of the three variant callers (not shown). Given its capability at low heteroplasmy, FreeBayes was selected as the variant caller 
upon which mity was developed.

 

Supplementary Figure 2: Optimizing FreeBayes mapping (MQ) and base (BQ) quality filters
A and B: Cumulative distribution plots of the fraction of reads passing minimum base quality (BQ; A) and mapping quality (MQ; B) for 
13 replicates of NA12878 with WGS data. The median (black line), interquartile range (grey), and 95th percentile (light grey) are shown. 
C: a violin plot showing the number of variants with heteroplasmy >1% identified in 13 replicates of NA12878 across varying BQ and MQ 
combinations. D: the number of variants detected at different BQ and MQ thresholds, expressed as the range from fewest to highest number 
of variants detected across 13 replicates of NA12878. The variants are split into three tiers: tier 1 variants have heteroplasmy >1% (typically 
>30 reads), tier 2 variants have heteroplasmy <1% but >10 supporting reads, and tier 3 variants have fewer than 10 supporting reads. The 
threshold of BQ≥24 and MQ≥30 is highlighted in red throughout the figure as the determined MQ and BQ combination providing the most 
optimal variant detection.
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Supplementary Figure 3: The noise floor is low in control cell lines and MT patient material
A: To estimate the noise floor, p, we first determined the variant allele frequency (VAF) of 
all three possible alternate alleles at each nucleotide in the MT genome in WGS data from 
13 replicates of NA12878 (as shown in Figure 1B), then counted the number of variants at 
different VAF thresholds across all replicates. With no read filtering (blue) there are high 
rates of noise at all VAF thresholds, whereas with high-quality read filtering (BQ ≥24 and 
MQ ≥30; red), the noise is largely resolved using a threshold p>0.002. B: Similar to panel A, 
when using WGS data from two replicates of DNA from an MD patient, high-quality read 
filtering (red) showed that the noise is largely resolved using a threshold of p>0.003, unlike 
when no filters are applied (blue).
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Supplementary Figure 4: Multinucleotide variants require variant normalization by mity-
normalise for accurate calling and annotation
A: Raw sequencing reads from an MD patient with the pathogenic m.3243A>G variant at 
11.6% heteroplasmy (blue arrow) and a single read showing an m.3240C>T artefact with a base 
quality of 30 (red arrow). B: By default, FreeBayes merges variants on the same haplotype, 
thus creating apparent heteroplasmic multi-nucleotide variants. Of the 930 total reads, 822 
match the CAGA reference sequence, one matches the TAGG sequence, and 107 match 
the relevant pathogenic CAGG sequence. Most variant annotation tools, including variant 
effect predictor (VEP), which is used by mity, would fail to annotate this as the well-known 
pathogenic m.3243A>G variant, as has occurred in this instance. C: After applying variant 
normalisation through mity-normalise, this multi-nucleotide variant can be decomposed into 
the m.3240C>T variant with just one supporting read (red), and the pathogenic m.3243A>G 
variant with 108 supporting reads (blue). Most variant annotation tools would now correctly 
recognise and annotate the m.3243A>G variant as pathogenic, as in this instance.
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