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1. Introduction 

In recent years, immune checkpoint inhibitor (ICI) therapies have become standard-of-care treatments in several 

advanced malignancies as well as adjuvant settings [1-10]. While ICIs provide new ways to treat a variety of cancer 

types, they also introduced novel toxicities. These toxicities can arise from various organ systems, and at any time 

point during treatments or even after treatment discontinuation [11-13]. The toxicities can be life threatening, but 

most are reversible if detected and treated early. Immune-related adverse events may also persist or appear in a 

similar manner after ICI discontinuation while immune-mediated toxicity seems to be independent of dose and 

duration of the given anti-PD-(L)1 treatment [14-16]. Due to the somewhat unpredictable nature of immune-related 

adverse events (irAEs), early detection of the toxicities is crucial and could result both in improved safety profile of 

treatments and a better quality-of-life for the patients.  

 

Artificial intelligence (AI) based analytics have gained growing interest in the field of cancer care. Deep learning 

systems have shown promising results especially in cancer diagnostics [17]. AI based methods can be used to 

analyze vast data pools to create predictive analytics for generating value-based healthcare assets. Patient reported 

outcomes (PROs) consist of health-related questionnaires filled by the patients themselves which can capture 

symptoms and signs and their severity. Scheduled electronic (e) PROs have many advantages compared to paper 

questionnaires such as reducing timely and locational limitations and offering continuous collection of symptoms in 

a cost-effective manner [18-20]. Furthermore, ePROs could be used in the development of machine learning (ML) 

based approaches, such as symptom prediction models to enable earlier detection of toxicities.  
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The Kaiku Health digital platform has been used in a real-world setting to capture symptom data from cancer 

patients receiving ICIs. In this study, anonymized and aggregated ePRO data collected with Kaiku Health ePRO tool 

were used to train and tune models built using gradient boosting algorithm from an open source Python library 

XGBoost [21-23] for symptom continuity and onset prediction for 14 symptoms related to ICI toxicities. 

 

2. Methods 

The modelling methodology used in this study follows a general framework of data classification in machine 

learning. The outcome to be predicted is binary, i.e., symptom will onset or continue in the upcoming days or 

symptom won’t onset or continue in the upcoming days. The used dataset consisted of ePRO data from ICI-treated 

patients collected using the Kaiku Health platform. There were 18 monitored symptoms in the ePRO questionnaire. 

The original dataset, which was used in the prediction model training, tuning and validation consisted of 21 744 

reported symptoms from 72 ICI patients. This dataset was split into two using 70% of the data in training and tuning 

and 30% of the data in the initial validation of the models. The test dataset for the model performance evaluation in 

this study contained 16 884 reported symptoms collected with Kaiku ePRO tool from 67 cancer patients receiving 

ICIs which was collected after the model training to evaluate the performance of the models in real-life settings. 

 

The symptom prediction models were built using an open source Python library XGBoost, which is an ensemble of 

many, usually hundreds of classification and regression trees known as CARTs. In this study, the tree booster of 

XGBoost library was used to train models for classification task of detecting symptoms related to ICIs. The model 

features were extracted from the past values of the 18 monitored symptoms (the predicted symptom and 17 other 

symptoms) to capture the variations in symptoms. The most suitable number of past values was found out to be 

three. In addition, differences in the symptom grades between the two previous values and the time between the 

reported data samples (for the three previous values) were included in the features.  

 

XGBoost has several tunable parameters called hyperparameters which can be optimized to improve the 

performance of the trained models. In this study, hyperparameter tuning was done by using grid search with repeated 

(five repeats) stratified 5-fold cross-validation and logarithmic loss as the scoring metric in cross-validation. Scaling 

ratio for positive samples was calculated based on the size of the positive class compared with the negative class, 

and thus, it was not tuned with other parameters in the hyperparameter tuning. Also, learning rate of the ensemble 

was fixed to 0.01, and thus, it was not tuned with the other parameters.  

 

The performance of the prediction was evaluated based on four known metrics. Accuracy describes how many 

predictions were correct as percentages, and 100% indicates perfect classification. Area under curve (AUC) is a 

performance metric for binary classification ranging from 0 to 1. F1-score is the weighted average of precision (how 

many of the cases predicted as positive are actually positive) and recall (how many of the positive cases are 

detected) which gets values between 0 and 1. Matthew’s correlation coefficient (MCC) summarizes all possible 

cases for binary predictions: true and false positives, and true and false negatives. MCC is also suitable for analyzing 



Arch Clin Med Case Rep 2020; 4 (3): 344-351    DOI: 10.26502/acmcr.96550205 

 

Archives of Clinical and Medical Case Reports    346 

imbalanced datasets, where other class is much rarer than the other. MCC can be considered as a correlation 

coefficient between observed and predicted classifications and it gets values between -1 and 1, where 1 is perfect 

classification, 0 is random guessing and -1 indicates a completely contradictory classification. The complete 

modelling framework is presented in Figure 1. 

 

 

 

Figure 1: Flowchart of the complete modelling framework. 

 

3. Results 

There were 18 monitored symptoms in the ePRO questionnaire, but four of them had too few reported cases in the 

dataset for prediction model training. Therefore, separate XGBoost models were trained for 14 ICI related 
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symptoms. Performance metrics for the 14 prediction models are presented in Table 1. The overall performance of 

the models was good, and the best performance considering all metrics was found for dyspnea, joint pain, cough and 

fatigue whereas the overall performance was lowest for nausea, headache, diarrhea and fever. 

 

According to AUC values, the best performing models were for dyspnea and joint pain. The lowest AUC values 

were for headache and diarrhea. Generally, all the models were performing at a good level and the average AUC 

over the 14 models was 0,86. According to the accuracy score, all models were performing at a very good level; 

however, some symptoms had only few positive samples (cases where symptoms were present), which can distort 

the results. Such symptoms include, e.g., fever (only 3% of positive samples) and diarrhea (7%). F1-scores indicate 

that the best performing models were dyspnea and fatigue. The worst performance was found for fever and diarrhea. 

For these rarer symptoms, the lower F1-scores were caused by the higher number of false positives. According to 

MCC, the best performing models were for dyspnea and joint pain. The worst performance was found for nausea 

and headache. The overall performance was on a good level and the average MCC over the 14 models was 0,54 

(Table 1).  

 

Predicted symptom AUC 
Accuracy 

[%] 
F1-score MCC 

Percentage of 

positive samples [%] 

Dizziness 0,88 87,63 0,66 0,59 17 

Itching 0,84 88,71 0,64 0,58 15 

Fever 0,9 97,72 0,41 0,4 3 

Diarrhea 0,78 89,78 0,44 0,4 7 

Stomach pain 0,86 92,47 0,63 0,59 10 

Nausea 0,82 83,2 0,45 0,36 14 

Fatigue 0,9 82,12 0,83 0,64 50 

Rash 0,84 88,58 0,55 0,49 11 

Decreased appetite 0,84 84,81 0,54 0,47 13 

Cough 0,9 86,56 0,78 0,69 30 

Dyspnea 0,96 91,4 0,85 0,79 28 

Joint pain 0,92 89,11 0,82 0,75 29 

Headache 0,77 82,93 0,49 0,39 16 

Chest pain 0,88 88,71 0,51 0,46 9 

 

Table 1: Performance metrics for the 14 prediction models. 

 

4. Discussion 

Artificial intelligence (AI) or machine intelligence is intelligence demonstrated by machines. In health care, 

knowledge representation as part of the clinical decision support system is currently the most used AI approach. 

There are high hopes that AI could improve health care with early diagnostics and improved care in a more cost-
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effective manner compared to current approaches. The intriguing aspect of AI is its’ capability to analyze vast 

amounts of data, and based on that, detect correlations. The possibility of utilizing AI in the ePRO follow-up of 

treatment toxicities in that it could detect developing severe symptom cascades, and thus, instruct physicians and 

patients in advance, is extremely interesting. Whether this could be enhanced by combining the symptom reports of 

a patient to other eHealth apps sensing for example metabolic or physiologic changes, is another fascinating 

possibility [24]. 

 

This study found that ML based modeling of ePRO data on ICI treated cancer patients is feasible in predicting the 

onset and continuation of symptoms related to ICI toxicities. Advisable patient education and communication can 

improve quality of cancer care with multiple subjective and objective enhancements [25, 26]. In clinical practice, 

applications for the prediction of the continuity and onset of symptoms could provide proactive support for patients 

through, e.g., timely patient education and guidance. Furthermore, ePRO tools coupled with AI analytics could 

enable more precise follow-up by timing symptom questionnaires based on predictions, thus, a more personalized, 

and most likely cost-effective, risk-based follow-up.  

 

Toxic effects of conventional chemotherapy and molecularly targeted cancer therapies are generally well defined 

and occur at predictable points. By contrast, due to somewhat unpredictable timing, and clinical overlap with other 

conditions, immune-related adverse events (irAE) may be more difficult to diagnose and characterize [27-29]. The 

study also suggests that ML based prediction models could be utilized in the early detection of ICI related toxicities 

using ePRO data of symptoms related to ICI toxicities. There is growing evidence that patients treated with immune 

checkpoint inhibitors developing irAE are more likely to benefit from the therapy [30-34]. According to a study on 

lung cancer follow-up, ePROs enable cost-effective capturing of symptoms and their change over long time-periods 

[20]. Changes over time might better predict treatment side effects and benefit than just a single presentation of a 

symptom. Large scale symptom data combined with treatment benefit and side effects could be used to build 

prediction models using ML based methods. The models could predict risk for an individual patient for symptom 

development, treatment related side effects, and treatment benefit. 

 

This study revealed that ML based predictive analytics on the onset and presence of ICI related symptoms based on 

ePRO data is feasible. The results of the study are encouraging and suggest that ML based prediction models on 

ePROs of irAE data could be further utilized in the early detection of ICI related toxicities. In the future, the 

prediction models should be validated with a dataset collected in a prospective clinical trial to assess, if they truly 

are adding value to cancer care. 
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