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Abstract 

The currently most prevalent cardiac diseases, 

diabetic cardiomyopathy and hypertrophic heart 

failure, each associate with a chronic change in 

energy substrate utilization towards a single type of 

substrate, i.e., fatty acids or glucose, respectively. 

Recent experimental studies suggest that proper 

cardiac contractile performance is dependent on a 

finely tuned balance between the utilization of these 

two substrates. Furthermore, re-balancing myocardial 

fuel supply (fatty acids versus glucose) appears an 

effective treatment option in cardiac disease. 
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1. Cardiac disease and cardiac substrate 

metabolism 

Most cardiac diseases are known to associate with 

marked changes in myocardial substrate utilization 

[1]. Moreover, in recent years compelling evidence 

has been published that cardiometabolic alterations 

can be a primary cause for ventricular contractile 

dysfunction and chronic cardiac disease. The latter 

notion applies to both diabetes-related heart failure 

(diabetic cardiomyopathy) and pressure overload-

induced or hypertrophic heart failure, currently the 
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two main types of myocardial dysfunction [2-4]. The 

majority of patients with diabetes develop cardiac 

dysfunction and eventually die from cardiovascular 

diseases. A hallmark in these patients is that fuel 

selection, which in the healthy heart, principally 

relies on the uptake of a mixture of (long-chain) fatty 

acids and glucose, shifts towards the utilization of 

merely fatty acids only. Such full dependence on 

fatty acids for myocardial energy provision is 

accompanied by excessive lipid storage in cardiac 

myocytes, which in turn, elicits contractile 

dysfunction [5, 6].  

 

Pressure overload-induced heart failure is 

characterized by an impaired contractile function and 

a chronic fuel shift towards the predominant use of 

glucose. Conversely, several studies have reported 

that a primary substrate switch towards the 

predominant utilization of either fatty acids or 

glucose (for instance, as seen in case of an inborn 

error of metabolism) is accompanied with aberrant 

control of cardiac metabolism and cardiac contractile 

dysfunction [7, 8]. These observations indicate that 

chronic fuel shifts towards a single type of substrate 

are intimately linked with cardiac dysfunction, and 

suggest that interventions aimed at re-balancing such 

tilted energy substrate preference towards an 

appropriate mix of substrates may restore cardiac 

contractile function (reviewed in [9]) (Figure 1). 

 

2. Rate-governing step in myocardial 

substrate utilization 

Long-chain fatty acids and glucose are the main 

substrates for myocardial energy provision, with 

lactate, ketone bodies and amino acids being proper 

alternatives but under normal conditions contributing 

only to a minor extent [1]. The regulation of 

myocardial fatty acid and glucose metabolism has 

been studied in detail to reveal in both cases a pivotal 

role for the myocellular uptake process. Specifically, 

the rate-governing kinetic step in fatty acid utilization 

is CD36-mediated transsarcolemmal uptake. 

Regulation of the rate of fatty acid uptake is 

accomplished by recycling of the membrane protein 

CD36 between an intracellular storage pool 

(endosomes) and the sarcolemma, which process is 

affected by, for instance, changes in contraction and 

changes in the presence of insulin [10].  

 

Similarly, glucose uptake by cardiomyocytes is 

dependent on the presence of glucose transporters 

GLUT1 and GLUT4 in the sarcolemma. While 

GLUT1 is constitutively present in the sarcolemma to 

maintain basal uptake rates, GLUT4 recycles 

between endosomes and the sarcolemma thereby 

increasing and adjusting the rate of glucose uptake to 

desired levels [11, 12]. As a result, cardiac  fatty acid 

and glucose utilization are determined largely by the 

presence in the sarcolemma of membrane proteins 

CD36 and GLUT4, respectively (Figure 1). 
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Figure 1: Schematic presentation of the association of cardiac disease with a tilted fatty acid–glucose substrate 

balance. In the healthy heart, the contributions from (long-chain) fatty acids and glucose to energy provison are 

similar, but in diabetic cardiomyopathy are shifted towards fatty acids, and in cardiac hypertrophy towards glucose. 

Myocellular uptake of fatty acids and of glucose is governed by the presence of substrate transporters CD36 and 

GLUT4, respectively, which recycle between intracellular storage sites (endosomes) and the sarcolemma, as 

illustrated in the lower panel. FA, fatty acid; Gluc, glucose. 

 

 

3. Membrane substrate transporters and 

cardiac disease 

Given the intimate link between chronic alterations in 

cardiac fuel selection and cardiac disease, and the 

pivotal role of substrate transporters CD36 and 

GLUT4 in the regulation of the rate of fatty acid and 

glucose uptake, as outline above, it can be inferred 

that in cardiac disease the intracellular CD36 and 

GLUT4 distribution is affected, and that, 

furthermore, CD36 and/or GLUT4 recycling within 

the cardiomyocytes may form a suitable target for so-

called metabolic modulation therapy, aimed at re-

balancing the substrate preference of the heart in 

order to to restore its contractile performance. Many 

examples underscore this concept, mostly obtained 

from studies with experimental animals or with 

pluripotent stem cell-derived human cardiomyocytes, 

and hold promise for future application in patients. 

 

A prominent example is the consumption of a high 

fat-containing (Western) diet and the often resulting 

obesity, in which condition the heart is subject to 

excess lipid supply. Such oversupply elicits a shift in 

myocardial energy provision towards an increased 

utilization of fatty acids at the expense of glucose 

[13, 14]. In experimental animal studies it has been 
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established that this substrate switch is initiated by a 

rapid (within days) net tanslocation of CD36 from 

endosomes to the sarcolemma, which then leads to a 

concomitant increase in the rate of fatty acid uptake 

followed by a cascade of events leading to 

myocellular lipid accumulation, mitochondrial 

dysfunction, insulin resistance and contractile 

dysfunction [15, 16]. Absence of CD36, as is seen in 

null mice [17] but also in selected patients with a 

CD36 gene mutation [18], or blocking its activity by 

anti-CD36 antibodies [19], prevents all of these 

metabolic changes while the contractile function is 

maintained. 

 

A second example is sustained pressure overload, 

which also leads to changes in myocardial 

metabolism and function. It has been documented 

that the first change seen is a marked increase in 

glucose utilization, at the expense of fatty acids, 

which precedes the development of left ventricular 

hypertrophy and contractile dysfunction [20]. This 

shift towards increased glucose utilization is 

accompanied by an increased presence of GLUT4 at 

the sarcolemma [21]. Selective downregulation of 

GLUT4 translocation in a cell model of cardiac 

hypertrophy [A. Sun, M. Nabben and J. Luiken, 

unpublished observations] or feeding a high fat-

containing diet to rodents with experimentally 

induced cardiac hypertrophy [22] in each case 

elicited normalization of glucose utilization 

(accompanied with normalized, i.e., increased, fatty 

acid utilization) together with the recovery of 

myocardial contractile function. 

 

4. Concluding remarks 

In this short review we have outlined that energy 

substrate metabolism is an important parameter 

determining proper contractile function of the heart, 

and that chronic changes in substrate selection, in 

particular with respect to the contribution of fatty 

acids and glucose to myocardial energy provision, 

appear inseparably linked to the development of 

cardiac disease, and vice versa. The corollary is that a 

chronically altered myocardial substrate preference 

can be applied as early readout parameter for the 

development of cardiac diseases. Monitoring of 

substrate preference in patients could be performed 

by state-of-the-art magnetic resonance imaging [23].  

The observations discussed in this review also 

indicate that the heart performs optimally when 

utilizing a certain mixture of fatty acids and glucose, 

with the notion that consuming either too little or too 

much of either substrate is detrimental [24]. The 

reason for the requirement of such balanced mixture 

of metabolic substrates is not known but may relate 

to the need of both substrates to feed subsidiary 

metabolic pathways (e.g., anaplerosis). Additionally, 

both substrates may be utilized for post-translational 

modification of cellular proteins thereby markedly 

influencing the functioning of these proteins. Finally, 

a mixture of substrates will help to avoid a condition 

of excess intracellular fatty acids (or glucose) as that 

would increase the risk for lipotoxicity (or 

glucotoxicity) [9].  

 

Importantly, these insights provide a basis for 

therapy to treat cardiac diseases. Modulation of 

cellular energy substrate preference can be achieved 

by intervention in the rate-governing steps of 

myocardial fatty acid and glucose utilization. In the 

past decade the latter have been disclosed in much 

detail, and found to comprise membrane protein-

mediated substrate uptake involving CD36 for fatty 

acids and GLUT4 for glucose. Studies in 
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experimental animal models and in pluripotent stem 

cell-derived human cardiomyocytes have provided 

the first indication that applying CD36 and/or 

GLUT4 as target for metabolic modulation 

approaches is an effective strategy to re-balance 

myocardial substrate preference [22, 25, 26]. Now 

that the pivotal roles of CD36 and GLUT4 have been 

confirmed in patient studies [11, 18, 27], 

manipulating their sarcolemmal presence should be 

explored as treatment target for cardiac diseases also 

in the human setting. For this, focus should be on 

manipulating the subcellular recycling machinery of 

these membrane transporters, because the recycling 

of each transporter involves several specific 

trafficking proteins. These specific trafficking 

proteins could be targeted to rectify cardiac substrate 

uptake during cardiac diseases. Preliminary 

observations underscore the feasibility of such 

approach [28]. 
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