
 Research Article

Volume 6 • Issue 3 178

MXP: Modular eXpandable Framework for Building Bioinformatics
Pipelines
Mikhail Kovtun1*, Konstantin Arbeev1, Anatoliy Yashin1, Igor Akushevich1

Affiliation:
1Duke University, SSRI, BARU, Durham, NC
27708, USA

*Corresponding author:
Mikhail Kovtun. Duke University, SSRI, BARU,
Durham, NC 27708, USA

Email: mikhail.kovtun@duke.edu

Citation: Mikhail Kovtun, Konstantin Arbeev,
Anatoliy Yashin, Igor Akushevich. MXP: Modular
eXpandable Framework for Building Bioinformatics
Pipelines. Journal of Bioinformatics and Systems
Biology. 6 (2023): 178-182.

Received: June 26, 2023
Accepted: July 03, 2023
Published: August 07, 2023

Abstract
Pipelines are a natural tool in bioinformatics applications. Virtually

any meaningful processing of biological data involves the execution of
multiple software tools, and this execution must be arranged in a coherent
manner. Many tools for the building of pipelines were developed over
time and used to facilitate work with increasing volume of bioinformatics
data. Here we present a flexible and expandable framework for building
pipelines, MXP, which we hope will find its own niche in bioinformatics
applications.

We developed MXP and tested it on various tasks in our organization,
primarily for building pipelines for GWAS (Genome-Wide Association
Studies) and post-GWAS analysis. It was proven to be sufficiently flexible
and useful. MXP implements a number of novel features which, from
our point of view, make it to be more suitable and more convenient for
building bioinformatics pipelines.

Keywords: Bioinformatics; Pipeline; Bash

Background
MXP is a tool developed with intention to allow one to build pipelines

easily.

MXP core (called “MXP base” below) is a set of Bash scripts that arrange
execution of other scripts, called “methods”. This arranged execution is a
pipeline. Drawing the analogy between MXP and languages like Python or R,
MXP core corresponds to language interpreter, groups of methods correspond
to packages, and pipelines correspond to end-user applications.

Pipelines may be very general or very specific, as any program can be. A
distinguishing feature of MXP is that it allows you to easily modify or extend
existing pipelines without changing the original pipeline code.

Two other distinguishing MXP features are using directories as units
which pipelines operate on and the way to decide whether a target is up-to-
date or should be rebuilt. These problems are significant in bioinformatics,
and all tools for building pipelines have to struggle with them. MXP presents
a novel approach to these problems.

In terminology of [1], MXP is an implicit configuration-based framework
with a command-line interface.

Implementation
Approach: An important decision that should be made at the very

Kovtun M, et al., J Bioinform Syst Biol 2023
DOI:10.26502/jbsb.5107058

Citation: Mikhail Kovtun, Konstantin Arbeev, Anatoliy Yashin, Igor Akushevich. MXP: Modular eXpandable Framework for Building Bioinformatics
Pipelines. Journal of Bioinformatics and Systems Biology. 6 (2023): 178-182.

Volume 6 • Issue 3 179

beginning is what are units which framework operates on.
In bioinformatics, a unit rarely is a single file. Much more
often it is group of files, and sometimes very complex groups
of files. For example, even alignment of paired-end reads
requires to specify 2 input files; PLINK normally uses a
triplet of files (.bed, .bim, .fam), and often it should be
accompanied with files specifying set of SNPs to work with,
phenotypic files, etc.

For these reasons, MXP uses filesystem directories
as units. A directory can accommodate virtually any file
structure. Additionally, it provides an easy solution for
problems of where to store and how to find support files
needed for the framework itself and helpful to the user (e.g.,
configuration that was used to obtain a target, log files, etc.).

Another important decision is to define the way to
decide whether a target should be rebuilt. Often such a
decision is made based on file timestamps: a target should
be rebuilt if any required target is newer. This approach is
inspired by make [2], and in the case of make it is a very
natural approach. However, in bioinformatics applications it
is a rare case when input files are changed; instead, a user
usually wants to change some parameters for an application
(thresholds, window sizes, etc.) and re-run application with
these new parameters. Detecting what targets are affected by
such changes and therefore should be rebuilt is cumbersome.

To cope with this problem, MXP stores all parameters and
scripts used to obtain a target, and checks whether they were
changed in order to decide whether a target should be rebuilt.
Our use of MXP demonstrated that the overhead caused by
this approach is negligible.

MXP base is the core engine that executes a method’s
scripts in the order prescribed by the Makefile.

MXP is written in pure Bash, and all units which are
handled by MXP—methods, parameter sets, even Makefile—
are Bash scripts. Of course, method scripts may invoke
applications written in other languages, but any MXP-related
script is still a Bash script.

This approach gives all power of the Bash to the pipeline
writer. On the other hand, it has its own drawbacks, as Bash
syntax is very cryptic and restrictive. However, we believe
that the advantage of having the full power of Bash at hand
outweighs the inconveniences.

MXP overview and concepts: A pipeline is a sequence
of operations that leads to a required result.

What exactly “result” means, and what kind of
“operations” are used, depends heavily on the application
domain. The expected application domain influences the
design of a tool for building pipelines.

The famous Unix utility make [2], known since 1976,
was, probably, the first tool for building pipelines (although

the word “pipeline” is rarely used in conjunction with make).
Virtually all of the tools for building pipelines borrow from
make, and MXP is not an exception. But what makes these
tools different are the elementary units which the pipeline
operates on, how steps of pipeline are described, and the rules
that are used to determine whether to re-execute a step or to
use its existing results. This difference eventually influences
the language used to describe the pipelines (e.g., Makefile
syntax and semantics).

The units which MXP operates on are called (just like in
make) targets. A target is represented by a directory containing
an arbitrary set of files (and possibly subdirectories). We
often use the word “target” instead more exact term “target
directory”.

As in case of make, the execution of MXP consists of
obtaining target specified in the command line. In order to
obtain a target, other target(s) may be needed. MXP checks
whether the required targets have been already obtained and
if they are up-to-date; if not, MXP automatically rebuilds
the required targets—which may require other targets, i.e.,
this is a recursive process. What targets are required for a
given target, and how a given target should be obtained from
the other ones is specified in Makefile (again, the term is
borrowed from make).

What is Makefile and how to use it: Makefile
consists of rules. In MXP, Makefile is a Bash script. Here is a
simple example of a rule:

MXP_MAKEFILE[d01_pdata]="\

(idata_DIR = d00_idata) pdata_0 : pdata"

It is a Bash statement. It assigns string "(idata_DIR =
d00_idata) pdata_0 : pdata" to an entry in associative
array MXP_MAKEFILE indexed by string "d01_pdata".

This rule states that:
• target d01_pdata requires target d00_idata

• method pdata with parameters pdata_0 should be used
to obtain target d01_pdata from target d00_idata

• during execution of method pdata environmental
variable idata_DIR will be set to a full path to target
directory d00_idata
Also, it implicitly states that:
• there is an analysis directory (current directory or

directory explicitly specified in MXP command-line
arguments) that contains a subdirectory mxp, and a file
Makefile.sh inside of it

• the target directory named d01_pdata will be created
within the analysis directory as a result of obtaining
target d01_pdata (or, if this directory already exists,
MXP will check whether this directory is up-to-date
and rebuild it if it is not)

http://

Kovtun M, et al., J Bioinform Syst Biol 2023
DOI:10.26502/jbsb.5107058

Citation: Mikhail Kovtun, Konstantin Arbeev, Anatoliy Yashin, Igor Akushevich. MXP: Modular eXpandable Framework for Building Bioinformatics
Pipelines. Journal of Bioinformatics and Systems Biology. 6 (2023): 178-182.

Volume 6 • Issue 3 180

• there is a file pdata.sh containing a Bash script that will
be executed in order to obtain target d01_pdata

• there is a file pdata_0.params.sh containing a Bash
script (that defines parameters) that will be executed in
order to obtain the target d01_pdata

Strictly speaking, there is no difference between a
parameter script and a method script. MXP introduces this
distinction to encourage the pipeline developers to clearly
separate parameters from methods. Parameters could be
changed by the pipeline user (for example, the user may want
to use his/her own parameters for quality control), while
methods are much more stable and are not expected to change
from one pipeline application to another.

The names of targets and scripts in the above example
from the MXP GWAS pipeline (which is under development
now); they are meaningful in the context of that pipeline. The
user can create more intuitive for him/her names, of course.

To determine if the target is up-to-date, MXP will check if:

• the target directory exists

• the last attempt to build target was completed successfully

• all required targets are up-to-date

• the rule used to obtain the target has not been updated

• method and parameter scripts used to obtain the target
have not been updated

Chaining pipelines: An important feature of MXP is
that it allows for creating new pipelines by re-using pieces
from existing pipelines. Each pipeline has a parent; only the
root pipeline (which is a part of MXP base) does not have
a parent. Makefile, methods and parameter sets defined in
the parent pipeline are available in the child pipeline, and
the child pipeline may override exactly those pieces from
the parent pipeline that need to be changed. In particular, the
parent pipeline may be read-only, and still any fine-grained
modifications of the parent pipeline are available to the user.

We anticipate that this feature will be widely used.

Logging: Another important feature of MXP is logging.
When a target is built, a full log is automatically written in the
target directory. This log can be examined later to learn how
exactly the target was built (in the case of successful build)
or find out why the target build failed (in the case of failure).

It is also possible to save a log of a full MXP run, which
may involve building multiple targets.

Sharing and publishing pipelines: Reproducibility is
very important for biological analyses, and, unfortunately,
it is a weak point of many publications. MXP facilitates
reproducible research significantly improving the ability of
the researcher to publish information that describes exactly
how results were obtained.

To accomplish this, one needs to compress the mxp
subdirectory of the analysis directory and submit the
compressed file as a part of supplementary data.

Results
We used MXP in our organization to build various

pipelines. Primarily, we were interested in GWAS and post-
GWAS analysis. MXP proved to be a convenient and easy-to-
use tool for this purpose. We plan to publish an MXP-based
GWAS pipeline as soon as it is finalized and documented.

Another application was the creation of a pipeline for
obtaining and preprocessing files from public databases that
are needed for annotating results of our analyses.

Using Bash as a programming language may seem to
make the framework very slow. However, it is not the case.
We use Bash carefully, and optimize all areas that may cause
a slowdown. Running MXP when a target is already built
(in this case MXP analyses hierarchy of Makefiles, checks
that everything is up-to-date, reports it and terminates) takes
about 1 second.

Discussion
At the moment, multiple tools for building bioinformatics

pipelines exist. Website [3] lists about 100 such tools. So, the
question “why one more tool?” should be answered.

The novel features: MXP has a few novel features (that
up to our knowledge were not implemented in other tools).
We already mentioned them in different contexts; here is the
summary.

Directories as targets: Targets in MXP are represented
by directories. It serves several purposes. First, it simplifies
specification of methods’ input and output: when a method
uses multiple input files and produces multiple output files,
there is no need to specify all individual files explicitly
(which is tricky when a set of input/output files is variable)—
it is sufficient to specify output directory (i.e., the target being
built) and input directories (i.e., the list of required targets).
Second, it gives a simple answer to the question where to
store supplementary files (i.e., files used by framework itself,
logs, etc.). Third, it gives the user flexibility to combine
several operations in one method (e.g., add reformatting the
output of the main application of the method). This allows
the user to reduce the number of targets, and make overall
pipeline more manageable.

Comparing scripts to decide whether a target is up-
to-date: In bioinformatics, tuning application parameters
to get correct results is an important step (e.g., quality
control parameters may depend on dataset, and it may take
multiple iteration to figure out the correct parameters).
When parameters for a target are changed, this target should
be rebuilt, as well as all other targets that depend on it. To

http://

Kovtun M, et al., J Bioinform Syst Biol 2023
DOI:10.26502/jbsb.5107058

Citation: Mikhail Kovtun, Konstantin Arbeev, Anatoliy Yashin, Igor Akushevich. MXP: Modular eXpandable Framework for Building Bioinformatics
Pipelines. Journal of Bioinformatics and Systems Biology. 6 (2023): 178-182.

Volume 6 • Issue 3 181

achieve this automatically, MXP stores all scripts used to
obtain a target in .mxp subdirectory of the target directory.
Then, when MXP checks whether a target is up-to-date, it
compares the stored scripts with the current version of these
scripts. If any difference is found, target will be rebuilt. The
same effect may be achieved with other pipeline building
tools, but it requires special work, while MXP does this
automatically.

Ability to replace arbitrary piece of code without
updating everything: Recall that every pipeline has a
parent pipeline (except the root pipeline). When MXP needs
to execute a script, it first searches the mxp subdirectory of
the current analysis directory for this script. If not found,
it searches the parent pipeline, etc. Thus, if the user needs
the parent pipeline with modification to a single script, he
puts the modified script in mxp subdirectory of his analysis
directory—and that is all what is needed.

The parent pipeline remains untouched (it may be read-
only for the user). Other users who use the same parent
pipeline are unaffected.

The choice of languages: At least two languages are
involved into construction of a tool for building pipelines:
first, implementation language (which may be a combination
of languages) and domain specific language (DSL), which is
used to specify a pipeline. The better cooperation between
these languages, the more convenient tool will be.

Python is often used as implementation language (Ruffus
[4], Rubra [5], Omicspipe [6], Moa [7], pypeFLOW [8],
PyPPL [9], Snakemake [10], and many other). Java and
Groovy is another popular choice (BigDataScript [11], Bpipe
[12], Nextflow [13], etc.). Occasionally, other languages
like Prolog (Biomake [14]) or R (flowr [15]) were used. Of
course, languages like Python or Java have better syntax than
Bash does and provide much more flexible data structures.

But at the very end pipeline should execute shell
commands. Consequently, DSL contains lines (sometime
quoted) that are shell commands. These commands
necessarily contain variables, which leads to a question who
has to perform variable substitution: DSL implementation or
shell? If DSL is chosen, the substitution is usually limited
(no one is willing to implement the full analogue of Bash); if
shell should perform substitution, the ability to communicate
variable values to shell is a limiting factor.

For these reasons we chose Bash as the language to
implement MXP. The only place where DSL is used in MXP
is a rule for obtaining a target; i.e., the string value assigned
to an entry in MXP_MAKEFILE associative array is a DSL
statement. Makefile as a whole is a Bash script. Using Bash
gives MXP several advantages. First, MXP may provide (and
it does) convenience Bash functions that can be used in scripts
implementing methods. Second, Bash arrays may be passed

from parameter scripts to method scripts (as parameter and
method scripts are sourced—rather than executed—in Bash
subshell). Third, as Makefile is a Bash script, it may use all
Bash features to create rules: for example, many similar rules
may be generated in a simple Bash loop.

MXP versus other tools: First, let us note that virtually
any tool can be successfully used to build virtually any
pipeline. For example, [16] demonstrates that even make
can be used for bioinformatics pipelines. The question is
convenience for specific applications.

MXP shares many features with other frameworks. From
our point of view, MXP, with all distinguishing features
described above, has its own niche.

Conclusion
MXP is a tool for creating pipelines, and therefore

may be useful for researchers who are knowledgeable in
programming and are willing to create their own pipelines.

Our goal is to create reusable pipelines, primarily in the
domain of GWAS and post-GWAS analyses. This work is
similar to the one done in Omicspipe [6], which extends
Ruffus [4] to create pipelines for analysis of results of Next
Generation Sequencing (NGS). For our purpose, we consider
MXP as more suitable for out tasks tool.

MXP is a stable and ready to use software. The MXP
downloads and the full MXP documentation can be found at
https://sites.duke.edu/barusoftware/MXP. It is
under development, so new features might be added over time.

Acknowledgements
This study was supported by the National Institute on

Aging (R01-AG066133, RF1-AG046860) and the Department
of Defense (W81XWH-20-1-0253). The sponsors had no role
in the design and conduct of this study.

References
1.	 Leipzig J. A review of bioinformatic pipeline frameworks.

Brief Bioinform 18 (2017): 530–536.

2.	 Stallman RM, McGrath R, and Smith PD. GNU Make:
A Program for Directing Recompilation: GNU Make
Version 4.2. AGNU manual. Free Software Foundation,
Boston, USA (2016).

3.	 A curated list of awesome pipeline toolkits (2022).
https://github.com/pditommaso/awesome-
pipeline.

4.	 Goodstadt L. Ruffus: a lightweight Python library for
computational pipelines. Bioinformatics 26 (2010):
2778–2779.

5.	 Pope B, Sloggett C, Philip G, et al. Rubra: Infrastructure

http://

Kovtun M, et al., J Bioinform Syst Biol 2023
DOI:10.26502/jbsb.5107058

Citation: Mikhail Kovtun, Konstantin Arbeev, Anatoliy Yashin, Igor Akushevich. MXP: Modular eXpandable Framework for Building Bioinformatics
Pipelines. Journal of Bioinformatics and Systems Biology. 6 (2023): 178-182.

Volume 6 • Issue 3 182

code to support DNA pipeline (2015). https://
github.com/bjpop/rubra.

6.	 Fisch KM, Meiner T, Gioia L, et al. Omics Pipe: a
community-based framework for reproducible multiomics
data analysis. Bioinformatics 31 (2015): 1724–1728.

7.	 Moa: Lightweight workflows in bioinformatics (2014).
https://github.com/mfiers/Moa.

8.	 pypeFLOW: A simple lightweight workflow for data
analysis scripting (2019). https://github.com/
PacificBiosciences/pypeFLOW.

9.	 PyPPL: A Python PiPeLine framework (2020). https://
github.com/pwwang/pyppl.

10.	Koester J, and Rahmann S. Snakemake—a scalable
bioinformatics workflow engine. Bioinformatics 28
(2012): 2520–2522.

11.	Cingolani P, Sladek R, and Blanchette M. Bigdatascript:

a scripting language for data pipelines. Bioinformatics 1
(2015): 10–16.

12.	Sadedin SP, Pope B, and Oshlack A. Bpipe: a tool
for running and managing bioinformatics pipelines.
Bioinformatics 28 (2012): 1525–1526.

13.	Nextflow—A DSL for parallel and scalable computational
pipelines (2023). https://www.nextflow.io/.

14.	Biomake: GNU-make-like utility for managing builds
and complex workflows (2022). https://github.
com/evoldoers/biomake.

15.	flowr: Robust and efficient workflows using a simple
language agnotstic approach (2021). https: //github.
com/sahilseth/flowr.

16.	Smith BJ. Reproducible bioinformatics pipelines using
Make (2016). https://bsmith89.github.io/make-
bml.

http://
https://github.com/
https://github.com/evoldoers/biomake
https://github.com/evoldoers/biomake

	Title
	Abstract
	Keywords
	Background
	Implementation
	Results
	Discussion
	Conclusion
	Acknowledgements
	References

