
Research Article

Volume 7 • Issue 3 387 

Normalized Semi-Covariance Co-Efficiency Analysis of Spike Proteins from 
SARS-CoV-2 Variant Omicron and Other Coronaviruses for their Infectivity 
and Virulence
Tong Xua, Shanyue Zhoua,b, Jun Steed Huanga,c*, Wandong Zhangd,e*

Affiliation:
aVisionX LLC, San Jose, USA 
bMcGill University, Montreal, Canada
cCarleton University, Ottawa, Canada
dHuman Health Therapeutics Research Centre, 
National Research Council of Canada, Ottawa, 
Canada
eDepartment of Cellular & Molecular Medicine, 
Faculty of Medicine, University of Ottawa, Ottawa, 
Canada

*Corresponding author:
Wandong Zhang. Human Health Therapeutics
Research Centre, National Research Council of 
Canada, Ottawa, Canada.
Email: Wandong.Zhang@nrc-cnrc.gc.ca; 
wzhan2@uOttawa.ca 
Jun Steed Huang, Carleton University
Email: JunHuang@Cunet.Carleton.Ca 

Citation: Tong Xu, Shanyue Zhou, Jun Steed 
Huang, Wandong Zhang. Normalized Semi-
Covariance Co-Efficiency Analysis of Spike 
Proteins from SARS-CoV-2 Variant Omicron 
and Other Coronaviruses for their Infectivity and 
Virulence. Archives of Clinical and Biomedical 
Research. 7 (2023): 387-399.

Received: May 15, 2023 
Accepted: May 22, 2023 
Published: June 06, 2023

Keywords: SARS-CoV-2; Spike protein; Coronaviruses; Infectivity; 
Virulence; Semi-Covariance; Pearson Correlation Co-efficient.

Introduction 
Spectrum-based Mass-Charge algorithms are used in analyzing real-

world implementations. It comes as the trusted analytic solution but typically 
has a hardware implementation cost and time challenges, leading to a demand 
for more straightforward software calculation-based solutions using Mass-
Charge theory.  Mass-Charge algorithms have received significant attention 
in recent years and are increasingly used to solve real-world problems. 
Among those is a combination of two or more algorithms involving numerical 
algorithms, analytic calculation [1], and other computational techniques, 
such as artificial intelligence [2,3,4], gene analysis systems [5], and gene 
simulation [6]. 

Kumar and colleagues found that SARS-CoV-2 Omicron and sub-variants 
had a higher positive electrostatic surface potential [7]. This could increase 
interactions between the receptor-binding domain (RBD) of the Omicron 
spike protein and the electro-negatively charged human angiotensin-
converting enzyme 2 (hACE2). We compared the Omicron spike protein and 
its RBD with those of Wuhan-Hu-1 (Wild type) strain. Our previous study 
calculated the charges of the SARS-CoV-2 spike protein sequences using the 

Abstract
Spectrum-based Mass-Charge modeling is increasingly used in 

biological analysis. To explain statistical phenomenon with positive 
and negative fluctuations of amino-acid charges in spike proteins from 
coronaviruses, we propose calculation-based Mass-Charge modeling. 
This model provides normalized derivation algorithm with exact Excel 
or MATLAB tools involving separate quadrant extensions to normalized 
covariance, which is still compatible with Pearson covariance co-
efficiency. The number of amino acids, amino-acid composition, charges, 
molecular weight, isoelectric point, hydropathicity, and mass-charge ratio 
of the proteins were taken into consideration. Spike proteins from SARS-
CoV-2 variants, seasonal and murine coronaviruses were analyzed as 
the representative examples.  The analyses with the algorithm provide 
insights of evolving trends of the viral proteins and demonstrate that the 
Mass-Charge covariance co-efficiency can distinguish subtle differences 
between biological properties of spike proteins and correlate well with 
viral infectivity and virulence. This modeling may also be used in 
analyzing other proteins from pathogens.
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algorithm for viral infectivity and virulence [8]. In this study, 
the number of amino acids, molecular weight, theoretical pI, 
amino acid composition, charged residues, mass-charge ratio 
and hydropathicity of the spike proteins were all analyzed 
using the improved algorithm with normalization of spike 
protein length. 

This study is the first to use Langland's formula to combine 
all the factors, including the mass, charge, isoelectric point, 
hydrophilic and hydrophobic properties, and equipotential of 
the amino acids to analyze the spike proteins from Omicron 
and other coronaviruses. The hydrophilic and hydrophobic 
properties express the ability of viral spike proteins to interact 
with human cells. There is a linear relationship between the 
isoelectric point of the amino acids and the pH value of 
the amino acids. The isoelectric point and pH value of the 
amino acid sequences change the equivalent charge potential. 
There is also a linear relationship between hydrophilic and 
hydrophobic properties of the amino acids and the heat or 
intrinsic energy level. The hydrophobicity and the heat/
intrinsic energy change the equivalent mass. In the following 
sections, we use the equivalent mass and charge value as the 
ratio to calculate the overall Mass-Charge ratio. The viral 
basic reproduction numbers (R0 values) are also an essential 
factor for us to determine the correlation of infectivity [9]. 
R0 values are the expected number of the cases directly 
generated by one case in a population where it assumes that 
all individuals are susceptible to infection [10]. R0 value is 
the indicator for the level of infectious diseases. For example, 
the R0 value of smallpox is 3.5-6 (varies under different 
medical conditions) [11]. The R0 value for the primary strain 
of the SARS-CoV-2 virus is estimated to be 1.4-2.4 [12]. The 
detailed R0 value for each SARS-CoV-2 variant is listed in 
Table 1. Another statistic used in the analysis is the death rate 
for the virulence of the variants. Our study with the modeling 
algorithm provides insights of evolving trends of the viral 
proteins and demonstrate that the Mass-Charge covariance 
co-efficiency can distinguish subtle differences between 
biological properties of spike proteins and correlate well with 
viral infectivity and virulence.

Materials and Methods
Normalization of Separate Quadrant Covariance

The Mass-Charge parameter is used to measure the 
fluctuation-term memory of time series. It relates to the 
autocorrelations of the time series and the derivatives of 
the Poincare transform of the time series or the momentum 
generation function at the origin [13]. Studies involving the 
Mass-Charge parameter were originally developed by the 
Fuchsian Group in solving differential equations. 

Using Langland's formula, we calculate w, h, q, and p to 

obtain the complete viral spike protein sequences. After the 
entire sequence is obtained, we construct the N subsequences 
of the complete sequence with the window shift of 1, the 
window length of 16, and the 15 subsequences at the end 
to reduce the window length in turn. The Mass-Charge is 
calculated from Langlands program using the formula below 
(1).

The full sequence of Mass-Charge is defined as  
S= {mc1, mc2,…,mcn }, the n was the length of a full viral 
spike protein. In the above formula, ω is the molecular mass; 
h is the hydrophilic and hydrophobic index; q is the charge; p 
is the isoelectric point; z is equivalent to the Finsler distance 
between viral spike protein and human cell receptor, typical 
range from 0.01 to 10000 (nm), and the default value is 1. 
We used MATLAB or Python to calculate all the distance 
variation map, and Excel is used to calculate the default map. 
Then we cross-check the default calculation to obtain the 
final results.

The Convergence and Divergence 
The convergence of the viral protein is calculated by 

formula (2), the divergence of the viral protein are calculated 
by formula (3).

In formula (2) and formula (3), a and b are two different 
viral protein sequences; AMG is average moving gate 
function; real cor (a,b) is the converging covariance of viral 
protein a and viral protein b, real cor (a,a) and  real cor (b,b)  are 
the special case which is that viral protein a was equal to viral 
protein b, they are calculated from one viral protein sequence 
with reference to itself instead of to other baseline one. Img cor 

(a,b) is the diverging covariance of a and b; img cor (a,a) and img 
cor (b,b) also the special case of img cor(a,b). We calculate from 
formula (4) and formula (5).

The AMG operator is defined in here, the arithmetic mean 
with moving window length function. 

In the operator of formula (6), X= {xi |I ∈[1,n]}, Y={yi 
|I ∈[1,n]}. The calculation of AMG operator is formula (7).
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The Positive Correlation and Negative Correlation
Positive Correlation:

Negative Correlation:

Pearson Correlation:

The Center Gravity Positive, Center Gravity 
Negative and M/Q Span
Center Gravity Positive:

[] operator is Rounding operator; δ is percentage, due to 
different length of viral proteins;

N std is the standard baseline viral protein sequence length, 
NV is now viral protein sequence. I is a sequence from 1 to the 
length of viral protein sequence.  

M/Q Span:

Here ReLU(x) is defined as Max (0, x).

Infective Reproduction Rate and Max Position

 is the standard baseline virus sequence infective 
reproduction rate; RR v is estimated viral reproduction rate; 
MQspan std is the viral protein sequence standard M/Q Span; 
MQSpan v is estimated viral protein sequence M/Q Span. 
Reproduction rate here is used to approximate the observed 
R0 number.

Max Positive Position

The “mp| |” is the operator that get the position of max 
value in real cor (a,b).

Max Negative Position

M/Q Density and Virulence

MQDensity std is the standard baseline viral protein 
sequence M/Q density; MQDensity v is now viral protein 
sequence M/Q density; Virulence std is the viral standard 
virulence; Virulence v is current viral virulence. 

Results
Calculations of normalized semi-covariance for spike 
proteins from SARS-CoV-2 and other coronaviruses 

To prove the usage of the simplified Mass-Charge 
variances, we compare the correlation of SARS-CoV-2 
viral spike protein with other coronaviral spike proteins 
[14].  Since Excel is capable of handling ReLU, we simplify 
the calculation with normalization between two variables 
only. Calculations involving more than two variables can 
also be done in further research without altering the current 
formula. Since each coronaviral protein from animal 
or human has different electrical charge level [15], we 
normalize the covariance by the variance respectively (so 
that the comparison is focused on the pure difference) [16]. 
We calculated the whole sequences of spike proteins [17] 
and plotted the curve forward starting from the low end to 
high end (from 1 to 1500 or 1900 depending on the length 
of the spike proteins). By using the moving window of 16 
neighboring amino acids [18], we calculated the covariance 
and average over the same area of the sequences to make the 
curve more visually smooth for easily comparisons [19,20]. 
Figures 1 to 3 show the calculation results for the most 
related spike protein sequences out of past years from murine 
coronaviruses, from SARS-CoV-2 and its variants Omicron, 
Delta, IHU, and from seasonal coronaviruses OC43, 229E, 
HKU1, and NL63 for human (Table 2) [21, 22, 23]. 

The analysis results for Wuhan strain spike protein 
in comparison with spike proteins from SARS-
CoV-2 variants

We compared the spike protein of Wuhan strain SARS-
CoV-2 (NC_045512.2) with the spike proteins from 
SARS-CoV2 variants including Mu (B.1.621; GISAID: 
EPI_ISL_4029606), Delta (B.1.617; GISAID: EPI_
ISL_1731198), Omicron (GISAID: EPI_ISL_6951145), 
IHU (B.1.640; GISAID: EPI_ISL_8416940), Indonesia 
variant (B.1.466.2; GenBank: QTS26735), Alpha/UK variant 
(B.1.1.7; EPI_ISL_744131), and BA.5 (B.1.1.529+BA; 
EPI_ISL_12464782). For the comparison, Wuhan strain 
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Wuhan (baseline)/ Delta (reference) Delta Omicron
IHU Indonesia  

variant Mu variant
UK

BA.5
(France) (Alpha)

Positive Correlation 99.44% 98.09% 98.80% 99.59% 99.28% 99.58% 98.27%

Negative Correlation 0.17% 1.00% 0.59% 0.27% 0.52% 0.32% 0.89%

Pearson Correlation 0.9927 0.9709 0.9821 0.9932 0.9876 0.9926 0.9738

Center Convergence 629 631 633 626 628 626 633

Center Divergence 557 361 419 707 478 655 417

M/Q Span 72 270 214 162 150 58 216

Reproduction Rate 2.08 7.79 6.17 4.67 4.33 1.67 6.23

R0 Value* 5.08 7 8.2 6.79 3.5 5.6 7

Max Positive Position 518 518 516 516 517 516 518

Max Negative Position 616 216 490 757 485 614 616

M/Q Density 493 64 289 463 351 505 349

Virulence 2.15% 0.28% 1.26% 2.02% 1.53% 2.20% 1.52%

Death Rate* 0.3%-3.4% 0.06%-0.3% 0.9%-2.3% 1.0%-2.3% 2.0%-3.0% 1.3-5.3% 0.06%-0.3%

* The R0 value and the death rate were obtained from various sources.

Table 1: Analysis results of spike protein from SARS-CoV-2 Wuhan strain in comparison with spike proteins from SARS-CoV-2 variants.

Omicron (baseline)/OC43 (reference) OC43 229E NL63 HKU1

Year: 2021 1953 1965 2004 2004

Positive Correlation 59.06% 56.80% 53.97% 59.38%

Negative Correlation 20.32% 19.93% 21.87% 20.46%

Pearson Correlation 0.3874 0.3686 0.321 0.3893

Center Convergence 695 686 681 674

Center Divergence 569 629 632 611

M/Q Span 126 57 49 63

Reproduction Rate 1.56 0.71 0.61 0.78

Max Positive Position 1180 1112 1197 1171

Max Negative Position 274 352 432 1290

M/Q Density 443 569 670 1166

Virulence 0.02% 0.03% 0.03% 0.05%

Death Rate* 0.02% 0.03% 0.05% 0.10%

* The data were obtained from various sources.

Table 2: Analysis results of Omicron spike protein in comparison with spike proteins from human seasonal common cold 
coronaviruses
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Figure 1: The analysis results of spike protein from Wuhan strain SARS-CoV-2 in comparison with spike proteins from SARS-CoV-2 
variants. The peaks and the dips in the graphs represent variations in Mass-Charge ratio of the amino acids of the spike proteins, meaning that 
mutations occur in this region resulting in changes in charge/mass of the amino acids. The wider peaks or dips represent the changes involved 
in more amino acid changes of the spike proteins. The peaks indicate positive correlation and the dips indicate negative correlation. The dips 
mean opposite changes in the charge/mass of the amino acids of the spike proteins. The dips may have stronger impact on the biological 
function of the proteins than the peaks.  Panel A: Normalized semi-covariance for generalized mass-charge ratio of Mu variant (B.1.621) spike 
protein baselined on Wuhan strain spike protein. Panel B: Normalized semi-covariance for generalized mass-charge ratio of Delta variant 
(B.1.617) spike protein baselined on Wuhan strain spike protein. Panel C: Normalized semi-covariance for generalized mass-charge ratio of 
Omicron variant spike protein baselined on Wuhan strain spike protein. Panel D: Normalized semi-covariance for generalized mass-charge 
ratio of IHU variant (B.1.640) spike protein baselined on Wuhan strain spike protein. Panel E: Normalized semi-covariance for generalized 
mass-charge ratio of Indonesia variant (B.1.446.2) spike protein baselined on Wuhan strain spike protein. Panel F: Normalized semi-covariance 
for generalized mass-charge ratio of Alpha/UK variant (B.1.1.7) spike protein baselined on Wuhan strain spike protein. Panel G: Normalized 
semi-covariance for generalized mass-charge ratio of BA.5 (B.1.1.529+BA) spike protein baselined on Wuhan strain spike protein.  
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spike protein is used as a baseline, and Delta variant used 
as a reference point. We set 〖RR〗_std=2.08 (Delta variant), 
and 〖Virulence〗_std=2.15% (Delta variant). The analyses 
results are shown in Figure 1. It appears that most changes of 
the Mass-Charge ratios (the peaks and dips in Figure 1A to 
1F) occur in the N-terminal half or the middle region of the 
spike proteins but rarely occurs in the C-terminal half of the 
spike proteins. The N-terminal half or the S1 subunit of the 
spike proteins carries the receptor-binding domain (RBD) of 
the spike protein while the middle region of the spike protein 
may have the function that directly or indirectly affects the 
interactions of RBD to the ACE2 receptor. Mutations in the 
surrounding region of the RBD may have epistatic effect on 
the binding of the spike protein to the ACE2 as we reported 
previously [24]. Epistasis is the combinatory effect of two or 
more mutations in a genome [25].  Epistatic mutations may 
allow spike protein to adopt a specific conformation for better 
or more efficient interaction of RBD with ACE2 [24]. The 
RBD is located between 331 and 528 amino acid residues of 
the spike proteins [24]. All the variants (including Figure 1A 
to 1F) show the changes of Mass-Charge ratios in the RBD 
region of the spike proteins as compared to Wuhan strain 
spike protein. These changes in the RBD region affect the 
infectivity and transmissibility of the viral variants. It is also 
noticed that the changes of Mass-Charge ratios frequently 
occur closely on both sides of the RBD region in all the variants 
(Figure1A to 1D & 1F) except the variant B.1.466.2 (Figure 
1E). Overall, there are more changes in the RBD regions of 
the Omicron and its subvariant BA.5 spike proteins (Figure 
1C and 1G) as compared to others (Figure 1A, 1B, 1D, 1E, 
and 1F).  In conclusion, these Mass-Charge ratio changes on 
both sides of RBD may have direct or indirect impacts on 
the interactions of RBD with ACE2 receptor. It is also noted 
that there are not many changes in the C-terminal region of 
the variant spike proteins (Figure 1A to 1F), indicating that 
this region is relatively stable or conserved during evolution.

Further to the data presented in Figure 1, Table 1 shows 
the detailed analysis results for the comparison of Wuhan 
strain spike protein with the spike proteins from SARS-CoV-2 
variants. In Table 1 (also in Tables 2 and 3 as well), the Center 
Convergence is the center point of positive momentum, 
meaning that the Mass-Charge ratio's positive momentum on 
both sides of the spike protein sequence is equivalent; while 
the Center Divergence represents the center point of negative 
momentum, meaning that the Mass-Charge ratio's negative 
momentum on both sides of the sequence is equivalent. 
The M/Q Span is the non-Euclidean distance between the 
center of convergence and the center of divergence.  The 
Reproduction rate in the table is the calculated result from 
the analyses. Max Positive Position is the maximal point of 
positive momentum, meaning that the Mass-Charge ratio 
on this point reaches the maximal positive value; while the 

Max Negative Position is the maximal point of negative 
momentum, meaning that the Mass-Charge ratio on this 
point reaches the maximal negative value. M/Q Density is 
the non-Euclidean height between the center of convergence 
and the center of divergence. Virulence in the Tables is the 
calculated results from this algorithm for the viruses. From 
the analysis results presented in Table 1, it appears that the 
calculated viral reproduction rates are very close to the R0 
values reported in the literature. In particular, the calculated 
reproduction rate for Omicron (7.79) is almost identical to 
the reported R0 value for Omicron (7.0) in the literature, 
suggesting that the calculated result by using the algorithm 
based on the Mass-Charge changes in the amino acids of 
the spike proteins may accurately predict the infectivity of 
the viral variant. More importantly, the virulence in Table 1 
calculated by using the algorithm is closely within the range 
of death rates reported in the literature, indicating that the 
calculated virulence of the viral variants may predict the 
death rate caused by the viral variants. A study published by 
the Public Health Ontario analyzed the patients infected with 
the Omicron variant (37296 cases) or Delta variant (24432 
cases) and chose 9087 cases from each variant to analyze the 
death rate. Their results showed that the death rate for the 
Omicron variant was 0.03%, while the death rate for the Delta 
variant was 0.3% [26], which is very close to the virulence we 
calculated in Table 1. 

The calculated virulence of Omicron subvariant BA.5 
is higher to that of Omicron in Table 1. A new study using 
multiscale investigations published in October 2022 suggests 
that the risk of BA.4/5 to global health is greater than that of 
original BA.2 and that BA.4/5 is more pathogenic than BA.2 
[27], which is consistent with our calculation. However, 
due to popular vaccination/boosters and advanced COVID 
therapies available, the actual death rate caused by BA.5 
infection appears to be similar to that of Omicron (Table 1). 
BA.5 may have immune escape from current vaccination and 
therapies, but the symptoms and severity of the disease caused 
by BA.5 infection may be reduced by available vaccination 
and therapies [27].

Analysis results for Omicron spike protein in 
comparison with spike proteins from human common 
cold coronaviruses and murine coronaviruses 

We compared the Omicron spike protein with the spike 
proteins from murine coronaviruses FJ64 (Murine coronavirus 
RA59/R13; Genbank: FJ647218.1) and AB55 (GenBank: 
AB551247.1) as well as from human common cold (seasonal) 
coronaviruses 229E (GenBank: NC_002645.1), OC43 
(GenBank: MN488635.1), NL63 (GenBank: KY554970.1), 
and HKU1 (GenBank: MN488637.1). For this comparison, 
we use Omicron spike protein as the baseline and OC43  
spike protein as a reference. We set RR std =1.56 (OC43), 
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Figure 2: The analysis results for Omicron spike protein in comparison with spike proteins from murine coronaviruses and human common 
cold coronaviruses. The peaks and the dips in the graphs represent variations in Mass-Charge ratio of the amino acids of the spike proteins, 
meaning that mutations occur in this region resulting in changes in charge/mass of the amino acids. The wider peaks or dips represent the 
changes involved in more amino acid changes of the spike proteins. The peaks indicate positive correlation and the dips indicate negative 
correlation. The dips mean opposite changes in the charge/mass of the amino acids of the spike proteins. The dips may have stronger impact 
on the biological function of the proteins than the peaks.  Panel A: Normalized semi-covariance for generalized mass-charge ratio of murine 
coronavirus FJ64 spike protein (Genbank: FJ647218.1) baselined on Omicron spike protein. Panel B: Normalized semi-covariance for 
generalized mass-charge ratio of murine coronaviral spike protein (GenBank: AB551247.1) baselined on Omicron spike protein. Panel C: 
Normalized semi-covariance for generalized mass-charge ratio of spike protein from human common cold coronavirus 229E baselined on 
Omicron spike protein. Panel D: Normalized semi-covariance for generalized mass-charge ratio of spike protein from human common cold 
coronavirus OC43 baselined on Omicron spike protein. Panel E: Normalized semi-covariance for generalized mass-charge ratio of spike 
protein from human common cold coronavirus NL63 baselined on Omicron spike. Panel F: Normalized semi-covariance for generalized mass-
charge ratio of spike protein from human common cold coronavirus HKU1 baselined on Omicron spike protein.
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Figure 3:  Phylogenetic tree for complete genomes of SARS-
CoV-2 (Wuhan strain, B.1.1.7, and Omicron), human common 
cold coronaviruses (NL63, 229E, OC43, and HKU1), and murine 
coronaviruses (Genbank Accession #: AB551247.1, MW620427.1, 
GU593319.1, FJ647220.1, FJ884686.1, MF618252.1 and 
FJ647219.1) by using Clustal Omega.

Virulence std =0.02% (OC43).  Figure 2 shows the analysis 
results for Omicron spike protein in comparison with the spike 
proteins from murine coronaviruses and human common cold 
coronaviruses. Unlike the data presented in Figure 1, there 
are more changes in Mass-Charge ratios between Omicron 
spike protein and the spike proteins from the murine and 
seasonal coronaviruses as shown in Figure 2. Phylogenetic 
analysis of the viral genomes shows that Omicron and variant 
B.1.1.7 are closely related to Wuhan strain virus as shown
in Figure 1C and 1F; but, as compared to Wuhan strain
virus and its variant B.1.1.7, Omicron is closer to seasonal
coronaviruses NL63 and 229E and then to HKU1 and OC43.
The phylogenetic analysis also shows that OC43 and HKU1
as well as NL63 and 229E are closer to murine coronaviruses
in evolution (Figure 3). However, these differences are
not apparently observed in Figure 2. Overall, unlike data
presented in Figure1, there are a lot of more dissimilarities
between Omicron spike protein and the spike proteins from
human common cold coronaviruses and murine coronaviruses 
(Figure 2), suggesting distant relationship between Omicron
and these coronaviruses in evolution.

Further to the data presented in Figure 2, Table 2 
shows the detailed analysis results for the comparison of 
Omicron spike protein with the spike proteins from human 
common cold coronaviruses. As compared to the centers of 
convergence presented in Table 1 (626 to 633) for SARS-
CoV-2 variants, the centers of convergence for the spike 
proteins from seasonal coronaviruses is shifted to the right 
(674 to 695) of the sequence. The centers of divergence for 
spike proteins from SARS-CoV-2 variants are scattered from 
361 to 707 (Table 1); while the centers of divergence for the 
spike proteins from seasonal coronaviruses are more located 
at the region from 569 to 632 (Table 2). The max positive 
positions for SARS-CoV-2 variants are centralized to 516 to 

518 (Table 1); while the max positive positions for seasonal 
coronaviruses are centralized to 1112 to 1197 (Table 2). 
The max negative positions for SARS-CoV-2 variants and 
seasonal coronaviruses are mostly scattered on the N-terminal 
regions of spike proteins (216 to 757) except HKU1 (1290) 
(Tables 1 and 2). More importantly, the virulence calculated 
by the algorithm using the parameters for the common 
cold coronaviruses is very closely to the actual death rates 
reported in the literature (Table 2). This further demonstrates 
that the calculated virulence may predicate the virulence of 
the viruses, i.e., the death rate caused by the coronavirus 
infection.
The analysis results for OC43 spike protein in 
comparison with spike proteins from murine 
coronaviruses and seasonal coronaviruses   

We compared OC43 spike protein with the spike proteins 
from MW62 (murine coronavirus MHV-3; GenBank: 
MW620427.1), FJ64 (GenBank: FJ647218.1), AB55 
(GenBank: AB551247.1), GU59 (GenBank: GU593319.1), 
FJ88 (GenBank: FJ884686.1), and HKU1 (GenBank: 
MN488637.1). In this comparison, OC43 spike protein is 
used as the baseline and the FJ88 spike protein is used as 
a reference. We set RR std =1.0 (FJ88), Virulence std=60% 
(FJ88). The murine coronaviruses are murine hepatitis virus 
(MHV) and are positive single-stranded RNA coronaviruses 
of ~31kb. These viruses are highly infectious and fatal. 
MHV infection of rodents can cause ~60% death and the 
mortality can reach 100% in infant mice [28,29]. The 
standard virulence is thus set at 60% in this analysis, but the 
reference for virulence can be changed upon the viruses to 
be used in the analysis. Figure 4 shows the analysis results 
of OC43 spike protein in comparison with the spike proteins 
from murine coronaviruses and seasonal coronavirus HKU1. 
It can be seen from Figure 4 that the similarity of the Mass-
Charge ratios between OC43 spike protein and murine/
HKU1 coronaviral spike proteins is closer as compared to 
those between Omicron and seasonal/murine coronaviruses 
presented in Figure2, but the similarity in Figure 4 is less than 
those between Wuhan strain virus and its variants presented 
in Figure1. It is also noted that the patterns of Mass-Charge 
ratios displayed in Figure 4A to 4E are highly similar to each 
other. Another important observation is that the variations in 
the C-terminal part of the spike protein sequences are smaller 
than the variations in the N-terminal region and the middle 
region of the spike protein sequences (Figure 4), further 
indicating that this region is relatively stable in terms of 
Mass-Charge ratios and protein sequence.     

Table 3 presents the detailed analysis results for the 
comparison of OC43 spike protein with the spike proteins 
from murine coronaviruses, showing that Mass-Charge 
variances reveal more dependency and trend of each protein 
sequence evolution [30]. From the analyses, the virulence 
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Figure 4: The analysis results of OC43 spike protein in comparison with spike proteins from other coronaviruses. The peaks and the dips in the 
graphs represent variations in Mass-Charge ratio of the amino acids of the spike proteins, meaning that mutations occur in this region resulting 
in changes in charge/mass of the amino acids. The wider peaks or dips represent the changes involved in more amino acid changes of the spike 
proteins. The peaks indicate positive correlation and the dips indicate negative correlation. The dips mean opposite changes in the charge/mass 
of the amino acids of the spike proteins. The dips may have stronger impact on the biological function of the proteins than the peaks. Panel 
A: Normalized semi-covariance for generalized mass-charge ratio of murine coronaviral spike protein (GenBank: MW620427.1) baselined 
on OC43 spike protein. Panel B: Normalized semi-covariance for generalized mass-charge ratio of murine coronaviral FJ64 (GenBank: 
FJ647218.1) spike protein baselined on OC43 spike protein. Panel C: Normalized semi-covariance for generalized mass-charge ratio of 
murine coronaviral AB55 (GenBank: AB551247.1) spike protein baselined on OC43 spike protein. Panel D: Normalized semi-covariance for 
generalized mass-charge ratio of murine coronaviral GU59 (GenBank: GU593319.1) spike protein baselined on OC43 spike protein. Panel E: 
Normalized semi-covariance for generalized mass-charge ratio of murine coronaviral FJ88 (GenBank: FJ884686.1) spike protein baselined on 
OC43 spike protein. Panel F: Normalized semi-covariance for generalized mass-charge ratio of human seasonal coronaviral HKU1 (GenBank: 
MN488637.1) baselined on OC43 spike protein.
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of MHV strains AB551247.1 and GU593319.1 is similar to 
the strain FJ884686.1 at ~60%; while the virulence of MHV 
strain FJ647218.1 (42.45%) is less than strain FJ884686.1.

Calculated mutations, infectivity and virulence for 
Omicron and its subvariants and their evolution 
trend

Using the mass-charge obtained for each of the amino acid 
sequence groups from formula (1), we can deduce each of the 
mutations from the base sample. Using formula (20) [31], we 
can obtain the total number of mutations in the variant and 
subvariants, and the result using Wuhan spike protein as the 
base mass-charge is shown in Table 4.

Based on the result of Table 4, we noticed that the Omicron 
spike protein has 44 mutations based on Wuhan strain spike 
protein, which is significantly more than other variants. 
This might imply why the original versions of vaccines are 
less effective against Omicron. The Table also includes the 
subvariants derived from Omicron, such as BQ.1.1 with 
additional 5 mutations and XBB.1.5 with additional 18 
mutations. Moreover, we can divide the exact parts where 
the mutations take place and further analyze the potential 

functional implications of these mutations. Our approach 
divides the spike protein into three parts, including S1  
(1 to 305), RBD (306 to 655), and S2 (656 to 1273) where the 
mutations take place with different functional implications 
[9]. Mutations in S1 part enhances the ability to escape the 
immune system [32], and mutations in RBD affects the 
infectivity; while mutations in S2 impact the ability of the 
virus to penetrate the cell membrane. By doing segmented 
analysis based on Omicron, the infectivity and virulence 
of the subvariants is shown in Table 5. By calculating the 
average and standard deviation of each section, it can be 
predicted that the infectivity and virulence of XBB.1.5 
are 201% and 33% of the Omicron (100%), respectively, 
indicating an increase in the transmissibility and a decrease 
in the virulence. Enhanced infectivity and reduced virulence 
of the subvariants can also be calculated for BF.7 and BQ.1.1 
as shown in Table 5.

The algorithm can also be used to deduce the evolution 
trend of the virus and its variants/subvariants. Figure 5 and 
Figure 6 show the effects of different Z values (binding 
distance) for different strains of coronaviruses. The valley 
(binding depth) of the virulence for the different strains of 
viruses is slightly different based on the previous analysis. For 
example, in Figure 5, the Omicron has a valley with a similar 

OC43 (baseline)/FJ88 (reference) FJ64 AB55 GU59 FJ88
Positive Correlation 83.28% 83.34% 85.09% 83.43%

Negative Correlation 6.37% 6.31% 5.87% 6.37%

Pearson Correlation 0.7691 0.7702 0.7922 0.7706

Center Convergence 670 751 750 755

Center Divergence 541 638 638 634

M/Q Span 129 113 112 120

Reproduction Rate 7.7 6.73 6.68 7.19

Max Positive Position 1157 1531 1531 1531

Max Negative Position 934 1293 1293 1293

M/Q Density 911 1294 1295 1287

Virulence 42.45% 60.33% 60.37% 60.00%

Table 3: Analysis of OC43 spike protein in comparison with spike proteins from murine coronaviruses

*The numbers of mutations in each column are the additional mutations based on the previous one.

WUHAN-SPIKE DELTA-SPIKE OMICRON BA.2 BA.5 BF.7 BQ.1.1 XBB.1.5
Mutations* 11 44 28 6 2 5 18

Table 4: Analysis of the number of mutations based on mass-charge modeling

SARS-CoV-2 variants & subvariants Infectivity Virulence
Omicron 100% 100%
XBB.1.5 201% 33%

BF.7 196% 31%
BQ.1.1 188% 30%

Table 5: Analysis of the infectivity and virulence for subvariants based on Omicron
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Figure 5: Effects of different distance Z of the Langlands program on viral virulence (amplitude). The curves highlighted in the ovary 
circle represent the M/Q ratio for optimal distance to interact with the receptors. The arrow direction represents the increase in virulence.

Figure 6:  Effects of different distance Z of the Langlands program on viral infectivity (angle). The arrow direction represents the increase 
in infectivity.

Figure 7: Comparison of different active centers of convergence for SARS-CoV-2 variant spike 
proteins vs. appearing month and its linear prediction of viral stabilization
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high magnitude to BA.5 and Delta. However, a slightly bigger 
horizontal Z position value than the Delta variant suggests 
its lower virulence. Figure 6 shows the effect of different Z 
values based on the angle (binding width). The larger the Z 
value and the higher the angle is, the more contagious the 
virus. The SARS-CoV-1 shows the lowest angle; while the 
Omicron subvariants BA.2 and BA.5 with the highest Z value 
is the most infectious variant known.

Based on our analysis of the binding coverage for each 
variant in the past months, we can draw the trend line to 
demonstrate the evolution of the coronaviruses (Figure 7). 
If the binding coverage drops to zero, the viruses may not 
need further mutations in this region for its infectivity and 
virulence or the virus may be relatively stabilized. Any further 
mutations will not significantly increase the viral infectivity 
or virulence.

Discussion and Conclusion
This study presents the construction of a Mass-Charge 

covariance for equivalent analysis of coronaviral spike 
protein fluctuations using an equivalent moment basis with 
a simple algorithm coded in Excel, and other similar tools 
can be used too. This novel Mass-Charge model reveals an 
extra performance index over the traditional model, like 
infective reproduction rate and virulence estimation. In 
addition to analyzing spike proteins from SARS-CoV-2 and 
its variants/subvariants, this study also compares the spike 
proteins from murine coronaviruses to the spike proteins 
from human common cold coronaviruses. The results of 
the Mass-Charge calculation show the differences between 
animal and human coronaviral spike proteins that traditional 
covariance definition and calculation may overlook. It also 
reveals the unique positive and negative charge (mutation) 
section center positions in the viral spike proteins (where the 
convergence and divergence sections are located). By using 
the normalization procedure, the new algorithm removes the 
self-correlation of each viral spike protein and displays only 
the cross-correlation between the viral spike proteins. By 
analyzing various parameters of viral protein sequences using 
the algorithm, the infectivity and the virulence of the viruses or 
viral variants may be accurately predicted, particularly when 
a new virus or a new viral variant is emerging. If the viral 
infectivity and virulence can be estimated or predicted, it will 
provide important information for preventative measures or 
therapeutic preparedness for the diseases caused by the virus 
and its variants. The studies may provide vital information 
to the sequalae of the infection even after the pandemic [33].  

It is envisioned that the Mass-Charge model is a 
promising alternative for the coronaviral spike protein 
analysis as well as for other human and viral protein analyses. 
The model will be useful to combine inter-virus and intra-
virus characterizations. The simplified calculation is very 

easy to use, accurate enough, and forward compatible with 
the traditional Pearson model and calculations. The Matlab 
or Python code is good for experienced users to do more 
deep analyses for viral biology and evolution and for drug 
development. The example Excel sheet/code is available 
from the GitHub or Matlab servers:

(https://github.com/steedhuang/Poincare-Fuchs-
KleinAutomorphicFunction-COVID19-Mutations).

( h t t p s : / /w w w .ma thw orks . co m/ma t l ab cen t r a l /
fileexchange/106870-calculate-langlands-automorphic-
mass-charge-spectrum).
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