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system, one of the best known predictors of patient 

mortality, and the imputation approach-based model. 

 

Results: Subgrouping and patient mortality 

predictions were separately performed on two 

groups: the sepsis group (the ICU admission 

diagnosis of which is sepsis) and the non-sepsis 

group (a complementary subset of the sepsis group). 

The subgrouping algorithm identified a unique, 

clinically interpretable missing event patterns and 

divided the sepsis and non-sepsis groups into five and 

seven subgroups, respectively. The integrated model, 

which comprises five models for the sepsis group or 

seven models for the non-sepsis group, greatly 

outperformed the APACHE IV or IVa, with an area 

under the receiver operating characteristic (AUROC) 

of 0.91 (95% confidence interval 0.89ï0.92) 

compared with 0.79 (0.76ï0.81) for the APACHE 

system in the sepsis group and an AUROC of 0.90 

(0.89ï0.91) compared with 0.86 (0.85ï0.87) in the 

non-sepsis group. Moreover, our model outperformed 

the imputation approach-based model, which had an 

AUROC of 0.85 (0.83ï0.87) and 0.87 (0.86ï0.88) in 

the sepsis and non-sepsis groups, respectively. 

 

Conclusions: We developed a method to predict 

patient mortality based on missing event patterns. 

Our method more accurately predicts patient 

mortality than others. Our results indicate that 

subgrouping, based on missing event patterns, instead 

of imputation is essential and effective for machine 

learning against patient heterogeneity. 

 

Trial registration  

Not applicable. 
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1. Background 

Accurate prognostication is central to medicine [1] 

and at the heart of clinical decision-making. Sepsis is 

a systemic response to infection, with the highest 

mortality rate in the field of intensive care. For nearly 

a decade, sepsis-related mortality has remained at 

20%-30%, with unsatisfactory improvements [2]. 

Prognosis remains a challenge for physicians because 

of the high heterogeneity of clinical phenotypes [3]. 

Because accurate diagnoses can improve the 

physicianôs decision-making abilities, it is one of the 

essences for medical practice of sepsis to improve 

prognosis accuracy [4]. Most large prognostic studies 

have developed clinical scoring systems for objective 

risk stratification in the early phase of hospital 

admission using physiological measurements, 

medical history, and demographics to predict the 

likelihood of survival [5]. Among these scoring 

systems, Acute Physiology and Chronic Health 

Evaluation (APACHE) scoring [6] is one of the best 

known, which has been validated for application at 

approximately 24 h after intensive care unit (ICU) 

admission. The APACHE scoring system generates a 

point score based on worst values of 12 variables 

during the initial 24 h after ICU admission. The 

APACHE II score was published in 1985 [5]; 

APACHE IV and IVa are the latest versions [7]. Built 

on the study of a more recent patient population and 

standard-of-care, APACHE IV or IVa are 

recommended as scoring systems over APACHE II 

and III. However, these indicators lack the precision 

required for use at the individual level. Therefore, 

efforts have been made to increase the performance 
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of these indicators through the use of computational 

techniques, such as machine learning. Machine 

learning classifiers may be advantageous for outcome 

prediction because they can handle large numbers of 

variables and learn non-linearities [8,9]. Random 

forest is an example of modern machine learning 

algorithms [10]. Machine learning requires large 

volumes of data and generating a complex model. 

However, the increasing availability of electronic 

health records has made constructing and 

implementing the models possible. The availability of 

large training sets [11,12] has made investigation of 

such approaches feasible. Studies on the application 

of machine learning to intensive care datasets have 

been performed [13- 21]. Traditional scoring systems 

were outperformed by machine learning approaches 

in mortality prediction in medical ICUs. However, 

the algorithms are not clearly described and the 

produced models or databases are available 

commercially. The Philips eICU Research Institute 

(eRI) is a non-profit institute established by Phillips 

that is governed by customers [22]. This freely 

accessible critical care dataset spans more than a 

decade and contains detailed information about 

individual patient care, including time-stamped, 

nurse-verified physiological measurements. As a 

distinctive feature, datasets are donated by >400, 

including teaching and non-teaching, hospitals. 

However, the eRI, which comprises 31 files 

according to clinical categories, includes much 

missing data. This makes the application of machine 

learning with eRI challenging. In this study, we 

revealed unique characteristics of the distribution of 

missing values in the eRI database. By taking 

advantage of this characteristic, we successfully 

developed a more accurate and interpretable model 

against the APACHE system. Accurate prediction of 

patient state is critical in the critical care field. To 

address this problem, we propose the ñmissing-event-

based prediction,ò a new method for predicting ICU 

mortality. 

 

2. Methods 

2.1 Dataset used in this study 

We used the eRI 

(https://www.usa.philips.com/healthcare/solutions/ent

erprise-telehealth/eri) database, which is an open 

database and provides anonymous data, including 

demographic information, vital signs measurements, 

laboratory test results, drug information, procedural 

information, fluid balance reports, hospital length of 

stay data, and data on in-hospital mortality, donated 

by >400 member institutions. The eRI contains data 

associated with 200859 ICU admissions with more 

than 100 variables. In this study, we carefully 

selected 58 clinically important variables to construct 

a model, which is easy to interpret clinically. 

Selected variables are summarized in Table S1 (see 

Additional file 1). Briefly, the variables were as 

follows: (I) Listed from laboratory measurements, 

including white blood cell count, hematocrit, 

bilirubin, creatinine, sodium, albumin, blood urea 

nitrogen, glucose, arterial pH, fraction of inspired 

oxygen, arterial oxygen pressure, and arterial blood 

carbon dioxide pressure. (II) Listed from routine 

charted data, including temperature, respiratory rate, 

heart rate, mean arterial blood pressure, urine output, 

and Glasgow Coma Scale (including score for eye, 

motor, and verbal responses). (III) Listed from 

information taken at the time of ICU admission, 

including age, gender, height, weight, time from 

hospitalization to ICU admission, type of hospital, 

bed count of the hospital, hospital ID, and diagnoses 

names at ICU admission. (IV) Comorbidities, 
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including myocardial infarction within 6 months, 

diabetes, hepatic failure, dialysis, immunosuppressive 

disease, lymphoma, leukemia, metastatic cancer, 

cirrhosis, acquired immune deficiency syndrome, and 

history of intubation and mechanical ventilation. 

Intervention required at admission, including catheter 

intervention for myocardial infarction, coronary 

artery bypass grafting with or without internal 

thoracic artery grafts, and use of thrombolytics. (V) 

APACHE scoring system, including not only the 

APACHE score but also actual ICU and in-hospital 

mortality, predicted ICU and in-hospital mortality, 

length of ICU stay, length of hospital stay, and 

ventilation duration. Among these variables, 

diagnoses names at ICU admission were used to 

define the sepsis or non-sepsis group (see the 

Definition of sepsis and non-sepsis groups in 

Methods section for details), actual ICU and in-

hospital mortality were used as response variables to 

construct the models, predicted ICU and in-hospital 

mortality using the APACHE IV or IVa were used as 

benchmarks against our model, and others (53 

parameters in total) were used as explanatory 

variables for machine learning. 

 

2.2 Definition of sepsis and non-sepsis groups 

Inclusion criteria for the sepsis group were as 

follows: (I) extraction by diagnoses names at ICU 

admission, namely ñSepsis, cutaneous/soft tissue,ò 

ñSepsis, GI,ò ñSepsis, gynecologic,ò ñSepsis, other,ò 

ñSepsis, pulmonary,ò ñSepsis, renal/UTI (including 

bladder),ò and ñSepsis, unknown;ò (II) selection by 

documentation of prognosis; and (III) exclusion by 

cases with any missing data in Acute Physiology 

Score (APS)-related variables and prognosis 

information. Inclusion criteria for the non-sepsis 

group were almost the same as the one used for the 

sepsis group. Briefly, the complementary subset of (I) 

was first selected. Then, (II) and (III) were applied to 

the resulting subset. Thus, 4226 and 23170 cases 

were defined as sepsis and non-sepsis groups, 

respectively. To reproduce our results and access 

patient lists, follow the jupyter notebook at 

https://github.com/tatsumashoji/ICU/1_the_sepsis_gr

oup_and_non_sepsis_group.ipynb 

 

2.3 Subgrouping based on missing data 

Subgroups were defined according to the diagram 

shown in Fig. S1 (see Additional file 2). Briefly, (I) 

patient lists, containing no missing data for any 

pattern of 52 variables (derived from 53 variables) 

were first generated. Then, (II) the patient list, which 

had a size not too small and not too large among 53 

lists, was defined as subgroup #1. For the other 

subgroups, we repeated (I) and (II) with the other 

patients. To reproduce this subgrouping, follow the 

jupyter notebook opened at 

https://github.com/tatsumashoji/ICU/2_subgrouping_

sepsis.ipynb for the sepsis group and 

https://github.com/tatsumashoji/ICU/3_subgrouping_

non_sepsis.ipynb for the non-sepsis group. 

 

2.4 Generation and performance of our model 

To construct the model for each group, we used the 

random forest classifier implemented with ñscikit-

learn (0.24.1)ò [23]. Briefly, we first selected 80% 

data as a training dataset for each group so that the 

ratio of ñALIVEò and ñEXPIREDò cases were the 

same between the two datasets. After 

hyperparameters for the random forest were 

determined using the grid search algorithm, the actual 

model was generated, and the mean and standard 

deviation of accuracy were checked through 5-fold 

cross-validation (see Table S2-S5 in Additional file 

https://github.com/tatsumashoji/ICU/1_the_sepsis_group_and_non_sepsis_group.ipynb
https://github.com/tatsumashoji/ICU/1_the_sepsis_group_and_non_sepsis_group.ipynb
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1). Finally, patient mortalities in the test dataset were 

predicted by the generated model and compared to 

those from APACHE IV or IVa by drawing receiver 

operating characteristic (ROC) curves and calculating 

the area under the ROC (AUROC). The confidence 

intervals for the AUROC were calculated as 

described [24]. For calibration plots, we used the 

module ñsklearn.calibration.calibration_curve.ò All 

results in figure 2 can be reproduced by running 

ñhttps://github.com/tatsumashoji/ICU/4_sepsis_predi

ction.ipynb.ò 

 

2.5 Imputation of missing values 

For imputation of missing values, we used 

multivariate imputation algorithms implemented with 

ñsklearn.impute.IterativeImputer,ò which uses the 

entire set of available feature dimensions to estimate 

missing values. We used the 0.24.1 version of scikit-

learn. To reproduce results shown in figure 3, follow 

the jupyter notebook opened at 

https://github.com/tatsumashoji/ICU/5_imputation.ip

ynb. 

 

3. Results 

3.1 Heterogeneity of the sepsis group 

Machine learning fails to predict the outcomes if 

input data consist of more than two populations. 

Subgrouping of input data is essential before 

constructing the model using machine learning. 

Therefore, we first investigated the distribution of 

each parameter in the sepsis group. The histogram in 

Figure 1a shows the distribution of some variables 

recorded in ñapacheApsVar.csvò, which contains the 

variables used to calculate the Acute Physiology 

Score (APS) III for patients. More than two peaks 

were observed, indicating the necessity for 

subgrouping the sepsis group. Importantly, cases with 

missing data on any variable are excluded from the 

histograms in Figure 1a. Thus, to examine how 

missing values were distributed in the sepsis group, 

correlation coefficients were calculated for all 

possible combinations of two variables after missing 

data were replaced with 0 and others with 1 (Figure 

1b). Surprisingly, perfect correlations were observed 

in some pairs in addition to the diagonal line. This 

suggests that missing events occur depending on 

other missing events. Clinically, this can be explained 

by different histories and backgrounds in the sepsis 

group. Thus, missing events contain information and 

may play an important role in subgrouping the sepsis 

group. 

 

3.2 Machine learning combining missing-event-

based subgrouping approach outperforms 

APACHE 

The unique distribution of missing values in the 

sepsis group led us to divide the group before 

machine learning. To account for the pattern of 

missing events when dividing the sepsis group, we 

defined subgroups such that each subgroup had the 

same missing pattern while the number of subgroups 

could as small as possible and the size of each 

subgroup could be as large as possible (Figure 2a). 

For details, see the Methods section. After defining 

five subgroups, we constructed models for each 

subgroup based on the random forest algorithm and 

calculated patient mortality. Then, we assessed the 

performance of each model by calculating AUROC 

and compared them to those from the APACHE IV or 

IVa system (Figure 2b). Our model outperformed the 

APACHE systems, especially when integrating 

subgroups. Moreover, our model was more 

successful that APACHE in distinguishing patient 

mortality (Figure 2c). Furthermore, results from 
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calibration plots supported the ability of our model to 

predict patient mortality (Figure 2d). Our model 

tends to output patient mortality higher than actual, 

whereas the APACHE system does not, indicating 

that the APACHE system underestimates patientsô 

mortality. 

3.3 Comparison with the imputation approach 

A typical way of handling missing data is to impute 

them. Therefore, we constructed the model 

completely same as the way taken in Figure 2 after 

imputing the dataset first, then compared to our 

model. Although the performance when imputed was 

slightly higher than the APACHE systems, it still 

remained lower than our method (Figure 3a), 

indicating that missing events are important 

information and our method, which accounts for the 

pattern of missing events, is reasonable. The 

imputation approach outperforms the approach of the 

APACHE system but does perform as well as our 

model, as confirmed using the scatter plot (Figure 

3b). Our model distinguished patient mortality most 

precisely among all four models. Moreover, analyses 

of calibration plots supported the observation that our 

model is the most conservative, and thus, safer, 

because the model based on the imputation approach 

estimated lower patient mortality compared with our 

model (Figure 3c). 

 

3.4 Application to the non-sepsis group 

To test the generalizability of our model, we applied 

our method to the non-sepsis group defined in the 

Methods section. We first generated seven subgroups 

using the same algorithm used for the sepsis group 

(Figure 4a) and constructed models for each 

subgroup. Then, we compared the performance of the 

four models, namely our model, APACHE IV, 

APACHE IVa, and the model based on the 

imputation approach (Figure 4b). Surprisingly, the 

distribution of missing values in the non-sepsis group 

was almost the same as that in the sepsis group, 

indicating that our subgrouping algorithm could be 

used for any group in addition to the sepsis group, 

and the performance of our model was the highest 

among all four models. Scatter plots and calibration 

plots also supported our model (Figures S4, S5, see 

Additional file 2). These results strongly suggest that 

missing events themselves are essential when 

predicting patient mortality in the ICU. 
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Figure 1: Distribution of Acute Physiology Score (APS)-related variables. 

1A: The distribution of APS-related variables in the sepsis group.  

1B: Joint matrix for checking the missing values. Correlation coefficients in some combinations were picked up and 

visualized using the heatmap where higher coefficients were lighter and lower were darker. 
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Figure 2: The performance of our model. 
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2A: Schematic of subgrouping results. The sepsis group was divided into five subgroups, namely subgroup #1 (884 

cases), #2 (1037 cases), #3 (509 cases), #4 (1230 cases), and #5 (566 cases). Colors indicate information about 

missing values. For example, cases in subgroup #1 have no missing values for all variables except 

ñhospitaladmitoffsetò.  

2B: Receiver operating characteristic (ROC) curves for each subgroup produced using our model (red), Acute 

Physiology and Chronic Health Evaluation (APACHE) IV (green), and APACHE IVa (blue). The integrated version 

is shown on extreme right. For the confidence interval of AUROC, see Table S6 in Additional file 1.  

2C: Scatter plots of predicted mortality; APACHE IV vs. APACHE IVa (left), APACHE IV vs. our model (middle), 

and APACHE IVa vs. our model (right). Colors indicate actual mortality (green for ñALIVEò and red for 

ñEXPIREDò cases). For scatter plots of each subgroup, see Fig. S2 in Additional file 2.  

2D: Calibration plots for our model (left), APACHE IV (middle), and APACHE IVa (right). For the plot for each 

subgroup, see Fig. S3 in Additional file 2. 

 

Figure 3: Performance of our model against the model based on the imputation approach. 

3A: Receiver operating characteristic (ROC) curves for the four models, namely our model (red), Acute Physiology 

and Chronic Health Evaluation (APACHE) IV (green), APACHE IVa (blue), and imputation (orange). For the 

confidence interval of AUROC, see Table S7 in Additional file 1.  
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3B: Scatter plots of predicted mortality; imputation vs. APACHE IV (left), imputation vs. APACHE IVa (middle), 

and imputation vs. our model (right). Colors indicate actual mortality (green for ñALIVEò and red for ñEXPIREDò 

cases).  

3C: Calibration plots for the model based on the imputation approach. 

 

Figure 4: Performance in the non-sepsis group. 

4A: Schematic image for the result of subgrouping. The non-sepsis group was divided into seven subgroups, namely 

#1 (3703 cases), #2 (4112 cases), #3 (1414 cases), #4 (930 cases), #5 (9487 cases), #6 (786 cases), and #7 (2738 

cases). Colors indicate the information about missing cases. For example, cases in the subgroup #1 have no missing 

values for all variables except ñhospitaladmitoffsetò.  

4B: Receiver operating characteristic (ROC) curve for each subgroup using our model (red), Acute Physiology and 

Chronic Health Evaluation (APACHE) IV (green), and APACHE IVa (blue). The integrated version is shown on 
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extreme right with the result from the imputation approach. For the confidence interval of the area under the ROC 

(AUROC), see Table S8 in Additional file 1. 

 

File 

Name 
Variables Role Description 

apacheA

psVar.cs

v 

Patient unit  

stay id 
key A unique ID which represents a single patientôs admission to the ICU. 

intubated x 
Set to 0 when not populated; set to 1 when the patient is intubated at the time 

of the worst ABG result. 

vent x 
Set to 0 when not populated; set to 1 when the patient is ventilated at the time 

of the worst respiratory rate. 

dialysis x 
Set to 0 when not populated; set to 1 when it is indicated that the patient is on 

dialysis. 

eyes x 

Worst total score ranging from 1-4 with 15 as set point documented in 

neurologic section under GCS (Glascow coma scale) in the admission note or 

nursing flowsheet. 

motor x 

Worst total score ranging from 1-6 with 15 as set point documented in 

neurologic section under GCS (Glascow coma scale) in the admission note or 

nursing flowsheet. 

verbal x 

Worst total score ranging from 1-5 with 15 as set point documented in 

neurologic section under GCS (Glascow coma scale) in the admission note or 

nursing flowsheet. 

meds x 

Set to NULL when not populated; set to 1 when ñunable to score due to 

medsò is selected and no GCS score is available for the APACHE day; set to 

0 when ñunable to score due to medsò is not selected and a valid GCS score is 

set. 

urine x 

Total urine output (mL/day) during the first APACHE day with set point of 

3000 (mL/day). This value comes from the I&O section of the nursing flow 

sheet for the first 24 hours in the ICU following admission. 

WBC x Worst WBC from midpoint 11.5 1000/uL. 

temperature x Worst temperature from midpoint = 38° C. 

Respiratory 

rate 
x Worst respiratory rate (RR) from midpoint = 19 breaths/minute. 

sodium x Worst sodium level from midpoint 145 mEq/L. 

Heart rate x Worst heart rate from midpoint = 75 beats per minute. 

Mean BP x Worst mean blood pressure from midpoint = 90 mmHg. 

pH x Worst arterial blood gas (ABG) pH from midpoint 7.4. 

haematocrit x Worst hematocrit from midpoint 45.5%. 

Creatinine x Worst serum creatinine from midpoint 1.0 mg/dL. 

Albumin  x Worst serum albumin from midpoint 13.5 g/dL. 

pao2 x Worst arterial blood gas (ABG) PaO2 from midpoint 80 mm Hg. 

pco2 x Worst arterial blood gas (ABG) PaCO2 from midpoint 40 mm Hg. 

bun x Blood urea nitrogen (BUN): highest serum BUN (mg/dL). 

glucose x Worst glucose from midpoint 130 mg/dL. 

bilirubin  x Highest serum bilirubin (mg/dL) 

fio2 x 
Worst FiO2 from midpoint 21% documented in physician note, respiratory 

care flowsheet, or nursing flowsheet. 

 

 

patient unit  

stay id 
key A unique ID which represents a single patientôs admission to the ICU. 
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Apache 

Patient

Result.c

sv 

Apache score x Apache Score. Calculated from acutePhysiologyScore. 

Predicted icu 

mortality  

APA

CHE 
Predicted ICU Mortality from Apache API. 

Actual icu 

mortality  
y Actual ICU Mortality. 

Predictedicul

os 
x Predicted ICU Length of Stay from Apache API. 

Predicted 

hospital 

mortality  

APA

CHE 
Predicted Hospital Mortality from Apache API. 

Predicted 

hospitallos 
x Predicted Hospital Length of Stay from Apache API. 

preopmi x Indicates if patient has pre ïOperative Myocardial Infarction. 

preopcardiac

cath 
x Indicates if patient has pre ïOperative cardiac catheterization. 

Ptcawithin  

24h 
x Set to 1 if patient had PTCA with 24 hrs, otherwise 0. 

predventdays x Predicted ventilation days from Apache API. 

apacheP

redVar.

csv 

Patient 

unitstay id 
key A unique ID which represents a single patientôs admission to the ICU. 

gender x Female =1, Male = 0 , Not available =-1. 

teachtype x Set to default value of 0. 

bedcount x Bed count of the hospital. 

graftcount x 
Number selected for the patient when a CABG admission diagnosis is 

selected for the patient in eCare. Default is 3. 

age x Age in years. 

admitdiagnos

is 

classi

ficati

on 

Apache admission diagnosis code. 

thrombolytics x Set to 0 if patient doesnôt has thrombolytics otherwise 1. 

aids x Set to 0 if patient doesnôt has aids, otherwise 1. 

hepaticfailure x Set to 0 if patient doesnôt has hepatic failure, otherwise 1. 

lymphoma x Set to 0 if Patient doesnôt has lymphoma, otherwise 1. 

metastaticcan

cer 
x Set to 0 if patient doesnôt has metastaticCancer, otherwise 1. 

leukemia x Set to 0 if patient doesnôt has leukemia, otherwise 1. 

immunosupp

ression 
x Set to 0 if patient doesnôt has immunosuppression, otherwise 1. 

cirrhosis x Set to 0 if patient doesnôt has cirrhosis, otherwise 1. 

ima x 
Indicates if óInternal Mammary Artery Graftô field was selected in eCare or 

not for the patient. 

midur  x Indicates if patient had MI within 6 months. 

ventday1 x Indicates if patient was ventilated for the worst respiratory rate. 

oobventday1 x Indicates if patient was ventilated at anytime for the apache day. 

oobintubday1 x Indicates if patient was intubated at anytime for the apache day. 

diabetes x Set to 0 if Patient doesnôt has diabetes, otherwise 1. 

patient.c patientunitsta key A unique ID which represents a single patientôs admission to the ICU. 
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sv yid 

hospitalid key A surrogate key for the hospital associated with the patient unit stay. 

admissionhei

ght 
x Admission height of the patient in cm. 

hospitaladmit

offset 
x 

Number of minutes from unit admit time that the patient was admitted to the 

hospital. 

admissionwei

ght 
x Admission weight of the patient in kilograms. 

 

Table S1: Working dataset used in this study. The column on the left corresponds to file names, which can be 

downloaded from the eRI. We used 4 out of 31 files. The column in the middle shows the names of variables 

selected in this study. The column on the right indicates the role of variables in this study, where ñkeyò indicates the 

unique key used for merging each .csv file and ñxò and ñyò indicate explanatory and response variables for machine 

learning, respectively, Acute Physiology and Chronic Health Evaluation (APACHE) indicates predicting patient 

mortality using APACHE IV or IVa, which was used as a benchmark against our model, and ñclassificationò 

indicates the variable that is used to define the sepsis or non-sepsis group. 

 

Subgroup Mean Accracy ± S.D. 

#1 0.84830 ± 0.00884 

#2 0.83962 ± 0.01096 

#3 0.92446 ± 0.01465 

#4 0.87775 ± 0.01144 

#5 0.85261 ± 0.01268 

 

Table S2: Results from cross-validation for each subgroup from the sepsis group. 

 

Subgroup Mean Accracy ± S.D. 

#1 0.84441 ± 0.00513 

 

Table S3: Results from cross-validation for imputed data from the sepsis group. 

 

Subgroup Mean Accracy ± S.D. 

#1 0.87661 ± 0.00545 

#2 0.88288 ± 0.00636 

#3 0.93789 ± 0.00245 

#4 0.90255 ± 0.00457 

#5 0.93363 ± 0.00177 

#6 0.91173 ± 0.00542 

#7 0.89423 ± 0.00383 

 

Table S4: Results from cross-validation for each subgroup from the non-sepsis group. 
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Subgroup Mean Accracy ± S.D. 

#1 0.89924 ± 0.00171 

 

Table S5: Results from cross-validation for imputed data from the non-sepsis group. 

 

Subgroup Ours APACHE IV  APACHE IVa  

#1 0.922 [0.893, 0.952] 0.766 [0.714, 0.819] 0.758 [0.705, 0.811] 

#2 0.900 [0.871, 0.930] 0.768 [0.720, 0.816] 0.763 [0.715, 0.811] 

#3 0.834 [0.759, 0.909] 0.781 [0.684, 0.879] 0.792 [0.696, 0.888] 

#4 0.891 [0.858, 0.925] 0.804 [0.755, 0.853] 0.801 [0.751, 0.850] 

#5 0.962 [0.935, 0.989] 0.788 [0.720, 0.855] 0.792 [0.725, 0.859] 

Integrated 0.907 [0.891, 0.922] 0.789 [0.764, 0.814] 0.787 [0.762, 0.812] 

 

Table S6: Confidence interval of area under the receiver operating characteristic (AUROC) for each subgroup and 

the integrated version. 

 

Subgroup Ours APACHE IV  APACHE IVa  Imputation  

Integrated 0.907 [0.891, 0.922] 0.789 [0.764, 0.814] 0.787 [0.762, 0.812] 0.847 [0.828, 0.866] 

 

Table S7: Confidence interval of area under the receiver operating characteristic (AUROC) for all four models. 

 

Subgroup Ours APACHE IV  APACHE IVa  Imputation  

#1 0.896 [0.877, 0.914] 0.864 [0.840, 0.888] 0.869 [0.845, 0.892] - 

#2 0.901 [0.883, 0.919] 0.853 [0.828, 0.878] 0.853 [0.828, 0.878] - 

#3 0.953 [0.922, 0.985] 0.848 [0.790, 0.907] 0.855 [0.798, 0.912] - 

#4 0.910 [0.868, 0.953] 0.768 [0.697, 0.839] 0.774 [0.703, 0.845] - 

#5 0.877 [0.859, 0.895] 0.852 [0.829, 0.875] 0.860 [0.838, 0.883] - 

#6 0.956 [0.925, 0.988] 0.815 [0.747, 0.884] 0.820 [0.753, 0.888] - 

#7 0.885 [0.858, 0.912] 0.837 [0.801, 0.872] 0.844 [0.809, 0.879] - 

Integrated 0.898 [0.890, 0.907] 0.854 [0.842, 0.866] 0.859 [0.848, 0.871] 0.872 [0.863, 0.882] 

 

Table S8: Confidence interval of area under the receiver operating characteristic (AUROC) for each subgroup and 

the integrated version in the non-sepsis group. 
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4. Discussion 

The main objective of this work was to present a 

more accurate and clinically interpretable model for 

predicting patient mortality in the ICU and show the 

effectiveness and potential of the missing-event-

based prediction method. Our analysis of the eRI 

confirmed that the larger the database across 

hospitals, the more the heterogeneity (Figure 1a). 

This is known as the domain shift problem, where 

traditional models, including the APACHE system, 

developed in one geographical region or healthcare 

system lose their ability to discriminate when applied 

outside of learning data. The effect of prediction 

accuracy by volume and diversity of missing events 

clearly increases in big data. We demonstrated the 

advantage of using a missing-event-based method 

through comprehensive analysis and presented a 

more accurate and interpretable model than others. In 

the eRI database, missing events occurred depending 

on other missing events (Figure 1b). Thus, missing 

events were not random. Such cases would not be 

rare in big data because the larger the dataset, the 

more complex the missing events. If missing event 

was not regarded ñmissing at random,ò the simple 

imputation of missing values would not be 

appropriate [25]. For example, Meiring et al. 

developed an algorithm to predict mortality over time 

in the ICU using CCHIC (a UK database) [20]. They 

imputed missing values using predictive mean 

matching through parallel implementation of multiple 

imputation by chained equations [26]. In this report, 

the discriminative power of the APACHE II score to 

predict outcomes on subsequent days reduced 

considerably. Moreover, Meiring et al. indicated that 

the longer the ICU stay, the smaller the size of the 

dataset, and therefore, an increase in the proportion 

of missing values. Thus, the weight of missing values 

impaired the accuracy of prediction. Handling 

missing values is important to generate a powerful 

model workable on complex clinical courses. Thus, 

our missing-event-based method is reasonable. 

Because the subgrouping pattern in this study was 

humanly impossible to detect, although easy to 

understand, our subgrouping algorithm could be the 

new de facto standard of database prescreening when 

constructing an accurate and interpretable model 

through machine learning using big data, including 

missing values. Our subgrouping algorithm can 

recognize missing events as an ñinformative 

missingnessò instead of a dirty record, which big data 

cannot avoid including. For constructing the model 

based on the random forest algorithm, we selected 53 

variables as explanatory variables so that they were 

closely related to the APACHE system. This 

selection is an important aspect of the interpretability 

of our model because the APACHE system consists 

of clinically used variables. This feature is quite 

important because the interpretable model addresses 

the problem of the ñblack boxò, which has hindered 

the use of this model as a clinical tool [27-29]. Given 

that our model greatly outperformed the APACHE 

system, it can be considered a developed version of 

the APACHE system, which detects the presence of 

more complex interactions between covariates, 

leading to optimization both of clinical usability and 

discrimination ability. As tested with the non-sepsis 

group, our method is applicable to other cases, 

indicating that it may not depend on diagnoses in the 

ICU.  

 

Under intensive care conditions, avoiding the 

occurrence of missing events is a challenge; 

therefore, our method can be useful in the clinic. 

Distinguish a generalizable method from a 
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generalizable predictive model for clinical 

applications of machine learning is important. This 

study shows availability of subgrouping based on 

missing events as a generalizable method and 

production of a promising predictor model as a 

clinical decision support tool. 

 

5. Conclusion 

We developed a method to predict patient mortality 

based on information on missing events. This method 

more accurately predicted patient mortality than 

others, while maintaining clinical interpretability. 

Our results indicate that the subgrouping process is 

important and effective for machine learning against 

patient heterogeneity. By combining our method with 

other methods, such as the reinforcement learning, a 

more realistic Artificial Intelligence clinician can be 

developed 
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Figure S1: Flowchart for generating subgroups. 

The blue box at the top indicates the starting point of the flowchart. Subgroups for the sepsis or non-sepsis group are 

generated by following steps of the flowchart. The set P is the defined patient list (P = 4226 for the sepsis group and 

P = 23170 for the non-sepsis group). V is the set of explanatory variables (i.e., the size of the V is 53). Nmin and Nmax 

are set at 500 and 2000, respectively, for the sepsis group and 500 and 10000, respectively, for the non-sepsis group. 

2
V
 denotes the power set of set V. Vdj

c
 denotes the complementary subset for Vdj. n(A) denotes the size of set A. 
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Figure S2: Scatter plot for the predicted mortality of each subgroup. 

 

Scatter plots for predicted mortality; Acute Physiology and Chronic Health Evaluation (APACHE) IV vs. APACHE 

IVa (left column), APACHE IV vs. our model (middle column), and APACHE IVa vs. our model (right column). 

Colors indicate actual mortality (green for ñALIVEò and red for ñEXPIREDò cases). 


