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system, one of the best knovanedictors of patient
mortality, and the imputation approabhsed model.
Results  Subgrouping and patient mortality
predictiors were separately performed on two
groups: the sepsis group (the ICU admission
diagnosis of which is sepsis) and the +s@psis
group (a complementary subset of the sepsis group).
The subgrouping algorithm identified a unique,
clinically interpretable missing event patterns and
divided the sepsis and n@epsis groups into five and
seven subgroups, respectively. The integratedemmod
which comprises five models for the sepsis group or
seven models for the nesepsis group, greatly
outperformed the APACHE IV or IVa, with an area
under the receiver operating characteristic (AUROC)
of 0.91 (95% 0i8292)
comparedwith 0.79 (0.760.81) for the APACHE
system in the sepsis group and an AUROC of 0.90
(0.890.91) compared with 0.86 (0.83.87) in the

nonsepsis group. Moreover, our model outperformed

confidence interval

the imputation approaehased model, which had an
AUROC of 0.85 (0.880.87) and 0.87 (0.8®.88) in
the sepsis and nesepsis groups, respectively.

Conclusions We developed a method to predict
patient mortality based on missing event patterns.
Our

mortality than others. Our resultsndicate that

method more accurately predicts patient
subgrouping, based on missing event patterns, instead
of imputation is essential and effective for machine

learning against patient heterogeneity.

Trial registration

Not applicable.
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1. Background
Accurate prognostication is central to medicine [1]
and at the heart of clinical decisiomaking. Sepsis is

a systemic response to infection, with the highest
mortality rate in the field of intensive care. For nearly

a decade, sepsislatel mortality hasremained at
20%-30%, with unsatisfactory improvements [2].
Prognosis remains a challenge for physicians because
of the high heterogeneity of clinical phenotypes [3].
Because accurate diagnoses can improve the
physi ci anniaking dbdities, & is oarof the
essencedor medical practice of sepsis to improve
prognosis accuracy [4Most large prognostic studies
have developed clinical scoring systems for objective
risk stratification in the early phase of hospital
admission using physiological measments,
medical history, and demographics to predict the
likelihood of survival [5]. Among these scoring
systems, Acute Physiology and Chronic Health
Evaluation (APACHE) scoring [6] is one of the best
known, which has been validated for application at
apprximately 24 h after intensive care unit (ICU)
admission. The APACHE scoring system generates a
point score based on worst values of 12 variables
during the initial 24 h after ICU admission. The
APACHE Il score was published in 1985 [5];
APACHE IV and IVa ae the latest versions [7]. Built
on the study of a more recent patient population and
APACHE IV or

recommended as scoring systems over APACHE I

standarebf-care, IVa are

and lll. However, these indicators lack the precision
required for use at the inddial level. Therefore,

efforts have been made to increase the performance
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of these indicators through the use of computational
techniques, such as machine learningachine
learning classifiers may be advantageous for outcome
prediction because they cannkiée large numbers of
variables and learn notinearities [89]. Random
forest is an example of modern machine learning
algorithms [10]. Machine learning requires large
volumes of data and generating a complex model.
However, the increasing availability aflectronic
health

implementing the models possible. The availabof

records has made constructing and
large training sets [112] has made investigation of
such approaches feasible. Studies on the application
of machine learning to intensive care dats have
been performed [£31]. Traditional scoring systems
were outperformed by machine learning approaches
in mortality prediction in medical ICUs. However,
the algorithms are not clearly described and the
produced models or databases are available
commercially. The Philips elCU Research Institute
(eRI) is a norprofit institute established by Phillips
that is governed by customers [22]. This freely
accessible critical care dataset spans more than a
decade and contains detailed information about

individual patient care, including tirrsgamped,

nurseverified physiological measurements. As a
distinctive feature, datasets are donated by >400,
including teaching and neteaching,
the eRI,

according to clinical ategories,

hospitals.
However, which comprises 31 files
includes much
missing data. This makes the application of machine
learning with eRI challengingln this study, we
revealed unique characteristics of the distribution of
missing values in the eRIl database. By taking
advantage of this charactdits we successfully
developed a more accurate and interpretable model

against the APACHE system. Accurate prediction of
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patient state is critical in the critical care field. To

address this probl esmventwe

based pr edi ethdd donpredlictiag IQUe w
mortality.

2. Methods

2.1 Dataset used in this study

We used the eRI

(https://www.usa.philips.com/healthcare/solutions/ent
erprisetelehealth/eri) database, which is an open
database and provides anonymous data, including
demographic information, vital signs measurements,
laboratory test results, drug information, procetlura
information, fluid balance reports, hospital length of
stay data, and data on-lrospital mortality, donated
by >400 member institutions. The eRI contains data
associated with 200859 ICU admissions with more
than 100 variables. In this study, we -cargfull
selected 58 clinically important variables to construct
a model, which is easy to interpret clinically.
Selected variables are summarized in Table S1 (see
Additional file 1). Briefly, the variables were as
follows: (I) Listed from laboratory measurements
including white blood cell count, hematocrit,
bilirubin, creatinine, sodium, albumin, blood urea
nitrogen, glucose, arterial pH, fraction of inspired
oxygen, arterial oxygen pressure, and arterial blood
carbon dioxide pressure. (II) Listed from routine
charted data, including temperature, respiratory rate,
heart rate, mean arterial blood pressure, urine output,
and Glasgow Coma Scale (including score for eye,
motor, and verbal responses). (lll) Listed from
information taken at the time of ICU admission,
including age, gender, height, weight, time from
hospitalization to ICU admission, type of hospital,
bed count of the hospital, hospital ID, and diagnoses
(IV) Comorbidities,

names at ICU admission.
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including myocardial infarction within 6 months,
diabeteshepatic failure, dialysis, immunosuppressive
disease, lymphoma, leukemia, metastatic cancer,
cirrhosis, acquired immune deficiency syndrome, and
history of intubation and mechanical ventilation.
Intervention required at admission, including catheter
intervention for myocardial infarction, coronary
artery bypass grafting with or without internal
thoracic artery grafts, and use of thrombolytics. (V)
APACHE scoring system, including not only the
APACHE score but also actual ICU andhaspital
mortality, predcted ICU and ishospital mortality,
length of ICU stay, length of hospital stay, and
ventilation duration. Among these variables,
diagnoses names at ICU admission were used to
define the sepsis or neepsis group (see the
Definition of sepsis and nesefsis groups in
Methods section for details), actual ICU and in
hospital mortality were used as response variables to
construct the models, predicted ICU anéhospital
mortality using the APACHE IV or IVa were used as
benchmarks against our model, and hg53
parameters in total) were used as explanatory

variables for machine learning.

2.2 Definition of sepsis and norsepsis groups

Inclusion criteria for the sepsis group were as
follows: (I) extraction by diagnoses names at ICU
admi ssi on,
AfSepsi s, Gl , 0 fASepsi s,
ASepsi s,
bl adder), o

documentation of prognosis; and (lll) exclusion by

pul monary, 0
and ASepsi s,
cases with any missingata in Acute Physiology
(APSYelated

information. Inclusion criteria for the nesepsis

Score variables and prognosis

ASeprsatsi, o

u sarken o hetweea

DOI: 10.26502/acbr.50170168

sepsis group. Briefly, the complementary subset of (1)
was first selected. Then, Jland (111) were applied to

the resulting subset. Thus, 4226 and 23170 cases
were defined as sepsis and rsmpsis groups,

respectively. To reproduce our results and access
the jupyter
https://github.com/tatsumashoji/ICU/1_the sepsis_gr

patient lists, follow notebook at

oup_and_non_sepsis_group.ipynb

2.3 Subgrouping based on missing data

Subgroups were defined according to the diagram
shown in Fig. S1 (see Addnal file 2). Briefly, ()
patient lists, containing no missing data for any
pattern of 52 variables (derived from 53 variables)
were first generated. Then, (Il) the patient list, which
had a size not too small and not too large among 53
lists, was defiad as subgroup #1. For the other
subgroups, we repeated (1) and (ll) with the other

patients. To reproduce this subgrouping, follow the

jupyter notebook opened at
https://github.com/tatsumashoji/ICU/2_subgrouping_
sepsis.ipynb  for the sepsis group and

https//github.com/tatsumashoji/ICU/3_subgrouping_

non_sepsis.ipynb for the naepsis group.

2.4 Generation and performance of our model
To construct the model for each group, we used the

random forest classi f+4 er

nanmeutyaneédepgséisslfetar ni g Du xjdily, W brst $e@e 80%

(hé 1 Jwo s ddtasetst i Aftar

hyperparameters for the random forest were

determined using the grid search algorithing, &ctual

model was generated, and the mean and standard

deviation of accuracy were checked througfolfl

group were almost the same as the one used for the crossvalidation (see Table S35 in Additional file
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1). Finally, patient mortalities in the test dataset were
predicted by the generated model aminpared to
those from APACHE IV or IVa by drawing receiver
operating characteristic (ROC) curves and calculating
the area under the ROC (AUROC). The confidence
intervals for the AUROC were calculated as
described [24]. For calibration plots, we used the
mod ul e
results in figure2 can be reproduced by running
Ahttps:
ction.ipynb. o
2.5Imputation of missing values

For imputation of missing values, we used
multivariateimputation algorithms implemented with

Askl earn. i mput e.
entire set of available feature dimensions to estimate
missing values. We used the 0.24.1 version of scikit

learn. To reproduce results shownfigure 3, follow

the upyter

https://github.com/tatsumashoji/ICU/5_imputation.ip

notebook opened at

ynb.

3. Results

3.1Heterogeneity of the sepsis group
Machine learning fails to predict the outcomes if
input data consist of more than two populations.
Subgrouping of input datais essential before
constructing the model using machine learning.
Therefore, we first investigated the distribution of
each parameter in the s&pgroup. The histogram in
Figure 1a shows the distribution of some variables
recorded in
variables used to calculate the Acute Physiology
Score (APS) Il for patients. More than two peaks
were observed, the

indicating necessity for

subgrouping theepsis group. Importantly, cases with
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missing data on any variable are excluded frtwn t
histograms in Figurela. Thus, to examine how
missing values were distributed in the sepsis group,
correlation coefficients were calculated for all
possible combinatianof two variables after missing
data were replackwith 0 and others with 1 (Figure

1b). Surprisingly, perfect correlations were observed

Aiskl earnticahi dumry ¢ oidsomkdpairs bnraddition to the diagonal line. This

suggests that missing events occur depending on

/1 github. com/ t at s u rothes mmissing etnts.Clihically, thig qgarshe explained d i

by different histories and backgrounds in the sepsis
group. Thus, missing events contain information and

may play an important role in subgrouping the sepsis

group.

I'terati vel3mplachieerleating wdmbiciny misssigevent t h e

based subgrouping
APACHE

The unique distribution of missing values in the

approach  outperforms

sepsis group led us to divide the group before
machine learning. To account for the pattern of
missing events when dividing the sepsis group, we
defined subgroupsuch that each subgroup had the
same missing pattern while the number of subgroups
could as small as possible and the size of each
subgroup cold be as large as possible (Figwta).

For details, see the Methods section. After defining
five subgroups, we anstructed models for each
subgroup based on the random forest algorithm and
calculated patient mortality. Then, we assessed the
performance of each model by calculating AUROC
and compared them to those frame tAPACHE IV or

fiapacheApsVar |Vasystam (Figuweh). Our meedautpesformed the h e

APACHE systems,

subgroups.

especially when integrating

Moreover, our model was more

successful that APACHE in distinishing patient

mortality (Figure 2c). Furthermore, results from
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calibration plots supported the ability of our model t
predict patientmortality (Figure 2d). Our model
tends to output patient mortality higher than actual,
whereas the APACHE system does not, indicating
t hat the APACHE

mortality.

system

3.3 Comparison with the imputation approach
A typical way of handling missing data is to impute
them. Therefore, we constructed the model
completely sam as the way taken in Figugeafter
imputing the dataset first, then compared to our
model. Although the performance when imputed was
slightly highe than the APACHE systems, it still
lower than our
that

information and our method, which accounts for the

remaned method (Figur8a),

indicating missing events are important

The

imputation approach outperformsethpproach of the

pattern of missing events, is reasonable.
APACHE system but does perform as well as our
model, as confirmed using the scatter plot (Fég

3b). Our model distinguished patient mortality most
precisely among all four models. Moreover, analyses

of calibration plots supported thegsyvation that our

model is the most conservative, and thus, safer,

DOI: 10.26502/acbr.50170168

imputation approachFigure 4b). Surprisingly, the
distribution of missing values in the ngepsis group
was almost the same as that in the sepsis group,
indicating that our subgrouping algorithm could be
u mispck foreasyt groupairt agldition toathei sepsis graup,
and the performance of our model was the highest
among all four models. Scatter plots and calibration
plots also supported our model (Figure4, S5, se
Additional file 2). These results strongly suggest that

because the model based on the imputation approach

estimated lower patient mortglicompared with our

model (Figure3c).

3.4 Application to the non-sepsis group
To test the generalizaltif of our model, we applied

our method to the nesepsis group defined in the

Methods section. We first generated seven subgroups

using the same algorithmsed for the sepsis group
(Figure 4a) and constructed models for each
subgroup. Then, we comparee therformance of the

four models, namely our model, APACHE 1V,
APACHE

IVa, and the model based on the

Archives of Clinical and Biomedical Research

missing events themselves are essential when
predicting patient mortality in the ICU.
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Figure 1: Distribution of Acute Physiology Score (ARB)lated variables.

1A: The distribution of APSelated variables in the sepsis group.

1B: Joint matrix for checking the missing values. Correlation coefficients in some combinations were picked up and
visualized using the heatmap where higher coefficients were lighter andiene darker.
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Figure 2: The performance of our model.
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2A: Schematic of subgrouping results. The sepsis group was divided into five subgroups, namely subgroup #1 (884

cases), #2 (1037 cases), #3 (509 cases), #4 (1230 cases), and #5 (566 cases). Colors indicate information about

missing values. For example, casés subgroup #1 have no missing values for all variables except

Ahospital admitoffseto.
2B: Receiver operating characteristR@C) curves for each subgroup produced using our model (Aed}e
Physiology and Chronic Health EvaluatihPACHE) IV (green)and APACHE IVa (blue). The integrated version
is shown on extreme right. For the confidence interval of AUROC, see Table S6 in Additional file 1.

2C: Scatter plots of predicted mortality; APACHE IV vs. APACHE IVa (left), APACHE IV vs. our model (middle),

and APACHE IVa vs. our model (right). Colors indicate actual mortality (greenfoL | V E 0

fiE X P I

REDO

cases) .

For

scatter

pl ot s

of

each

and r ed

subgroup,

2D: Calibration plots for our model (left), APACHE IV (middle)pch APACHE IVa (right). For the plot for each
subgroup, see Fig. S3 in Additional file 2.
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Figure 3: Performance of our model against the model based on the imputation approach.

3A: Receiver operating characteristR@C) curves for the four models, namely our model (r&diite Physiology
and Chronic Health EvaluatiofAPACHE) IV (green), APACHE IVa (blue), and imputation (orange). For the

confidence interval of AUROC, see Table S7 in Additional file 1.
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3B: Scatter fots of predicted mortality; imputation vs. APACHE IV (left), imputation vs. APACHE IVa (middle),
and imputation vs. our model (right). Colors indicate actual mortality (gredirfarl VEO anfEXPERED® r
cases).

3C: Calibration plots for the modebled on the imputation approach.
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Figure 4: Performance in the nesepsis group.

4A: Schematic image for the result of subgrouping. Thesepsis group was divided into seven subgroups, namely

#1 (3703 cases), #2 (4112 cases), #3 (1414 cases), #4£498¢), #5 (9487 cases), #6 (786 cases), and #7 (2738
cases). Colors indicate the information about missing cases. For example, cases in the subgroup #1 have no missing
values for all variables except fAhospitaladmitoffseto.
4B: Receiver operating charagsgic (ROC) curve for each subgroup using our model (r&djte Physiology and

Chronic Health EvaluatioQAPACHE) IV (green), and APACHE IVa (blue). The integrated version is shown on
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extreme right with the result from the imputation approach. For thédemce interval of the area under the ROC

DOI: 10.26502/acbr.50170168

(AUROC), see Table S8 in Additional file 1.

File

Name Variables Role Description
Patient unit . .
stayid key |A unique I D which represents a s
. Setto 0 when not populated; set to 1 when the patient is intubated at the
intubated X
of the worst ABG result.
Set to 0 when not populated; set to 1 when the patient is ventilated at thq
vent X :
of the worst respiratory rate.
. . Set to 0 when nqgtopulated; set to 1 when it is indicated that the patient ig
dialysis X di .
ialysis.
Worst total score ranging from4lwith 15 as set point documented in
eyes X neurologic section under GCS (Glascow coma scale) in the admission n
nursing flowsheet.
Worst total score ranging from@ with 15 as set point documented in
motor X neurologic section under GCS (Glascow coma scale) in the admission n
nursing flowsheet.
Worst total score ranging from8.with 15 as set point documented in
verbal X neurologicsection under GCS (Glascow coma scale) in the admission no|
nursing flowsheet.
Set to NULL when not popul ated;
meds X medso is selected and no GCS sco
0 when fsucnoarbed ed ueo t o medsd is not
set.
apacheA Total urine output (mL/day) during the first APACHE day with set point o
psVar.cs urine X 3000 (mL/day). This value comes from the 1&0 section of the nursing flo
Vv sheet for the first 24 hours the ICU following admission.
WBC Worst WBC from midpoint 11.5 1000/uL.
temperature X Worst temperature from midpoint = 38° C.
gizpwatory X Worst respiratory rate (RR) from midpoint = 19 breaths/minute.
sodium X Worst sodium level from midpoint 145 mEq/L.
Heart rate X Worst heart rate from midpoint = 75 beats per minute.
MeanBP X Worst mean blood pressure from midpoint = 90 mmHg.
pH X Worst arterial blood gas (ABG) pH from midpoint 7.4.
haematocrit X Worst hematocrit from midpoint 45.5%.
Creatinine X Worst serum creatinine from midpoint 1.0 mg/dL.
Albumin X Worst serum albumin from midpoint 13.5 g/dL.
pao, X Worst arterial blood gas (ABG) PaO2 from midpoint 80 mm Hg.
pco; X Worst arterial bloodjas (ABG) PaCO2 from midpoint 40 mm Hg.
bun X Blood urea nitrogen (BUN): highest serum BUN (mg/dL).
glucose X Worst glucose from midpoint 130 mg/dL.
bilirubin X Highest serum bilirubin (mg/dL)
fio X Worst FiO2 from midpoint 21% documentedphysician note, respiratory
2 care flowsheet, or nursing flowsheet.
patient unit . .
stayid key |A unique I D which represents a s
Archives of Clinical and Biomedical Research Vol. 5No.37 June 202L. [ SN 2572-9292]. 3%
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Apache | Apachescore X Apache Score. Calculated fraasutePhysiologyScore.
Patient
Result.c | Predictedicu | APA . .
v mortality CHE Predicted ICU Mortality from Apache API.
Actual icu .
mortality y Actual ICU Mortality.
E;ed'CtEd'CUI X Predicted ICU Length of Stay from Apache API.
Predicted APA
hospital CHE PredictedHospital Mortality from Apache API.
mortality
Pred|_cted X Predicted Hospital Length of Stay from Apache API.
hospitallos
preopmi X Indicates if patient has pi@©perative Myocardial Infarction.
E;?ﬁ peardiac X Indicates if patient has pi®perativecardiac catheterization.
gt4chawnh|n X Set to 1 if patient had PTCA with 24 hrs, otherwise O.
predventdays X Predicted ventilation days from Apache API.
Patient . . .
unitstay id key |A unique | D which r egmissianéorthe KU.a s
gender Female =1, Male = 0, Not availablel=
teachtype Set to default value of 0.
bedcount Bed count of the hospital.
raftcount X Number selected for the patient when a CABG admission diagnosis is
9 selected for the patient in eCare. Default is 3.
age X Age in years.
admitdiagnos classi
is 9 ficati | Apache admission diagnosis code.
on
thrombolytics X Set to 0 if thrambolgicsothedwsels n 6t has
aids X Set to O if patient doesnébét has
apacheP | hepaticfailure X Set to O if patient doesndét has
::est\j/Var. lymphoma X Set to O if Patient doesndt has
(r?eertastatlccan X Set to O if patient doesndét has
leukemia X Set to O if patient doesn6t has
Immunosupp X Set to O if patient doesnét has
ression
cirrhosis X Set to O if patient doesnédét has
. I ndicates if o6l nternal Ma mmary A
ima X .
not for the patient.
midur X Indicates if patient had MI within 6 months.
ventdayl X Indicates if patient wagentilated for the worst respiratory rate.
oobventday1l X Indicates if patient was ventilated at anytime for the apache day.
oobintubday1 X Indicates if patient was intubated at anytime for the apache day.
diabetes X Set to 0 i f Habetéseothdarwise b.esnodt has
patient.c | patientunitsta | key |A uni qgue | D which represents a s
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5 yid
hospitalid key | A surrogate key for the hospital associated with the patient unit stay.
gﬁ{nissionhei X Admission heighof the patient in cm.
hospitaladmit x Numper of minutes from unit admit time that the patient was admitted to
offset hospital.
gﬂ{nissionwei X Admission weight of the patient in kilograms.

Table S Working dataset used in this studyhe column on the left corresponds to file names, which can be
downloaded from the eRI. We used 4 out of 31 files. The column in the middle shows the names of variables
selected in this study. The column on the right indicates the role of variablesstuthiswherdk ey 0 i ndi cat es
unique key used for merging each .csvfileiwdd #&md i ndi cate explanatory and res
learning, respectivelyAcute Physiology and Chronic Health EvaluatihPACHE) indicates predicting patien

mortality using APACHE IV or IVa, which was used as a benchmark against our modefclassificatio

indicates the variable that is used to define the sepsis eseqpsis group.

Subgroup Mean Accracy + S.D.
#1 0.84830 + 0.00884
#2 0.83962 #0.01096
#3 0.92446 + 0.01465
#4 0.87775 + 0.01144
#5 0.85261 + 0.01268

Table S2 Results from crosgalidation for each subgroup from the sepsis group.

Subgroup Mean Accracy + S.D.

#1 0.84441 + 0.00513

Table S3:Results from crosgalidation for imputed data from the sepsis group.

Subgroup Mean Accracy + S.D.
#1 0.87661 + 0.00545
#2 0.88288 + 0.00636
#3 0.93789 + 0.00245
#4 0.90255 + 0.00457
#5 0.93363 + 0.00177
#6 0.91173 + 0.00542
#7 0.89423 + 0.00383

Table S4:Results from crossgalidation for each subgroup from the reepsis group.
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Subgroup

Mean Accracy + S.D.

0.89924 + 0.00171

Table S5:Results from crosgalidation for imputed data from the ngepsis group.

Subgroup

Ours

APACHE IV

APACHE IVa

#1

0.922[0.893, 0.952]

0.766 [0.714, 0.819]

0.758 [0.705, 0.811]

#2

0.900 [0.871, 0.930]

0.768 [0.720, 0.816]

0.763 [0.715, 0.811]

#3

0.834 [0.759, 0.909]

0.781 [0.684, 0.879]

0.792 [0.696, 0.888]

#4

0.891 [0.858, 0.925]

0.804 [0.755, 0.853]

0.801[0.751, 0.850]

#5

0.962 [0.935, 0.989]

0.788 [0.720, 0.855]

0.792[0.725, 0.859]

Integrated

0.907 [0.891, 0.922]

0.789 [0.764, 0.814]

0.787 [0.762, 0.812]

Table S6. Confidence interval of area under the receiver operating characteristic (AURO&3cfoisubgroup and

the integrated version.

Subgroup Ours

APACHE IV

APACHE IVa

Imputation

Integrated

0.907 [0.891, 0.922]

0.789 [0.764, 0.814]

0.787[0.762, 0.812]

0.847 [0.828, 0.866]

Table S7 Confidence interval of area under the receiver operating characteristic (AUROC) for all four models.

Subgroup

Ours

APACHE IV

APACHE IVa

Imputation

#1

0.896 [0.877, 0.914]

0.864 [0.840, 0.888]

0.869 [0.845, 0.892]

#2

0.901 [0.883, 0.919]

0.853[0.8280.878]

0.853 [0.828, 0.878]

#3

0.953[0.922, 0.985]

0.848 [0.790, 0.907]

0.855 [0.798, 0.912]

#4

0.910 [0.868, 0.953]

0.768 [0.697, 0.839]

0.774 [0.703, 0.845]

#5

0.877 [0.8509, 0.895]

0.852[0.829, 0.875]

0.860 [0.838, 0.883]

#6

0.956 [0.9250.988]

0.815 [0.747, 0.884]

0.820 [0.753, 0.888]

#7

0.885 [0.858, 0.912]

0.837 [0.801, 0.872]

0.844 [0.809, 0.879]

Integrated

0.898 [0.890, 0.907]

0.854 [0.842, 0.866]

0.859 [0.848, 0.871]

0.872 [0.863, 0.882]

Table S8 Confidence interval of areander the receiver operating characteristic (AUROC) for each subgroup and

the integrated version in the ngepsis group.
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4. Discussion

The main objective of this work was to present a
more accurate and clinically interpretable model for
predicting patient mortality in the ICU and show the
effectiveness and potential of the missagent
based prediction method. Our analysis of the eRI
corfirmed that the larger the database across
hospitals, the more the heterogeneity (Fegla).
This is known as the domain shift problem, where
traditional models, including the APACHE system,
developed in one geographical region or healthcare
system loselteir ability to discriminate when applied
outside of learning data. The effect of prediction
accuracy by volume and diversity of missing events
clearly increases in big data. We demonstrated the
advantage of using a missiegentbased method
through compehensive analysis and presented a
more accurate and interpretable model than others.

DOI: 10.26502/acbr.50170168

impaired the accuracy of prediction. Handling
missing values is important to generate a powerful
model workable on complex clinical courses. Thus,
our missingeventbased method is reasonable.
Because the subgrouping pattern in thisdgt was
humanly impossible to detect, although easy to
understand, our subgrouping algorithm could be the
new de facto standard of database prescreening when
constructing an accurate and interpretable model
through machine learning using big data, inclgdin
missing values. Our subgrouping algorithm can
ng
nstead

recogni ze mi s si
mi ssingnesso i
cannot avoid includingFor constructing the model
based on the random forest algorithm, we selected 53
varisbles as explanatory variables so that they were
related to the APACHE system. This

selection is an important aspect of the interpretability

closely

the eRI database, missing events occurred depending Of our model because the APACHE system consists

on other missing events (kigg 1b). Thus, missing

events were not random. Such cases would not be
rare in big datébecause the larger the dataset, the
more complex the missing events. If missing event
not

wa s regarded

imputation of missing values would not be

appropriate [25]. For example, Meiring et al.
developed an algorithm to prediobrtality over time

in the ICU using CCHIC (a UK database) [20]. They
imputed missing values using predictive mean
matching through parallel implementation of multiple
imputation by chained equations [26]. In this report,
the discriminative power of theACHE Il score to
predict outcomes on subsequent days reduced
considerably. Moreover, Meiring et al. indicated that
the longer the ICU stay, the smaller the size of the
dataset, and therefore, an increase in the proportion

of missing values. Thus, the whigof missing values

Archives of Clinical and Biomedical Research
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of clinically used variables. This feature is quite
importart because the interpretable model addresses
t he the fibl

the use of this model as a clinical tool {29]. Given

problem of

Aimi ssi n gthataour mpdglinggeativhougperfermed the ARAGHEe

system, it can be considered a developed version of
the APACHE system, which detects the presence of
more complex interactions between covariates,
leading to optimization both of clinical usability and
discrimination ability.As tested with the nesepsis
group, our method is applicable to other cases,
indicating that it may not depend on diagnoses in the
ICU.
Under

intensive care conditions, avoiding the

occurrence of missing events is a challenge;
therefore, our method cabe useful in the clinic.
from a

Distinguish a generalizable method
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generalizable predictive model for clinical

applications of machine learning is important. This
study shows availability of subgrouping based on
missing events as a generalizable method and
production of a promising predictor model as a

clinical decision support tool.

5. Conclusion

We developed a method to predict patient mortality
based on information on missing events. This method
more accurately predicted patient mortality than
others, vhile maintaining clinical interpretability.
Our results indicate that the subgrouping process is
important and effective for machine learning against
patient heterogeneity. By combining our method with
other methods, such as the reinforcement learning, a
more realistic Artificial Intelligence clinician can be

developed
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P : Subset of selected patients.
¥ : Subsets of selected variables.
X, : The value of variable v € Vin patient p € P

i =1 (index for subgroup)

V=V

& ! (depth for search space)

il - V.= { 2", where n(s)=d }

Jj= 1 (index for §,)
A 4

V= ¥y

j=1 ¥,y j th element in ¥, i+=1

v

P;= {p € P, where ¥v € V", X, # NaN} (Go to next subgroup)

if Noin S 0(P)) S N

No appropriate model
for the last subgroup.

Figure S1 Flowchartfor generating subgroups.

The blue box at the top indicates the starting point of the flowchart. Subgroups for the sepsisapsiggroup are
generated by following steps of the flowchart. ThePsistthe defined patient lisP(= 4226 for the sepsis group and
P = 23170 for the nossepsis group)V is the set of explanatory variables (i.e., the size o¥tl#e53). Ny, and Nyax
are set at 500 and 2000, respectively, for the sepsis group and 500 and 10000, respectivehgricefiss group.
2 denotes the power set of 8£tVy© denotes the complementary subsetVgrn(A) denotes the size of sat
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Figure S2: Scatter plot for the predicted mortality of each subgroup.
Scatter plots for predicted mortalitfcute Physiology and Chronic Health Evaluat{@&#ACHE) IV vs. APACHE

IVa (left column), APACHE IV vs. our model (middle column), and APACHE IVa vs. our model (right column).

Colors indicate actual mortality (greenftk L1 VEO anmEXPleRED®rcases) .
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