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Abstract
Traumatic brain injury is a leading cause of disability and death 

worldwide and represents a high economic burden for families and 
national health systems. After mechanical impact to the head, the first 
stage of the damage comprising edema, physical damage, and cell loss 
gives rise to a second phase characterized by glial activation, increased 
oxidative stress and excitotoxicity, mitochondrial damage, and exacerbated 
neuroinflammatory state, among other molecular calamities. Inflammation 
strongly influences the molecular events involved in the pathogenesis of 
TBI. Therefore, several components of the inflammatory cascade have been 
targeted in experimental therapies. Application of Electromagnetic Field 
(EMF) stimulation has been found to be effective in some inflammatory 
conditions. However, its effect in the neuronal recovery after TBI is not 
known. In this pilot study, Yucatan miniswine were subjected to TBI using 
controlled cortical impact approach. EMF stimulation via a helmet was 
applied immediately or two days after mechanical impact. Three weeks 
later, inflammatory markers were assessed in the brain tissues of injured 
and contralateral non-injured areas of control and EMF-treated animals 
by histomorphometry, immunohistochemistry, RT-qPCR, Western 
blot, and ELISA. Our results revealed that EMF stimulation induced 
beneficial effect with the preservation of neuronal tissue morphology as 
well as the reduction of inflammatory markers at the transcriptional and 
translational levels. Immediate EMF application showed better resolution 
of inflammation. Although further studies are warranted, our findings 
contribute to the notion that EMF stimulation could be an effective 
therapeutic approach in TBI patients.
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Introduction
Traumatic Brain Injury (TBI) induces a set of physical, molecular, 

cognitive, and behavioral disorders that arise from an external mechanical 
impact on the head. This condition is considered one of the leading causes 
of long-term disability and mortality worldwide, a high economic burden for 
families and national health systems, and a risk factor for the development of 
other pathologies in the central nervous system (CNS), including Alzheimer’s 
disease [1]. According to CDC reports, in the United States, there were 
approximately 214,110 TBI-related hospitalizations in the year 2020 and 
69,473 TBI-related deaths in 2021 [2]. 
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TBI constitutes a two-stages event where the initial phase 
occurs instantly after injury and comprises physical damage 
to the brain, edema, cell loss, extra and intraparenchymal 
hemorrhages, and focal or diffuse axonal trauma [3]. The 
second phase is the most extended stage, and it could last 
from minutes to months or years [4]. From a biochemical 
point of view, it is characterized by an increase in reactive 
oxygen species (ROS) and other oxidative stress markers, 
mitochondrial dysfunction, altered neuronal metabolism, 
ion imbalance, membrane disruption, cytoskeleton damage, 
DNA fragmentation, and disrupted neural transmission [5]. 
This second phase of damage amplifies the deleterious effects 
of the initial mechanical trauma and is ultimately responsible 
for progressive neurodegeneration and long-term disorders 
that reduce the patient's quality of life.

Neuroinflammation plays a leading role following TBI. 
Astrocytes, and especially microglia, are cellular mediators 
of this inflammatory response after brain trauma [6]. During 
the first moments, activation of microglia induces the release 
of downstream pro-inflammatory cytokines, providing 
immunological protection against invading pathogens and 
deleterious internal molecules [7]. When this process becomes 
dysregulated, the initial neuroprotective effect switches to 
an exacerbated inflammatory response that contributes to 
neurological symptoms and neurodegeneration [5].  

NLR family pyrin domain containing 3 (NLRP3) 
inflammasome is actively involved in the neuroinflammatory 
response after TBI [8]. This multiprotein complex comprises 
three protein subunits: NLRP3 as the sensor molecule, ASC 
as the adaptor protein, and caspase-1 (CASP1) as effector 
protein [9]. The assembly of the structure allows the self-
cleavage and subsequent activation of pro-caspase-1 into 
CASP1 and this enzyme in turn activates interleukin-1 β 
(IL-1β) and interleukin-18 (IL-18) by proteolytical cleavage 
of the pro-peptides [10]. These pro-inflammatory cytokines 
are then released into the neuronal milieu, exacerbating the 
inflammatory environment [11] and promoting cell pyroptosis 
[12].

To this date, several therapeutic agents including 
corticosteroids, excitatory amino acids inhibitors, calcium 
channel blockers, free radical scavengers, etc. have been 
used to regulate the molecular damages of TBI [13-15], 
but unfortunately, none have proven to be effective in 
human trials. Among non-pharmacological approaches, 
Electromagnetic Field (EMF) application has proven to 
provide neuroprotection in terms of modulating ROS in an 
animal model of ischemic stroke [16,17]. At the molecular 
level, EMF also showed a beneficial impact regarding 
nitrous oxide modulation [18], apoptosis [19], superoxide 
production [20], microcirculation [21] inflammation [22], 
and apoptosis [23]. Despite these encouraging results, reports 
regarding EMF effects in TBI are still limited. Recently, 

our group developed an animal model of TBI in pigs, based 
on a Controlled Cortical Impact (CCI), in which EMF was 
applied, demonstrating that the evaluation of brain neuronal 
circuits can be appropriately assessed with this technology 
[24-28]. 

In this study, we evaluated the impact of EMF stimulation 
on inflammatory cascade, specifically on the molecular 
components of the NLRP3 complex and other related factors, 
in swine subjected to TBI. Although with limitations, our 
results demonstrated that EMF could modulate the expression 
of molecules involved in this pathological pathway, 
contributing to reducing the levels of proinflammatory 
cytokines and therefore attenuating the deleterious effects in 
the brain of the EMF-stimulated swine.

Materials and Methods
Animal model: Male Yucatan minipigs (Premier 

BioSource, Ramona, CA) were used, according to guidelines 
of the National Institutes of Health and USDA for the care 
and use of experimental animals. The protocol for this study 
was approved by the Western University of Health Science 
Institutional Animal Care and Use Committee under protocol 
number R23IACUC003. Animals were maintained on a 
normal diet with unrestricted access to water. TBI model 
and EMF application were done as described [26-28]. Three 
animals were extemporaneously used in this pilot study and all 
of them were subjected to mechanical impact to develop TBI. 
Animal 1 did not receive EMF therapeutical stimulations; 
therefore, it is considered an injured untreated control. 
Animal 2 received the EMF therapy two days after TBI 
induction (delayed approach) and animal 3 received the EMF 
20 minutes following TBI induction (immediate approach). 
Electromagnetic therapeutic stimulation and signal detection 
were performed as previously described [26-28].

Tissue harvest: Blood samples were obtained pre-
operatively and post-operatively on the day of surgery, 
at different time points throughout the study, and on the 
sacrifice day for quantifying circulating markers related to 
TBI pathology. Brain cortex samples from the impacted area 
(injury site, IS) and contralateral control area (non-injury 
site, NO IS) were collected and preserved in 10% formalin 
(6764254, ThermoFisher Scientific, Waltham, Massachusetts, 
USA) for histological analysis, in RNAlater (AM7021, 
ThermoFisher Scientific, Waltham, Massachusetts, USA) for 
total RNA extraction, and at -80°C for protein isolation.

Histology processing and staining: After 24 h in 
formalin, tissue fragments were immersed in consecutive 
solutions of ethanol, xylene, and paraffin wax in a tissue 
processor Tissue-Tek VII (Sakura Finetek, Torrance, CA, 
USA). Paraffin blocks were generated and 5 μm sections 
were obtained using a Leica RM2265 rotary microtome 
(Leica™, Wetzlar, Germany) placed on the glass slide and 
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then incubated at 60°C for one hour. Before staining and 
immunohistochemistry, paraffin-embedded tissues were 
deparaffinized and hydrated according to standard protocols 
in our laboratory. For H&E staining, slides were incubated 
in hematoxylin for 90 sec and in eosin for 3 minutes. The 
stained sections were mounted with a xylene-based mounting 
medium Cytoseal (23-244257, ThermoFisher Scientific, 
Waltham, MA, USA). Slides were scanned using a Leica DM6 
light microscope (Leica™, Wetzlar, Germany) with a scale of 
100 μm. At least three adjacent sections from each tissue and 
3-5 fields per section were scanned. All the scanned sections 
were analyzed by two independent observers to detect signs 
of inflammation, apoptosis, pyknotic nuclei, vacuolation, etc.

Quantitative Real-Time Polymerase Chain Reaction 
(RT-qPCR): Approximately 50 mg of brain tissue from 
each sample was used to isolate total RNA using TRIZOL 
(T9424, Millipore Sigma, Burlington, MA, USA) following 
the manufacturer’s instruction protocol in our laboratory. 
RNA pellet was resuspended in 30 µL of nuclease-free 
water (BP561-1, ThermoFisher Scientific, Waltham, MA, 
USA) and RNA yield was quantified using Nanodrop 2000 
Spectrophotometer (Thermo Fisher, Waltham, MA, USA). 
Two micrograms of total RNA were used to synthesize 
complementary DNA (cDNA) using AzuraQuant™ cDNA 
Synthesis Kit (AZ-1996, Azura Genomics Inc., Raynham, 
MA, USA) according to manufacturer’s instruction using a 
T100™ Thermal Cycler (Bio-Rad Laboratories, Hercules, 
CA, USA). The cDNAs were diluted 1:20 in nuclease-free 
water and qPCR reactions were prepared in a final volume 
of 10 µL and in triplicate using AzuraView™ GreenFast 
qPCR Blue Mix LR (AZ-2350, Azura Genomics Inc., 
Raynham, MA, USA). Amplification was carried out in a 
C1000™ Thermal Cycler (Bio-Rad Laboratories, Hercules, 
CA, USA) and the cycling conditions were the following: 3 
minutes at 95°C for initial denaturation, 40 cycles of 10 sec 
at 95°C (denaturation), 30 sec at 60°C (annealing/extension) 
followed by melting curve analysis. The primers for genes 
of interest and housekeeping gene (Table 1) were purchased 
from Integrated DNA Technologies (Coralville, IA, USA). 

After normalization with 18S, relative gene expression was 
calculated using 2-ΔΔCT method. 

Immunohistochemistry (IHC): After slides were 
deparaffinized and rehydrated, antigen retrieval was 
performed by heating the samples in 1% citrate buffer 
(C9999-1000ML, Millipore Sigma, Burlington, MA, USA) 
in a commercial steamer for 45 minutes. The slides were 
cooled for another 45 minutes and washed with 1x phosphate-
buffered saline (PBS) (BP39920, ThermoFisher Scientific, 
Waltham, MA, USA) for 5 minutes. Endogenous peroxidase 
activity was blocked by incubating slides with 3% hydrogen 
peroxide (H1009, Millipore Sigma, Burlington, MA, USA) 
for 15 minutes at room temperature. After washing two times 
in 1x PBS of 5 minutes each, tissue sections were treated for 
1 h at room temperature with ready-to-use blocking solutions: 
Normal Horse Serum for mouse antibodies (S-2000-20), 
Normal Goat Serum for rabbit antibodies (S-1000-20) and 
Normal Rabbit Serum for goat antibody (S-5000-20) (Vector 
Laboratories, Newark, CA USA) and were subsequently 
incubated with primary antibodies (Table 2) overnight at 
4°C. The day after, samples were rinsed twice in 1x PBS for 
5 minutes and were incubated for 1 h at room temperature 
with ready-to-use biotinylated secondary antibodies (Table 
2). Tissue sections were washed two times with 1x PBS for 5 
minutes each, followed by incubation with VECTASTAIN® 
ABC-HRP Kit (PK-4000, Vector Laboratories, Newark, 
CA USA) for 30 minutes at room temperature. After rinsing 
with 1x PBS solution as previously described, tissue sections 
were incubated with AEC Substrate Kit, Peroxidase (HRP), 
(3-amino-9-ethylcarbazole) (SK-4200, Vector Laboratories, 
Newark, CA USA) for 10 minutes until color development 
and the reaction was stopped by immersing slides in tap 
water. Counterstaining with hematoxylin was done for 
approximately 1 minute and the sections were mounted 
using ADVANTAGE Mounting Media (NB300A, Innovex 
Biosciences, Pinole, CA, USA). At least three images from 
each tissue section were manually analyzed using Fiji Image 
J Software (version 1.54J, NIH, USA) [29] to semi-quantify 
the mean intensity and percentage of stained area  [30]. 

Gene name Forward Reverse
NLRP3 5’-CGAGACGTGACAGTTCTTCTT-3’ 5’-GGACGTTCTCTCCTGGTTTAC-3’

CASP1 5’-GGGTTACAGTGTGGATGTTAGAG-3’ 5’-CATGAGACATGAGCACCAGAA-3’

IL-1β 5’-TGCATGAGCTTTGTGCAAGGAG-3’ 5’-AGGGTGGGCGTGTTATCTTTCA-3’

IL-18 5’-TACGAAATCTGAACGACCAAGT-3’ 5’-ATACGGTCTGAGGTGCATTATC-3’

CASP8 5’-TATATCCCAGACGAGGCGGACT-3’ 5’-TTCTTTCAGGCTCTGGCACAGT-3’

IL-6 5’-CTGATCCAGACCCTGAGGCAAA-3’ 5’-ACTCGTTCTGTGACTGCAGCTT-3’

TNF-α 5’-TTCCTCACTCACACCATCAGCC-3’ 5’-GGTAGATGGGTTCGTACCAGGG-3’

18S 5’-CCCACGGAATCGAGAAAGAG-3’ 5’-TTGACGGAAGGGCACCA-3’

Table 1: Sequences of forward and reverse oligonucleotides used in this study for gene of interest amplification by RT-qPCR. 18S gene was 
used as a housekeeping gene to normalize results. NLRP3: NLR family pyrin domain containing 3; CASP1: caspase 1; IL-1β: interleukin-1 
beta; IL-18: interleukin-18; CASP8: caspase 8; IL-6: interleukin-6; TNF-α: tumor necrosis factor α.
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Western blot
Approximately 100 mg of brain tissue from each sample 

was used to isolate total proteins. Tissue fragments were 
disrupted in 1 mL of 1x PBS solution supplemented with a 
protease inhibitor cocktail (Pierce Protease Inhibitor Mini 
Tablets, A32953, ThermoFisher Scientific, Waltham, MA, 
USA) using a tissue disruptor (PowerGen 125, ThermoFisher 
Scientific, Waltham, MA, USA). After complete dissociation, 
samples were centrifuged at 4°C for 10 minutes to remove 
insoluble fragments. Supernatants were transferred to new 
Eppendorf tubes and total protein concentrations were 
estimated by the Bradford method [31] using Bio-Rad Protein 
Assay Kit II (5000002, Bio-Rad Laboratories, Hercules, CA, 
USA). Twenty µg of total protein were loaded and run on 
SDS gel (4–15% Mini-PROTEAN TGX Precast Protein Gels 
(4561084, Bio-Rad Laboratories, Hercules, CA, USA) and 
then transferred to PVDF membrane (1620177, Bio-Rad 
Laboratories, Hercules, CA, USA) according to standard 
procedure. The appropriate transfer was checked by Ponceau 
Red staining (P7170, Millipore Sigma, Burlington, MA, USA) 
and afterward, the membranes were blocked for 1 h at room 
temperature in the blocking solution in 1x Tris Buffered Saline 
(TBS) (50-489-119, ThermoFisher Scientific, Waltham, 
MA, USA) supplemented with 0.1% Tween20 (P1379, 
Millipore Sigma, Burlington, MA, USA) and 5% skimmed 
milk (1706404, Bio-Rad Laboratories, Hercules, CA, USA). 
Membranes were incubated with primary antibodies (Table 
2) prepared in the blocking solution overnight at 4°C with 
gentle agitation. After that, membranes were rinsed three 
times for 5 minutes in washing solution consisting of 1xTBS 

/ 0.1% Tween 20, followed by incubation with appropriate 
secondary antibodies (Table 2) for 1 h at room temperature 
with gentle agitation. Then, membranes were washed, and 
signals were developed with Pierce ECL Western Blotting 
Substrate (32106, ThermoFisher Scientific Waltham, MA, 
USA). Images were obtained in a ChemiDoc XRS+ System 
(Bio-Rad Laboratories, Hercules, CA, USA) and processed 
using Fiji Image J Software (version 1.54J, NIH, USA) [29]. 
β-actin was used as a house-keeping protein to ensure that the 
same amount of protein was applied for all samples. 

ELISA quantification
Biochemical markers for TBI were quantified in serum 

samples collected before surgery and at different time points 
during the study and in brain cortex samples collected during 
the final surgery. Homogenates from IS and NO IS tissues 
were obtained as previously described. Commercial kits for 
Neuron-Specific Enolase (NSE) (MBS040255, MyBioSource, 
San Diego, CA, USA), Glial Fibrillary Acidic Protein (GFAP) 
(LS-F22386, LSBio Shirley, MA, USA), Ubiquitin Carboxy-
terminal Hydrolase (UCHL1) (LS-F12898-1, LSBio Shirley, 
MA, USA), Myelin Basic Protein (MBP) (LS-F22414, LSBio 
Shirley, MA, USA), IL-1β (MBS2021728, MyBioSource, 
San Diego, CA, USA), IL-6 (MBS765708, MyBioSource, 
San Diego, CA, USA), TNF-α (MBS161499, San Diego, 
CA, USA) and Total Antioxidant Capacity (TAC) (ab65329, 
Abcam, Waltham, MA, USA) were used according to 
manufacturer’s instructions. For tissue-derived samples, 
results are expressed as a concentration of marker per mg of 
total protein.

Antibody Catalog Dilution in IHC Dilution in WB
Primary antibodies

NLRP3 AP32694PU-N 1:50 0.3 µg/mL

CASP1 PA5-119001 1:100 1:1000

IL-1β MBS2025860 1:100 1:1000

IL-18 MBS2026569 1:100 1:1000

CASP8 ABIN724205 1:100 1:2000

IL-6 MBS2005254 1:100 1:1000

TNF-α MBS820357 1:100 1:1000

ACTB ab8226 - 1:1000

Secondary antibodies
Anti-mouse BP-2000-50 Ready-to-use -

Anti-rabbit BP-9100-50 Ready-to-use -

Anti-goat BP-9500-50 Ready-to-use -

Anti-mouse NB7544 - 1:3000

Anti-rabbit A16023 - 1:2000

Anti-goat STAR206P - 1:5000

Table 2: Primary and secondary antibodies dilution factors for Immunohistochemistry and Western blot. NLRP3: NLR family pyrin domain 
containing 3; CASP1: caspase 1; IL-1β: interleukin-1 beta; IL-18: interleukin-18; CASP8: caspase 8; IL-6: interleukin-6; TNF-α: tumor 
necrosis factor α; IHC: immunohistochemistry; WB: Western blot.
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Statistical Analysis
Data were analyzed using GraphPad Prism 10 for 

Windows (version 10.1.1) and are represented as mean ± 
standard deviation. The normality of data was verified by 
Shapiro Wilk’s test. For each swine, comparisons between 
injured (IS) vs non-injured (NO IS) sites were performed using 
Student’s t-test. Comparisons among IS from all swine were 
carried out using One-way ANOVA and Tukey’s posthoc test. 
For all analyses a p-value < 0.05 was accepted as statistically 
significant. For two groups comparisons, differences were 
represented by *p <0.05, **p<0.01, ***p <0.001 and ****p 
<0.0001. For three groups comparisons, different letters 
indicate significant differences for at least p < 0.05.

Results
Histological analysis

H&E staining of the brain tissues from the injury site 
of swine not treated with EMF (hereafter swine 1) showed 
an increased population of deformed neurons, stellate cells, 
microglia, and pyramidal cells, neurons with pyknosis, 
ghost neurons, edema around neurons and stellate cells, 
and regenerating endoplasmic reticulum compared to the 
tissues from contralateral hemisphere with no injury. Further, 
injury site tissues showed an increased presence of foci of 
inflammation. Furthermore, there was increased edema at 
the site of injury and around neurons and stellate cells, fewer 
normal appearing neurons, presence of hematoma, immune 
cells, and hemosiderin at the site of injury. The injured 
tissues also revealed an increased number of granular cells, 
and large acidophilic mass surrounding dark apoptotic nuclei  
(Figure 1). 

In the swine where EMF was applied after 2 days of 
injury (hereafter swine 2), the injured site tissues revealed 
hematoma, hemosiderin deposition, RBCs, increased number 
of immune cells, decreased number of normal appearing 
neurons at the site of injury, pyknotic neurons, degenerating 
neuron, large acidophilic bodies, edema around the injury 
site and neurons, and regenerating neurons compared 
to contralateral tissue without injury (Figure 2). These 
pathological findings were less severe in swine 2 compared 
to swine 1. Swine 2 also revealed thrombosis and dividing 
microglia at the site of injury compared to the non-injured 
site of the same swine. The non-injured tissues of swine 2 
showed many normal appearing pyramidal cells, stellate 
cells, microglia, and granular cells with a few abnormal cells, 
normal appearing neurons with a few with pyknosis, minimal 
edema around the cells, and minimal evidence of RBCs and 
immune cells.

The injured tissues from swine with TBI and EMF applied 
just after injury (hereafter swine 3) revealed minimal to no 
edema, the presence of many near normal neurons, microglia, 
pyramidal cells, and granular cells with a few with deformed 
morphology. The edema around neuron and stellate cells 
decreased in some areas while more in other areas (Figures 
3a and 3b). The injured tissues also revealed the presence 
of dividing microglia, thrombosis, immune cells, and 
hemosiderin deposition but were lesser than the injured tissues 
of swine 1 and 2. The number of neurons with pyknosis, large 
acidophilic bodies surrounding dark apoptotic nuclei, and the 
number of deformed granular cells decreased compared to the 
tissues from swine 1 and swine 2 (Figures 3a and 3b). The 
non-injured tissues from swine 3 showed normal appearing 

 
Figure 1: Hematoxylin and eosin staining in swine with TBI with no EMF application (swine 1). dN- Deformed Neuron, dS- Deformed 
Stellate cell, dM- deformed Microglia, dP- Deformed Pyramidal cells, pN- Neurons with pyknosis, gN- Ghost Neuron, Ed- Edema around 
neuron and stellate cells, rER- Regenerating Endoplasmic Reticulum, M- Microglia, G- Granular cell. These are represented histological 
pictures of all images scanned in this swine. The images were scanned at 100µm.
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pyramidal cells, stellate cells, microglia, and granular cells 
with a few abnormal cells. Overall, the injured site tissues’ 
pathological findings improved with EMF application and 
were better when EMF was applied just after injury compared 
to EMF applied 2 days after injury. The non-injured tissues 
revealed better histology in swine 2 and swine 3 compared to 
swine 1 and in swine 3 compared to swine 2.

RT-qPCR
For each gene in the study, comparisons between IS vs 

contralateral NO IS were carried out for each independent 
animal (Figure 4). For swine 1, TBI was associated with an 
increase in transcriptional expression of NLRP3, CASP1, 
CASP8, IL-18, and IL-6, while there was no effect for IL-1β 
and a slight reduction for TNF-α. Swine 2 exhibited increased 
levels of CASP1, CASP8, IL-18, and TNF-α; no differences 
were observed for NLRP3, IL-1β and IL-6. For swine 3 there 
was a reduction in levels of CASP8, IL-18, and IL-6; there 
were no differences for NLRP3, CASP1, and TNF-α and 
there was an increase for IL-1β. 

Comparisons among IS of all swine shown that delayed-
EMF application (swine 2) was associated to a reduction 
in CASP1, IL-18, and IL-6 expression and an increase in 
NLPR3, CASP-8, IL-1β and TNF-α compared to no-EMF 

(swine 1). On the other hand, immediate-EMF application 
(swine 3) was associated with a reduction in levels of NLRP3, 
CASP1, CASP8, IL-18, and IL-6, while an increase in IL-
1β, with no differences observed for TNF-α compared to 
no-EMF (swine 1). Comparison between swine 2 and swine 
3 revealed differences in the mRNA transcripts of NLRP3, 
CASP1, CASP8, and IL-1β (Figure 5).

Immunostaining
IHC of brain cortex sections revealed immunopositivity 

for NLRP3 and the expression levels were similar in IS and 
NO IS for swine 1 and swine 2. For swine 3, there was a 
pronounced decrease in this marker. When comparing the 
damaged areas of the three swine, the results revealed that 
immediate-EMF treatment (swine 3) was associated with a 
decrease in the expression of NLRP3 compared to the control 
animal (swine 1) (Figure 6, panels A-H). For CASP1, the 
highest immunoreactivity was observed in the swine 1, with 
no difference between IS and No IS. A positive signal was 
less pronounced in swine 2 and swine 3, with significantly 
reduced or non-detected expression in both IS and NO IS of 
swine 3. As for NLRP3, we detected a statistical difference 
between IS of swine 3 and swine 1 (Figure 6, panels I-P). 

There was a significantly high immunopositivity for IL-1β 

 
Figure 2: H&E staining in swine with TBI with EMF application after 2 days (swine 2). dN- Deformed Neuron, dS- Deformed Stellate cell, 
dM- deformed Microglia, dP- Deformed Pyramidal cells, pN- Neurons with pyknosis, gN- Ghost Neuron, Ed- Edema around neuron and 
stellate cells, rER- Regenerating Endoplasmic Reticulum, M- Microglia, G- Granular cell. These are represented images of all images scanned 
in this swine. The images were scanned at 100µm.
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Figure 3a: Hematoxylin and eosin staining in swine with TBI with EMF application immediately after injury (swine 3). dN- Deformed 
Neuron, dS- Deformed Stellate cell, dM- deformed Microglia, dP- Deformed Pyramidal cells, pN- Neurons with pyknosis, gN- Ghost Neuron, 
Ed- Edema around neuron and stellate cells, rER- Regenerating Endoplasmic Reticulum, M- Microglia, G- Granular cell. These are represented 
images of all images scanned in this swine. The images were scanned at 100µm.

 

Figure 3b: Hematoxylin and eosin staining in swine with TBI with EMF application immediately after injury (swine 3). dN- Deformed 
Neuron, dS- Deformed Stellate cell, dM- deformed Microglia, dP- Deformed Pyramidal cells, pN- Neurons with pyknosis, gN- Ghost Neuron, 
Ed- Edema around neuron and stellate cells, rER- Regenerating Endoplasmic Reticulum, M- Microglia, G- Granular cell. These are represented 
images of all images scanned in this swine. The images were scanned at 100µm.
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Figure 4: RT-PCR data for mRNA transcripts of inflammation-related genes. Comparisons between injured site (IS) vs non-injured site 
(NO IS) for each individual swine were performed using Student’s t test. Data are presented as mean ± SD. * p<0.05, **p<0.01, ***p<0.001, 
****p<0.0001. Swine 1: untreated control; swine 2: delayed electromagnetic field (EMF) application; swine 3: immediate EMF application. 
NLRP3: NLR family pyrin domain containing 3; CASP1: caspase 1; IL-1β: interleukin-1 beta; IL-18: interleukin-18; CASP8: caspase 8; IL-6: 
interleukin-6; TNF-α: tumor necrosis factor α.

Figure 5: RT-PCR data for mRNA transcripts of inflammation-related genes. Comparisons among injured site (IS) from all swine were 
performed using an ordinary one-way ANOVA followed by Tukey's multiple comparisons test. Data are presented as mean ± SD. Different 
letters indicate significant differences for at least p < 0.05. Swine 1: untreated control; swine 2: delayed electromagnetic field (EMF) application; 
swine 3: immediate EMF application. NLRP3: NLR family pyrin domain containing 3; CASP1: caspase 1; IL-1β: interleukin-1 beta; IL-18: 
interleukin-18; CASP8: caspase 8; IL-6: interleukin-6; TNF-α: tumor necrosis factor α.
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Figure 6: Immunohistochemistry (IHC) staining for NLR family pyrin domain containing 3 (NRLP3) and caspase (CASP)1 in non-injured 
(NO IS) and injured (IS) cortex tissues of Yucatan miniswine. Images are representative of all IHC studies. Comparisons between IS vs NO 
IS for each individual swine were performed using Student’s t test. Data are presented as mean ± SD. **p<0.01, ****p<0.0001. Comparisons 
among IS from all swine were performed using an ordinary one-way ANOVA followed by Tukey's multiple comparisons test. Different letters 
indicate significant differences for at least p < 0.05. IHC for NLRP3 (panels A-F), CASP1 (panels I-N), average stained intensity (panels G and 
O) and average stained percent area (panels H and P). Swine 1: untreated control; swine 2: delayed electromagnetic field (EMF) application; 
swine 3: immediate EMF application.

in IS of swine 2 and swine 3, while tissue sections from swine 1 
showed less stained intensity and area and IS was statistically 
different to NO IS. Immunostaining in IS of swine 2 and 
swine 3 was the same and statistically different from IS of 
swine 1 (Figure 7, panels A-H). For IL-18, immunoreactivity 
was similar in both brain areas of swine 1, but the positive 
signals in the IS from both EMF-treated animals (swine 2 
and swine 3) were statistically significant compared to their 
respective NO IS. For this marker, immunostaining in IS of 
all swine was the same (Figure 7, panels I-P). 

In the case of CASP8, there was a significant reduction 
of immunoreactivity in IS compared to NO IS for swine 1 
and swine 2, while expression levels for swine 3 were the 
same on both sides of the brain. As for precedent markers, 
EMF was related to a significant reduction of this protein, 
compared to the non-EMF control area (Figure 8, panels 
A-H). Finally, for IL-6 there were no differences between 
IS and NO IS for each swine. Similarly, the expression level 
was the same when compared IS of the three animals (Figure 
8, panels I-P). For TNF-α, there was less expression in IS 
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compared to NO IS for swine 1 and swine 2, and similar 
immunostaining for both areas in swine 3. Comparing IS in 
all animals, there was higher intensity and stained area in 
swine 3 than in swine 1 and swine 2 (Figure 8, panels Q-X) 
for both areas in swine 3.

Western blot
Preliminary results of the Western blot study suggested 

that EMF could be associated with a decrease in NLRP3 
protein in the IS of swine 2 and swine 3, independently of the 
time of application. At first glance, no changes were observed 
in the expression of CASP1, but a lower expression of CASP8 
is evident in swine 3. The result for IL-1β corresponds to that 
of the transcriptional expression, as more intense bands were 
observed in the IS samples of swine 2 and swine 3. Likewise, 
this initial result corroborates the decrease in the expression 
of IL-18 in the IS of swine 3 and a greater expression in the 

same area of swine 2. On the other hand, a slight decrease in 
IL-6 was observed in the IS of swine 2 and swine 3, when 
compared with their corresponding NO IS. For TNF-α, no 
large variations were detected among the samples analyzed 
(Figure 9). As we stated before, these results are preliminary 
and need to be corroborated in studies that are currently 
planned with an increased number of swine.

ELISA
Table 3 summarizes the values for each marker in brain 

cortex samples. For both EMF-treated animals (swine 2 and 
swine 3), markers NSE, GFAP, UCHL1, MBP, IL-1, IL-6, 
and TAC showed higher concentrations in IS than in NO IS. 
For the control animal (swine 1), there were similar values in 
IS and NO IS for NSE, GFAP, UCHL1, MBP, and TAC; IL-
1β was not detected in NO IS; IL-6 and TNF-α showed higher 
numerical values in IS than in NO IS. 

 

Figure 7: Immunohistochemistry (IHC) staining for Interleukin (IL)-1β and IL-18 in non-injured (NO IS) and injured (IS) cortex tissues of 
Yucatan miniswine. Images are representative of all IHC studies. Comparisons between IS vs NO IS for each animal were performed using 
Student’s t test. Data are presented as mean ± SD. * p<0.05, **p<0.01. Comparisons among IS from all animals were performed using an 
ordinary one-way ANOVA followed by Tukey's multiple comparisons test. Different letters indicate significant differences for at least p < 0.05. 
IHC for IL-1β (panels A-F), IL-18 (panels I-N), average stained intensity (panels G and O) and average stained percent area (panels H and P). 
Swine 1: untreated control; swine 2: delayed electromagnetic field (EMF) application; swine 3: immediate EMF application.
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Figure 8: Immunohistochemistry (IHC) staining for Caspase 8 (CASP8), Interleukin (IL)-6 and Tumor Necrosis Factor α (TNF-α) in non-
injured (NO IS) and injured (IS) cortex tissues of Yucatan miniswine. Images are representative of all IHC studies. Comparisons between 
IS vs NO IS for each individual subject were performed using Student’s t test. Data are presented as mean ± SD. * p<0.05, ***p<0.001, 
****p<0.0001. Comparisons among IS from all subjects were performed using an ordinary one-way ANOVA followed by Tukey's multiple 
comparisons test. Different letters indicate significant differences for at least p < 0.05. IHC for CASP8 (panels A-F), IL-6 (panels I-N), TNF-α 
(panels Q-V), average stained intensity (panels G, O and W) and average stained percent area (panels H, P and X). Swine 1: untreated control; 
swine 2: delayed electromagnetic field (EMF) application; swine 3: immediate EMF application.
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study, swine 3 exhibited the highest concentrations for MBP 
and IL-6, which didn’t markedly change in time, only a slight 
tendency to decrease (Figure 10, triangle lines). In general, 
we failed to detect GFAP and IL-1β in serum samples. 

Discussion
At the molecular level, TBI is characterized by persistent 

neuroinflammation, an event that occurs in the second phase 
of TBI and plays a fundamental role in neurodegeneration, 
alteration of neural and synaptic transmission, and cell death 
[7, 32]. During the neuroinflammatory response, peripheral 
immune mediators cross through the damaged blood-brain 
barrier and contribute to the activation of microglia, inducing 
the secretion of proinflammatory cytokines such as IL-1β, IL-
6, and TNF-α [33]. Animal models developed in rodents have 
been historically used to study mechanisms of TBI impact 
due to its low cost and ease of handling [34]. But these models 
do not always reflect the complexity of the damage that 
takes place in the human brain and on many occasions, the 
positive results obtained in this type of experimental animal 
are not obtained in clinical trials, therefore it is necessary 
to address the medical problem in models closer to human 
anatomy. Thus, TBI models in pigs have come to overcome 
the anatomical gaps between rodents and humans, allowing 
more accurate studies of the underlying mechanisms and the 
evaluation of drugs and treatments with greater effectiveness.

Indeed, EMF represents a novel approach for treating 
complications derived from TBI. The application of this 
technology has shown positive effects in models of peripheral 
nerve injury in rodents, promoting axonal regeneration and 
functional recovery [35,36]. In the clinical arena, EMF has 
been used to treat several conditions like mirror movements, 
traumatic spinal cord injuries, and hemispherectomy and to 
stimulate the peripheral nervous system after amputations 
[37]. Although the results are promising, research must be 
carried out to demonstrate the feasibility of applying EMF in 
TBI. Some important concerns like optimal electromagnetic 
settings, molecular biology of the disease, and EMF 

 
Figure 9: Western Blot analysis of cortex tissue from injured site 
(IS) and non-injured site (NO IS) of Yucatan miniswine.  Swine 
1: untreated control; swine 2: delayed electromagnetic field (EMF) 
application; swine 3: immediate EMF application. NLRP3: NLR 
family pyrin domain containing 3; CASP1: caspase 1; IL-1β: 
interleukin-1 beta; IL-18: interleukin-18; CASP8: caspase 8; IL-6: 
interleukin-6; TNF-α: tumor necrosis factor α; βACT: beta-actin.

Results showed that each swine exhibited different 
concentrations for each marker in serum before TBI surgery. In 
the control animal (swine 1) there was a tendency concerning 
a numerical increase in markers such as UCHL1, TNF-α and 
TAC towards the final day of the study. It showed no variations 
in MBP levels and only a slight increase in IL-6. No NSE 
was detected in any of the serum samples from this animal 
(Figure 10, circle lines). For delayed-EMF swine (swine 2), 
there was a marked increase in the serum concentration of 
NSE and TNF-α on the final day of the study. MBP did not 
vary in time. UCHL1 concentration decreased, after a slight 
increase post-TBI. TAC showed a marked increase on day 8 
but then exhibited a decreasing trend. IL-6 was not detected 
in any sample (Figure 10, square lines). Swine 3 exhibited 
final numerical values for NSE, UCHL1, TNF-α and TAC 
lower than swine 2 and swine 1. Since the beginning of the 

 Swine 1 NO IS Swine 1 IS Swine 2 NO IS Swine 2 IS Swine 3 NO IS Swine 3 IS
NSE (ng/mg) 0.77 0.72 0.73 1.17 0.76 1.19

GFAP (ng/mg) 2.37 2.01 1.86 2.22 1.97 2.73

UCHL1 (pg/mg) 21.92 24.82 22.95 48.87 24.11 47.97

MBP (ng/mg) 0.74 1.18 0.75 1.3 0.77 1.66

IL-1b (pg/mg) 4.55 nd 5.68 11.48 6.57 40.56

IL-6 (pg/mg) 92.83 120.26 59.98 156.06 92.61 124.95

TNF-a (pg/mg) 163.9 336.83 252.36 48.04 159.89 420.6

TAC (nmol/mg) 4.01 5.23 4.21 7.11 4.5 6.32

Table 3: Levels of TBI and inflammation markers in brain cortex samples collected at day 21 during terminal surgery. IS: Injury site; NO IS: 
No injury site; NSE: Neuron Specific Enolase; GFAP: Glial Fibrillary Acidic Protein; UCHL1: Ubiquitin Carboxy-terminal Hydrolase; MBP: 
Myelin Basic Protein; IL-1β: Interleukin-1 beta; IL-6: Interleukin-6; TNF-α: Tumor Necrosis Factor α; TAC: Total Antioxidant Capacity. 
Swine 1: untreated control. swine 2: delayed electromagnetic field (EMF) application. swine 3: immediate EMF application. nd: not detected.
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mechanisms of action must be finely tuned before establishing 
this technology as a widespread therapeutic option. 

After mechanical impact to the head, NLRP3 
inflammasome is activated by high ATP levels, damage- and 
pathogen-associated molecular patterns signals, increase 
in intracellular calcium, cellular potassium efflux, and 
mitochondrial dysfunction [38,39]. NLRP3 complex is 
mainly located in microglia [40] and after assembly and 
activation, pro-caspase 1 is proteolytically processed into its 
active form and in turn, it converts pro-IL-1β and pro-IL-18 
into IL-1β and IL-18 pro-inflammatory cytokines [9,10]. 
High levels of NLRP3, caspase-1, IL-1β and IL-18 have been 
detected in the serum of TBI patients [41,42] as well as in the 
injured cerebral cortex in a murine model of TBI [43]. In our 
research, 21 days after inducing TBI, transcriptional levels 
of NLRP3 complex genes were higher in IS compared to 
NO IS in swine 1, except for IL-1, for which the levels were 
similar. At the protein level, swine 1 exhibited the highest 
levels of CASP1 for both areas in the brain, which could be 
responsible for the high expression of IL-18. IL-1β showed 
the lowest levels among three animals, in terms of gene 
and protein expression. In swine 2, the delayed application 
of EMF exerted a mild restorative effect by decreasing the 
transcriptional and protein expression of NLRP3 to the levels 
of the intact contralateral zone. Also in swine 2, coding RNA 
for CASP1 remained elevated, and this could be responsible 

for the higher level of IL-18 observed in IS compared to NO 
IS. While IL-1β transcriptional expression was the same for 
both, injured and no injured areas in swine 2, the significant 
increase of this cytokine detected in IS suggests the incidence 
of putative protein stabilization mechanisms. 

In swine 3, the immediate application of EMF on the 
injured area maintained the levels of NLRP3 and CASP1 
like those of the contralateral intact region, which ultimately 
resulted in significantly lower levels for both proteins in the 
IS tissue. For the IL-18 coding gene, there was a reduction 
in its transcriptional expression, but after 21 days protein 
levels remained significantly higher in IS compared to NO 
IS of swine 3, as observed for swine 2. Besides activation by 
CASP1, pro-IL-18 is also processed by several other proteases 
like CASP8 [44], proteinase 3 [45], mast cell chymase [46], 
and granzyme B [47] and it has a very wide interaction 
network that covers 319 molecules and 402 reactions and 
it is also diverse according to the cell type under study. 
So, it is inferred then that its post-translational regulation 
does not depend on a single mechanism [48]. Whether this 
increase is relevant in the context of TBI and EMF, should 
be explored in further experiments as IL-18 induces other 
pro-inflammatory factors like TNF-α, IL-1β, IL-6, inducible 
nitric oxide, and cyclooxygenase 2, among others [48]. For 
IL-1β, an unanticipated significant increase in transcriptional 
expression was obtained in IS compared to the NO IS site, 

 
Figure 10: Time course variations in Traumatic Brain Injury (TBI) and inflammation markers during the development of the animal model in 
Yucatan miniswine, quantified by specific ELISA systems. The arrow represents the moment in which mechanical impact was applied. Swine 
1: untreated control; swine 2: delayed electromagnetic field (EMF) application; swine 3: immediate EMF application. NSE: Neuron-specific 
enolase; UCHL1: Ubiquitin Carboxy-terminal Hydrolase; MBP: Myelin Basic Protein; IL-6: Interleukin-6; TNF-α: Tumor Necrosis Factor α; 
TAC: Total Antioxidant Capacity.
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although both proteins were similarly immunodetected in 
swine 3. This result could be contradictory when compared to 
the effect observed for the rest of the inflammation markers 
in this animal. 

According to previous reports in the literature, despite 
being a prototypical "pro-inflammatory" cytokine, IL-1β can 
also provide protection to the damaged CNS. Several studies 
have demonstrated that IL-1β-stimulated astrocytes increase 
neuronal survival through the production of neurotrophic 
factors [49,50]. In an animal model of Parkinson’s Disease, 
the overexpression of IL-1β in the caudate nucleus increases 
tyrosine hydroxylase immunoreactivity and behavioral 
outcome of the animals eight weeks after lesion [51]. In 
a transgenic model for Alzheimer’s disease, sustained 
hippocampal IL-1β overexpression ameliorated β-amyloid 
plaques size and frequency [52,53]. IL-1β has also been 
shown to mediate ischemic tolerance, contributing to 
building a protective response [54]. Finally, IL-1β can 
reduce excitotoxicity neuronal cell death after the addition 
of ionotropic glutamate receptor agonists to primary 
neuronal and organotypic slice cultures [55-58]. Whether the 
observed increase in IL-1β transcriptional expression in our 
experimental model contributes to neuronal protection and/or 
recovery should be assessed in future studies. 

Besides its major role in cell apoptosis promoted by 
death receptors triggering, mitochondrial apoptosis, and 
endoplasmic reticulum stress [59-61], CASP8 has been 
shown to regulate inflammation by modulating IL-1β mRNA 
expression, specifically by the activation of nuclear factor-
kB (NF-κB) [62]. In other biological scenarios, CASP8 has 
also been involved in NLRP3 priming and activation, where 
it was directly associated with cleavage and processing of 
procaspase-1, IL-1β, and IL-18 processing [63-66]. We 
decided to study CASP8 in our model due to its contribution 
to neuronal pathologies like TBI [67-69], brain ischemia 
[70], and seizures [71]. In our study, TBI stimulated a 
significant increase in the transcriptional expression of this 
gene in the IS of swine 1 and swine 2, but this effect was not 
reproduced in protein expression, as a significant decrease in 
the immunodetection of this marker was observed for both 
animals. The immediate application of EMF decreased the 
expression of this transcript, which resulted in similar protein 
levels between IS and NO IS in swine 3. It has been proposed 
that, in the absence of CASP1, NLRP3 inflammasome 
employs CASP8 pro-apoptotic initiator and IL-1β-processing 
protease [72], so the attenuation of this marker could be 
crucial in the attenuation of the inflammatory process and 
other pathological molecular events that activate during TBI, 
positively contributing to neuronal recovery.

Following TBI, IL-6, and TNF-α are released by 
activated microglia [33] among other chemical mediators 
like prostaglandins, chemokines, and cell adhesion molecules 

[73]. TNF-α is also implicated in necrosis, which promotes 
cell membrane disruption and release of damage-associated 
molecular patterns molecules, establishing a vicious cycle 
of neuroinflammation and cell death [13]. It has been shown 
that the downregulation of NLRP3 inflammasome leads 
to a decrease in the production of these cytokines [74]. In 
our experimental conditions, mechanical injury led to an 
increase in transcriptional expression of IL-6 in IS of swine 
1, while EMF exposure maintained or reduced its levels 
in IS compared to NO IS in swine 2 and swine 3. For this 
cytokine, no differences in immunodetection were observed, 
although some comparisons rendered p values very close to 
significance. For TNF-α, there were higher levels of transcript 
in IS of swine 2 compared to NO IS, but at the protein level, 
there was a reduction. For swine 3, no differences were found 
at the transcriptional level but immunodetection of protein 
was higher in IS. This could agree with increased IL-18 
observed in this tissue, as it has been proved that this cytokine 
induces the production of TNF-α [75-77].

In addition to the individual comparisons between the IS 
and NO IS of each swine, we also compared the IS of all 
swine, to look for a possible effect of the moment in which the 
EMF is applied after TBI, on the expression of inflammatory 
markers in this study. The results obtained suggest that the 
immediate application of EMF is more effective in reducing 
the levels of the NLRP3 complex molecules as well as pro-
inflammatory cytokines. These observations, extrapolated 
to the clinical scenario, speak in favor of the need to 
minimize the time between the occurrence of damage and the 
application of EMF, although more experiments should be 
performed to study the window of therapeutic opportunities 
for the treatment with different frequencies. 

Serum biomarkers in TBI have been widely used as a 
diagnostic tool in establishing the severity of the injury, the 
prognosis of the illness, and the effectiveness of therapies 
[78]. The combination of molecular markers with more 
sophisticated techniques, like computed tomography and 
magnetic resonance, represents a powerful tool for specialists 
to design proper assistance protocols for each patient. In our 
study, besides transcriptional expression, and protein levels of 
inflammation-related molecules, we included quantification 
in tissue and serum samples of some biomarkers closely 
related to TBI pathogenesis. Among them, NSE is a marker 
for neurons and peripheral neuroendocrine cells but is also 
present in microglia, oligodendrocytes, and astrocytes 
[79]. This glycolytic enzyme converts 2-phosphoglycerate 
to phosphoenolpyruvate and its increase in serum has 
been associated with neuronal damage [80] and several 
neurodegenerative disorders like Parkinson’s disease, 
Alzheimer’s disease, Huntington’s disease, and Amyotrophic 
Lateral Sclerosis [81-83]. NSE has also been assessed as a TBI 
marker [84-87], as it appears very quickly after trauma [88], 
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but the results associated with this marker must be interpreted 
with caution since NSE is also present in erythrocytes [89], 
therefore blood hemolysis could interfere. In our model, 
higher levels of tissue NSE in IS than in NO IS of swine 2 and 
swine 3 could be associated with a recovery of neuronal cell 
mass. This result should be corroborated with IHC studies. 
In serum, we failed to detect NSE in samples from control 
animal (swine 1). The final concentration in delayed-EMF 
treated animal (swine 2) was higher than that obtained for 
immediate-EMF treated animal (swine 3), and this could be 
associated with a worse outcome after TBI.

Another serum protein extensively employed to 
characterize TBI patients is UCHL1 [90]. This enzyme is also 
a marker for neurons [91] and is involved in ubiquitination 
and de-ubiquitination of proteins destined for catabolism [92, 
93]. UCHL1 has been shown to rapidly increase after TBI 
compared to uninjured controls [94-96]. Along with GFAP, 
UCHL1 is one of the only two biomarkers approved by the 
Federal Drug Administration for patient monitoring [97]. In 
our TBI model, levels of brain UCHL1 in the control animal 
(swine 1) were the same for IS and NO IS. In EMF-treated 
animals (swine 2 and swine 3), concentrations in IS doubled 
the ones in NO IS. This increase could be beneficial for 
neuronal recovery as this enzyme plays an important role in 
the repair of axons and neurons after injury by removal of 
abnormal proteins by the ubiquitin–proteasome pathway [98], 
protects neurons from cytotoxicity [99] and also regulates 
synaptic function [100]. Our results showed a decrease in 
serum levels of UCHL1 in EMF-treated animals (swine 2 
and swine 3), while the control animal (swine 1) exhibited 
an increase in this protein towards the end of the experiment. 
These findings suggest that the treatment could be associated 
with a reduction in this marker, which could be considered an 
improvement for neuronal restoration.

GFAP represents the main component of the cytoskeleton 
of astrocytes and is found only in glial cells of the CNS 
[101]. It is upregulated during astrogliosis, an activated state 
of astrocytes that arises after trauma or infection [102]. The 
presence of this protein in serum represents a specific marker 
of damage after head trauma [103-106]. In our study, brain 
GFAP levels in IS and NO IS for each swine were similar. 
Regarding quantification in serum, we failed to detect this 
protein. This could be due to the sensitivity of the ELISA 
system we employed, in which the detection range covers 
from 310 – 20,000 pg/mL, with a sensitivity of 190 pg/mL. 
According to previous results, serum GFAP in TBI models 
in minipigs could vary from 0 to 200 pg/mL, with an average 
value near 100 pg/mL [107, 108]. Taking this into account, a 
more sensitive system should be employed in future studies.

MBP is the second most abundant protein in the CNS, and 
it is specific to the myelin sheets. This protein constitutes a 
biomarker for oligodendrocytes which binds the cytoskeleton 

to the cell membrane and mediates extracellular signals to the 
cytoskeleton [109]. Circulating levels of MBP increase after 
brain damage [110,111] or demyelinating diseases [112]. 
In our model, we detected higher levels of brain MBP in IS 
compared to NO IS for EMF-treated animals (swine 2 and 
swine 3). This result could be indicative of an axonal system 
recovery driven by a higher presence of oligodendrocytes, 
but this should be confirmed in histological studies. Levels 
of MBP in serum did not vary over time, in agreement with 
previous reports [113], suggesting that this protein might not 
be used as a TBI biomarker, but it could be useful as a mature 
oligodendrocyte indicator. 

TBI is characterized by high levels of circulating pro-
inflammatory cytokines such as IL-1β, IL-6, and TNF-α 
[33, 114]. These cytokines are closely related, as TNF-α 
induces the expression of IL-1β and IL-6 and, in turn, IL-1β 
induces IL-6 and TNF-α, triggering a pro-inflammatory loop 
[115]. Accordingly, they can be used as biomarkers to study 
the pathological entity and to evaluate the effectiveness of 
different therapies [42, 116-118]. In our model, the highest 
concentration of IL-1β corresponded to IS of swine 3, and 
the lowest values for swine 1, coinciding with qPCR and IHC 
results. Serum levels of IL-1β could not be detected with the 
ELISA system we employed. IL-6 protein showed higher 
levels in IS of all animals compared to corresponding NO IS. 
This result differed from that obtained in the IHC study, where 
immunoreactivity was similar in both areas of each animal. In 
serum, we did not detect IL-6 in samples from swine 2, and for 
swine 1 and swine 3, initial and final values were similar, only 
with slight variations among different sampling times. TNF-α 
values exhibited a high increase in IS compared to NO IS in 
swine 1 and swine 3 and a decrease in swine 2. This result was 
also discordant to IHC observations. In serum, opposite to 
tissue values, swine 3 showed the lowest concentrations, with 
no variations in time. Only swine 2 exhibited a rise in TNF-α 
at the end of the study. According to the wide variability in 
serum levels and in the fluctuation pattern over time, at least 
in this study, these pro-inflammatory cytokines should not be 
considered as exclusive biomarkers of damage or recovery. 
To accurately establish its usefulness in this sense, it would 
be necessary to increase the number of animals in the study.

Among the molecular events that take place during 
the second phase of damage after trauma, oxidative stress 
stands out, closely related to mitochondrial dysfunction and 
neuroinflammation [119,120]. The excessive influx of Ca2+ 
contributes to mitochondrial failure and the subsequent 
overproduction of ROS and their derivatives [121]. In 
physiological conditions, cells control oxidative stress by 
several mechanisms including enzymatic and non-enzymatic 
elements such as catalase, superoxide dismutase, glutathione 
peroxidase, uric acid, glutathione, and ascorbic acid, among 
others [122]. However, during pathological circumstances 
like TBI, there is an imbalance in favor of the production of 
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free radicals, and this results in neuronal degeneration and 
loss of physiological functions [123]. TAC of a given tissue 
provides relevant biological information about how prepared 
it is to respond to pathological increased oxidative stress. 
This measurement includes all categories of antioxidant 
species: enzymes, small molecules, and proteins. In our 
model, EMF application was associated with an increase 
in this parameter in IS compared to NO IS in swine 2 and 
swine 3, which represents an increase of local mechanisms to 
diminish oxidative stress. Regarding TAC in serum, in swine 
2 and swine 3, it is noteworthy the increase observed during 
the first eight days of the study could be considered an effect 
stimulated by the EMF treatment in response to TBI-elicited 
damage. The reduction in TAC towards the end of the study 
could be indicative of a reduction in circulating levels of 
oxidative stress markers. This effect should be corroborated 
in future studies by measuring total oxidative capacity and 
levels of oxidative stress related molecules. 

Conclusions
The present pilot study reveals promising effects of the 

EMF application to reverse the deleterious consequences 
of neuroinflammation as one of the TBI pathological 
elements. Furthermore, the results suggest that the early 
application of the treatment could provide better protection 
to patients, as a more generalized effect on the reduction of 
inflammatory markers was observed at the transcriptional 
and translational levels. Although encouraging evidence, 
further studies should be carried out to confirm these results 
by expanding the number of experimental animals, as well 
as to verify whether the treatment equally attenuates other 
pathological events that characterize TBI such as oxidative 
stress, excitotoxicity, apoptosis, mitochondrial damage, and 
neuronal degeneration.

Limitations of the study
The major limitation of this study is the low sample 

size of swine in each experimental group. This restrains the 
possibility of reaching much more supported conclusions 
regarding the effectiveness of the treatment, although it does 
provide useful information and serves to pave the way for 
further studies increasing the number of animals to validate 
the initial findings.
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