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Abstract
In this research, we design a plasmonic refractive index sensor and 

examine it numerically, using transparency, refractive index, sensitivity, 
FOM fit shape and Q quality factor, to optimize and improve performance 
quality. We will be. To design the structure of this sensor, we use two 
plasmonic waveguides, a cavity, two rings and two teeth. The resonant 
wavelengths and refractive index of the resonators are investigated and 
simulated by the finite difference time domain (FDTD) method, and we 
draw the obtained diagrams using MATLAB software. After completing 
the sensor design, due to the fact that the amplifiers are very sensitive to 
changes in the refractive index, so by changing the refractive index and 
changing the dimensions of the structure, we can weaken or strengthen the 
passage coefficient in the resonant modes. These plasmonic sensors with a 
simple frame and high optical resolution can be used to measure refractive 
index in the medical, chemical and food industries.
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Introduction
Surface plasmon polaritons (SPPs) have been studied extensively recently 

due to the fact that they confine light at nanoscale dimensions [1]. As a result 
of these unique features, SPPs are used in many structures such as filters [2], 
optical demultiplexers, bio-sensors [3-36], logic gates and etc. The metal–
insulator-metal (MIM) optical waveguide is used extensively for design of 
many plasmonic devices due to its ability to confine light within a small area 
and its compatibility with electronic platforms [37-46]. In addition, having 
a simple design procedure makes it one of the most favorable structures. 
Consequently, a diversity of MIM plasmonic devices have been designed and 
implemented. Some of them are optical filters, sensors, coulpers, slow light 
devices, splitters and all-optical switches. A good refractive index sensor needs 
to have a good sensitivity (S) and a high figure of merit (FOM). Increasing the 
device size usually increases the sensitivity, but larger structures have higher 
full width half maximum, which leads to a reduction of FOM. Many criteria 
can be used to implement refractive index sensors, but plasmonic sensors are 
more suitable for integrated circuits due to their very small size (nanometers). 
Recently, various types of plasmonic sensors have been designed and 
manufactured. Among them, plasmonic refractive index sensors require high 
sensitivity and resolution. Conventional plasmonic sensors consist of a MIM 
waveguide with a cavity. Such cavities can have a variety of geometries 
such as tooth-shaped, disc-shaped, ring-shaped, and so on. In this paper, we 
propose a MIM plasmonic sensor with two rings and a cavity and two teeth. 
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To simulate the sensor, the two-dimensional finite difference 
time domain (FDTD) method with a uniform mesh size of 8 
nm has been used. The boundary condition for all directions 
is selected as the perfectly matched layer (PML).

Structural model and theory analysis
There are many structures for designing optical sensors. 

These optical sensors usually include amplifiers and 
waveguides. Each waveguide with any geometric shape has 
the ability to transmit waves and can limit their energy in 
one and two dimensions. The proposed structure is shown 
in Figure 1, which includes two waveguides and a cavity, 
and two rings and two teeth. The input wave goes from the 
left waveguide to the structure and after passing through 
them goes to the output waveguide. The width of the two 
waveguides is w1 = 50 nm. The middle ring is located in the 
middle of two waveguides that have an inner radius of r1 = 
90 nm and an outer radius of R1 = 133 nm, which is located 
at a distance of 19 nm from the two waveguides. The two 
teeth are connected to the middle ring, which has a length of 
40 nm and a height of 20 nm. A ring is located at the bottom 
of the right waveguide and has an inner radius of r1 = 91 
nm and an outer radius of R1 = 126 nm. The cavity also has 
a length of L = 80 nm and a height of W2 = 200 nm. The 
lower ring is attached to the waveguide and the cavity and 
the distance from the cavity to the waveguide is 55 nm. Pin 
and Pout are the monitors for measuring the input and output 
waves, respectively, and the transmission is calculated by  
T = Pout / Pin.

As shown in the 2D image, the green and white areas 
represent silver and air, respectively. The air permittivity 
is set to ε = 1 and the silver permittivity is used using the 
greeting model as follows:

			          (1)

Here 𝖼∞ gives the medium constant for the infinite 

frequency, ωp refers to bulk frequency for plasma, γ means 
damping frequency for electron oscillation, and ω shows 
incident light angular frequency. The parameters for silver 
are 𝖼∞ = 1, ωp =1.37 × 1016 Hz, and γ = 3.21 × 1013 Hz. 
Only TM mode is available in the structure. According to 
Figure 1, the TM wave, which is used for SPP excited waves, 
starts propagating from the left waveguide and propagates in 
the waveguide, and its intensity decreases as it gets closer 
to the output port. After distributing the field at the resonant 
frequency of the simulated structure, each amplifier reflects a 
certain amount of input wave.

Fracture coefficient simulation and measurement 
methods

The resonant behavior of the proposed structure is 
examined numerically and theoretically. In the numerical 
approach, we use the time domain finite difference (FDTD) 
simulation method with perfectly matched layer boundary 
conditions (PML) because this method effectively reduces 
the numerical reflection. The uniform mesh size is 8 nm. 
First, to measure the performance of the sensor and increase 
its quality, we must change its refractive index. This is done 
in the wavelength range of 400 to 1500 nm and the refractive 
index of the middle ring will change in steps of 0.01 from 
1.15 to 1.2 nm. An electromagnetic field is generated by the 
excitation of a sensing element using light generated by SP 
that is concentrated on the metal surface. The refractive index 
of the MIM changes when the material under contact contacts 
the sensor. SPs are very sensitive to changes in refractive 
index in the vicinity of the surface. The reason we have only 
changed the refractive index of one ring and the refractive 
index of other amplifiers remains the same is to achieve a 
better result and a stronger sensor design. The transmission 
spectrum from the sensor device is shown in Figure 2.

After comparing the wavelengths using the refractive 
index change and plotting the transmission spectrum, we 
must obtain the three criteria of sensitivity S and the shape 
of the FOM and the quality factor Q. With this, we create 

Figure 1: Two-dimensional image of a plasmonic sensor
 

Figure 2: Transmission spectra of plasmonic refractive index sensor



Abbasi H., J Anal Tech Res 2023
DOI:10.26502/jatr.36

Citation: Hamid Abbasi. Plasmon-Induced Flexibility and Refractive Index Measurement in A Sensor Designed by a Cavity, Two Rings, Two Teeth 
and Two Plasmonic Waveguides. Journal of Analytical Techniques and Research 5 (2023): 16-20.

Volume 5 • Issue 3 18 

Conclusion
In this paper, a very high resolution refractive index optical 

sensor is presented. It is based on plasmonic conductors 
of metal-metal insulation. The structure is numerically 
simulated using the finite difference time domain method. 
The proposed structure is thought to consist of two plasmonic 
waveguides, a cavity, two rings and two teeth. This sensor 
provides a sensitivity of 2359 nm / RIU and a maximum 
rating of 15.0316 RIU-1 (FOM). Due to its high resolution 
resolution, this sensor can easily change 0.01% in the analytic 
refractive index for the index in the range of 1.15-1.2.

Competing Interest 

The authors declare no conflicts of interest.

References
1.	 Ebbesen, Thomas W, A Dereux, et al. Surface plasmon 

subwavelength optics. Nature 424 (2003): 824-830.

a technology map to define the standard and development 
process of optical refractive index sensors. Sensitivity S 
defines the ratio of the output wavelength change of the 
sensor to the refractive index changes and is obtained from 
the following relation:

S = Δ λ / Δn (nm / RIU)			         (2)
We see the diagram of the plasmonic sensitivity coefficient 

in Figure 3, which according to the figure, has the highest 
sensitivity for the refractive index n = 1.2 (in mode2) which is 
equal to 2359 nm / RIU and the lowest value for the refractive 
index n = 1.16 (in mode1) Which is equal to 314.1 nm / RIU. 

The next item is the figure of merit (FOM), which 
determines the sensitivity of the SRI to the resonance width 
curve (FWHM) and how accurately the minimum resonance 
can be measured. FOM is calculated as follows:

FOM = SRI / FWHM				           (3)

We see the diagram of the figure of merit (FOM) in Figure 
4, which according to the figure has the highest value for the 
refractive index n = 1.18 (in mode1) which is equal to 15.03 
and the lowest value for the refractive index n = 1.12 (in 
mode1) which is equal to With 7.354.

And the last case is the quality factor Q, which is obtained 
from the following equation:

Q = λres / FWHM				             (4)
We see the quality factor Q diagram in Figure 5.
According to the figure, the highest value of quality factor 

Q is for refractive index n = 1.17 (in mode1) which is equal 
to 16.56 and the lowest value for refractive index is n = 1.19 
(in mode2) which is equal to 7.379. These three factors (S and 
FOM sensitivity and Q quality factor) and their numerical 
values showed that this sensor has good performance and 
quality and has a higher sensitivity compared to similar 
articles.
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Figure 4: Plasmonic sensor FOM diagram.

 
Figure 5: Quality factor diagram of Q plasmonic sensor.
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