
Research Article 

Volume 6 • Issue 3 68 

Prediction of Ovarian Cancer Survival using Machine Learning: A 
Population-Based Study
Munetoshi Akazawa*, Kazunori Hashimoto

Affiliation:
Department of Obstetrics and Gynecology, Tokyo 
Women's Medical University Adachi Medical 
Center, Adachi-ku, Kohoku 2-1-10, Tokyo, Japan

*Corresponding Author  
Munetoshi Akazawa, Department of Obstetrics 
and Gynecology, Tokyo Women's Medical 
University Adachi Medical Center, Adachi-ku, 
Kohoku 2-1-10, Tokyo, Japan.

Citation: Munetoshi Akazawa, Kazunori 
Hashimoto. Prediction of Ovarian Cancer 
Survival using Machine Learning: A Population-
Based Study. Journal of Women’s Health and 
Development 6 (2023): 68-74.

Received: July 20, 2023 
Accepted: July 24, 2023 
Published: August 04, 2023

Abstract
Objective: Accurate prediction could lead to risk stratification of patients 
and can be used as a decision-making tool for adjuvant chemotherapy. 
This study aimed to predict the prognosis of ovarian cancer using machine 
learning models.

Materials and Methods: We included patients with epithelial ovarian 
cancer between 2004 and 2019 extracted from Surveillance, Epidemiology, 
and End Results (SEER) database. We predicted the 5-year overall survival 
of patients using 12 clinic-pathological variables. Two machine learning 
models including gradient boosting machine (XGBoost) and artificial 
neural network were compared with traditional logistic regression. After 
5-fold cross validation, we evaluated the model performance using 
classification accuracy and area under the curve (AUC) of the receiver 
operation curve. The importance of the variables in the construction of the 
prediction models was evaluated. 

Results: A total of 18,438 patients were included in the study. Among 
three prediction models, XGBoost exhibited the best performance, 
followed by artificial neural network and logistic regression. XGBoost 
achieved a class accuracy of 0.809 (95%CI: 0.807–0.810) and AUC of 
0.808 (95%CI: 0.806–0.809). The class accuracy and AUC were 0.802 
(95%CI: 0.794–0.809) and 0.797 (95%CI: 0.784–0.808) in artificial neural 
network, 0.791 (95%CI: 0.787–0.794) and 0.784 (95%CI: 0.780–0.786) in 
logistic regression, respectively. In the XGBoost model, the most important 
variables were “summary stage,” followed by “year of diagnosis” and “M 
classification”.

Conclusion: Using machine learning, we were able to predict the prognosis 
of ovarian cancer. The machine learning model showed better prediction 
performance than the logistic regression models. 

Keywords: Machine learning; Ovarian cancer; Prediction; Prognosis; 
Overall survival

Introduction
Ovarian cancer is the second most common gynecologic malignancy, 

the most common cause of gynecologic cancer death in the United States, 
and the fourth leading cause of cancer-related deaths in women [1-2]. The 
majority of ovarian malignancies are of the epithelial type and are diagnosed 
as late-stage disease. Approximately 75 percent of women have stage III or 
stage IV disease at diagnosis, and 70–90% of women with advanced stage 
disease recur within 18 months of diagnosis, which is associated with a poor 
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prognosis [3]. Survival is directly related to disease stage; 
patients with stage I, II, III, and IV ovarian cancer have median 
5-year survival rates of approximately 93%, 70%, 37%, and 
25%, respectively [2].The high mortality rate is partly due 
to its non-typical symptoms, which are difficult to detect 
in the early stages, and its high invasiveness. Prediction of 
prognosis is one of the biggest challenges in cancer therapy. 
Accurate prediction could lead to the risk stratification and 
triage of patients, which could help guide additional treatment 
and follow-up strategies. Depending on the risk stratification 
for the prediction of prognosis, physicians could customize 
additional treatment in high-risk patients and reduce treatment 
and follow-up in low-risk patients. Additionally, the accurate 
prediction of prognosis could be used as an effective tool 
for decision-making by medical teams and patients. The 
numerical probabilities of cancer-specific death recurrence 
could provide patients with high-quality explanations. 
Historically, pathological characteristics and biomarkers 
have been studied as the main predictors for the prognosis 
of ovarian cancers. The role of carbohydrate antigen 125 
(CA125) in the prognosis of patients with ovarian cancer has 
been widely acknowledged [4]. Serum CA125 levels were 
correlated with survival. Patients who survived for more than 
5 years had a lower preoperative CA125 level than patients 
with a poor prognosis, and there was a higher survival 
probability in patients with a normal level of preoperative 
CA125. Similarly, human epididymis protein 4 (HE4) has 
been studied as a predictor of response to chemotherapy [5]. 
Regarding pathological characteristics, serous carcinoma, the 
most common epithelial subtype according to histological 
classification and high grade are important factors associated 
with worse prognosis. In addition, previous studies have 
identified several potential genes or biomarkers for predicting 
the prognosis of ovarian cancer, but their comprehensiveness 
and clinical application remain limited. The accuracy and 
effectiveness of these biomarkers in predicting chemotherapy 
responses differ among patients with various epidemic and 
clinical features. Therefore, a multimodal prediction model 
using clinico-pathological data for ovarian cancer is desired.

Currently, machine learning is considered a possible new 
predictive technique, and there is a growing interest in its use 
in prediction models in the medical field. Machine learning, 
an area of artificial intelligence, can identify patterns in large 
datasets and construct prediction models that output possible 
results from the given data. Machine learning models can 
detect nonlinear correlations in laboratory, demographic, and 
clinical parameters that cannot be detected by linear methods 

[6]. Using multiple variables, including numerical and 
imaginary data, an increasing number of studies have been 
performed in the medical field to predict individual prognosis 
in patients. In this study, we attempted to develop prediction 
models for machine learning algorithms using large amounts 
of clinicopathological data.

Materials and Methods
Study population and dataset 

We included patients with ovarian cancers between January 
1, 2004, and December 31, 2019, using the Surveillance, 
Epidemiology, and End Results (SEER) database (version 
8.9.8, National Cancer Institute, USA). SEER is a database 
of the incidence and survival rates of cancer in the United 
States, which covers approximately 28% of the population 
of the United States [7]. The SEER database is national, with 
information from 18 states, and includes a high proportion of 
racial/ethnic minorities and foreign-born individuals owing 
to its targeted sampling strategy. The inclusion criteria were 
as follows:1) diagnosis of ovarian cancer according to the 
International Classification of Diseases for Oncology, 3rd 
Edition (ICD-O-3) or primary site as C56.9 (ovary), the year 
of diagnosis was between 2004 and 2019, and 3) malignant 
behavior. The exclusion criteria were as follows:1) ovarian 
borderline tumor, 2) non-epithelial ovarian cancer, and 3) 
unknown duration of survival or survival length <5 years in 
the case of survival. Access to the SEER database did not 
require ethical approval and was covered by an open access 
policy. 

Variables used for the prediction
A total of 12 parameters were used as variables to predict 

prognosis:1) year of diagnosis, 2) age, 3) race, 4) pathological 
grade, 5) pathological type, 6) surgical summary, 7) T 
classification, 8) N classification, 9) M classification, 10) 
number of pelvic lymph nodes resected during the surgeries, 
11) positive number of lymph nodes, and 12) tumor size. 
The clinical International Federation of Gynecology and 
Obstetrics (FIGO) stage was excluded because the TNM 
classification and clinical stage have a strong correlation, 
which could lead to multicollinearity disturbing the linear 
model construction. “Summary stage” was one of the 
categorical data in SEER database, dived into three classes; 
Localized, Regional and Distant. The Summary Stage is the 
most basic way of categorizing how far a cancer has spread 
from its point of origin, called the General Stage, California 
Stage, historic stage, and SEER Stage. The histological grades 
were in accordance with the American Joint Committee on 
Cancer (AJCC) and FIGO guidelines as follows: G1/well 
differentiated, G2/ moderately differentiated, G3/poorly 
differentiated, and G4/undifferentiated. We re-categorized 
these data into two categories: low-grade (G1) and high-
grade (G2, G3, G4). Histological types were divided into 
serous carcinoma, endometrioid carcinoma, clear cell 
carcinoma, and mucinous carcinoma. The other types, such 
as transitional cell carcinoma, mixed cell carcinoma and 
squamous cell carcinoma, were categorized as “other”, 
and when the detailed pathologies were unknown, they 
were categorized as “unknown”.  The prediction target was 
5-year overall survival (OS), defined as the final outcome of 
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the patients. The time from diagnosis to death or censoring 
was defined as the survival length. Continuous data, such as 
age and year of diagnosis, were transformed using z-score 
normalization. Categorical data were transformed into integer 
variables as ranked variables, which represented the ordering 
of the values. Categorical data included TNM classification 
and surgical stage. The other categorical data, which had no 
ranks, such as pathology, were transformed using one-hot 
encoding. Missing data were replaced with the values of the 
mode in each variable. 

Development of machine learning model 
We developed three machine learning models: logistic 

regression, artificial neural network, and gradient boosting 
machine (XGBoost). Artificial neural networks, frequently 
named as “deep learning,” are mathematical models 
mimicking the neurons in the human brain, consisting of 
multiple layers. Artificial neural networks have demonstrated 
great success in various predictive tasks, including image, 
audio, and text data. However, during the last decade, gradient 
boosting machine (XGBoost) has dominated predictive tasks 
consisting of tabular data and showed superior performance 
over artificial neural network [8]. XGBoost is an ensemble 
of weak traditional models, such as decision trees, and is 
considered the most powerful machine learning technique, 
especially for tabular data. XGBoost and artificial neural 
networks are the two major models among machine learning 
algorithms and are frequently compared on prediction 
performance [8]. 

 After randomly assigning the data to the training data 
(80%) or validation data (20%), we performed 5-fold cross-
validation. In cross-validation, the dataset was divided into 
five subgroups. Four of these were used as the training 
dataset, and the remaining one was used as the test dataset 
to estimate the prediction performance. The estimation was 
calculated five times, and the five results obtained were 
averaged to obtain a single estimate. The stratified k-cross 
validation method maintained the rate of survival groups in 
the training and test sets equal to that of the original dataset. 
Machine learning was implemented using Python (version 
3.7) as a programming language using the scikit-learn 
(version 1.0) machine learning package and Keras (version 
1.2.2). Our study was performed in accordance with the 
TRIPOD statement [9].

Evaluation technique of prediction performance
Model performance was evaluated using classification 

accuracy and area under the curve (AUC). Class accuracy was 
calculated as follows: (class accuracy) = (correctly predicted 
as survival in the survival groups) + (correctly predicted as 
death in the dead groups) / total number of cases. The AUC, 
which is the concordance index (C-index), measures the 
entire two-dimensional area under the receiver operating 
characteristic (ROC) curve. We generated 95% confidence 

intervals and p-values using the empirical bootstrap method 
with 1000 iterations. ROC curves were created by plotting 
the true positive rate (TPR) against the false positive rate 
(FPR) at various threshold settings. Calibration curves were 
also analyzed. Calibration curves were used to evaluate 
how calibrated a classifier was, and how the probabilities of 
predicting each class label differed. Calibration curves were 
created by plotting the observed frequency of each class 
against the average predicted probabilities of the models. 
Calibration curves can be used to measure whether the 
prediction models are erroneously estimated and over-fitted. 

Results
Patients’ demographics

Overall, 18,438 patients with ovarian cancer were 
included in this study. Among the patients, 7,037 patents 
(38.1%) were alive and 11,401 patients (61.8%) were dead 
in 5-year overall survival. The patient selection process is 
shown in Figure 1 and each clinic-pathological variable 
in the population is summarized in Table 1. The mean age 
at diagnosis was 61.6 years (SD, 14.5 years). The mean 
age in the survival groups were 10 years younger than the 
dead groups (mean: 54.1 year vs. 65.1 year). Regarding 
race, Whites were 82.7%, Blacks were 6.5%, and the others 
comprised 10.7% of the study population. Most of the 
histological types were serous carcinoma (51.6%), followed 
by endometrioid carcinoma (9.3%), clear cell carcinoma 
(6.1%), and mucinous carcinoma (5.1%). The other types, 

Figure 1: Patient data selection process.
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N %    

 All   Alive Dead

Number of cases 18,438   7,037 11,401

Mean year at diagnosis 2009 (3.8) 2009 (3.1) 2010 (4.1)

Mean age at diagnosis 61.6 (14.5) 54.5 (13.3) 65.1 (13.3)

Race

White 15,256 82.7 82.4 82.9

Black 1,192 6.5 4.6 7.6

Others 1,990 10.7 12.9 9.4

Grade

Low(G1) 1082 5.8 12.4 98.2

High(G2, G3, G4) 17356 94.1 87.5 1.7

Pathology

Serous 9,531 51.6 45.9 55.2

Endometrioid 1,726 9.3 19.1 3.3

Clear cell 1,134 6.1 9.2 4.2

Mucinous 938 5.1 8.1 3.2

Others 1061 5.7 9.4 3.4

Unknown(adenocarcinoma) 4,048 21.9 8.1 30.5

Surgical summary

Localized 2316 12.5 27.3 3.4

Regional 3641 19.7 33.7 11.1

Distant 12481 67.7 38.9 85.4

T class

T1 5,742 31.1 47.6 20.9

T2 2,257 12.2 16.1 9.8

T3 10,439 56.6 36.2 69.2

N class

N0 14584 79.1 84.7 75.6

N1 3854 20.9 15.2 24.3

M class

M0 12877 69.8 89.5 57.6

M1 5561 30.1 10.4 42.3

Mean tumor size (mm) 99.0(75.6) 104.6 (77.9) 95.5 (73.9)

Mean number of examined lymph node 6.2 (11.2) 10.6 (12.7) 3.5 (8.7)

Mean number of positive lymph node 0.66 (2.8) 0.51 (2.1) 0.75 (3.2)

Vital status

Alive 7,037 38.1

Dead 11,401 61.8    

Data are mean (SD) or n(%)

Table 1:  Baseline characteristics in 5-year overall survival (OS) dataset
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which included transitional cell carcinoma, mixed cell 
carcinoma, and squamous cell carcinoma, were 5.7%. The 
detailed pathologies were unknown in 21.9% of cases, most 
of which were considered as serous carcinoma in a previous 
study. 8) Most of pathological grades were high-grade 
(94.1%), and few were low-grade (5.8%). Advanced ovarian 
cancer was frequent in the viewpoint of TNM classification, 
with T3 (56.6%) and M1 (30.1%). The median size was 9.9 
cm and there were small differences between the survival and 
dead groups. The median time to event in patients who died 
of cancer was 23.0 months. The median time to event in the 
overall population was 114 months. 

Performance of machine learning models
XGBoost showed the best performance, followed by the 

artificial neural network and logistic regression. XGBoost 
achieved a class accuracy of 0.809 (95%CI: 0.807–0.810) and 
AUC of 0.808 (95%CI: 0.806–0.809). The class accuracy and 
AUC were 0.802 (95%CI: 0.794–0.809) and 0.797 (95%CI: 
0.784–0.808) in artificial neural network and 0.791 (95%CI: 
0.787–0.794) and 0.784 (95%CI: 0.780–0.786) in logistic 
regression, respectively. The ROC curve is shown in Figure 
2. As shown by the AUC and accuracy, XGBoost showed 
the best performance compared to the other two models. 
However, artificial neural network showed a prediction 
performance similar to that of XGBoost on ROC curves. The 
calibration curves demonstrated good agreement between 
XGBoost and logistic regression compared with the artificial 
neural network shown in Figure 3. Artificial neural network 
had the possibilities of “overfitting” in the data.

The importance of clinical variables
Because XGBoost is a tree-based classifier, we analyzed 

the importance of each clinical factor (12 features) in 
prediction (Figure 4). The importance was calculated 
through the construction of XGboost models, showing the 
relative weight of each variables on the prediction. The 
most important variables were “summary stage,” followed 
by “year of diagnosis” and “M classification”. The factors 
that are clinically not weighted, such as size or race, were 
not important for prediction by machine learning. In 
contrast, factors that are clinically weighted, such as serous 
adenocarcinoma or mucinous adenocarcinoma, were not 
important for prediction by machine learning.

Discussion
To our knowledge, this is one of the largest studies on 

the application of machine learning in the field of prognosis 
prediction for ovarian cancers. Although ovarian cancer 
prognosis largely depends on the response to chemotherapy, 
analysis of the patients’ background and pathological 
characteristics could help clarify cancer behavior. Thus, the 
model using pathological data and patient backgrounds could 
lead to the accurate prediction of prognosis, accompanied 

by detailed risk stratification of patients before adjuvant 
chemotherapy. In this study, we demonstrated the possibility 
of a machine learning model using large clinicopathological 
data for survival prediction in patients with ovarian cancer. 
Currently, the application of machine learning in cancer is a 
growing field with great potential, and various models have 
been analyzed for suitable variables and model algorithms. 
Lee et al. used 64,000 patients with prostate cancer in the 
SEER study and constructed machine-learning models to 
predict the prognosis of prostate cancer [10]. Their model 
achieved an AUC of 0.82 for predicting 10-year cancer-
specific mortality in patients with prostate cancer. Bulten et al. 

Figure 2: ROC curve of the models targeting 5-year OS.

Figure 3: Calibration plots of models targeting 5-year OS
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dataset was small, consisting of hundreds of cases. Not only 
tabular data but also image data can be used as variables for 
the prediction. Paik et al. reported machine learning models 
using 34 clinical variables for the prediction of 2-year overall 
survival [13]. The authors included the details of surgical 
site and the values of CA125 during the chemotherapy as 
variables. Using the dataset consisting of 1357 patients, their 
models achieved the AUC of 0.830. A variety of prediction 
model construction has been attempted in the medical field. 
The strength of our study is the size of the dataset and its 
high prediction performance. Considering that the machine 
learning model shows better performance with larger data, 
the hundreds of cases were not sufficient for AI studies, and 
studies using hundreds of thousands of cases were desired. 
From this viewpoint, our study and one previous study 
included ten thousands of cases using the national database. 
Compared with this previous study [12], our study used 
more variables and up-to-data machine learning algorithms, 
achieving a better performance (AUC: 0808 in our study 
vs. 0.739 in the previous study). In addition, we used major 
prediction models and demonstrated the importance of the 
variables. The results of our study could be efficient for 
model construction and the choice of variables in future 
studies. There is still the possibility of more accurate models 
in the same dataset, and future studies are desired to analyze 
suitable variables, algorithms, and preprocessing techniques. 
The limitations of this study are as follows. First, external 
validation was lacking because we performed internal 
validation. The “overfitting” is the biggest challenge in the 
construction of the machine learning models. In our study, 
the artificial neural network had the possibility of overfitting, 
as suggested by the calibration curve. To accurately evaluate 
the robustness of the prediction models and avoid overfitting, 
a fresh dataset should be prepared for external validation. 
Second, the clinical variables were limited. These variables 
were only used for the data included in the SEER study. Thus, 
other variables, such as preoperative imaging data, molecular 

Figure 4: Feature importance of each variables in the prediction by 
XGboost.

No Author Year Dataset Dataset 
size (n) Best model features Prediction 

outcome
AUC

(Cindex)

1 Grimley
[12] 2021 National

database 25291 Ensemble Clinicopathologic 5-year CCS 0.739

2 Paik [13] 2019 a single institute 1357 GBS Clinicopathologic 2-year OS 0.830

3 Shannon [14] 2021 a single institute 518 GBS Molecular markers 2-year OS 0.67

4 Avesani [15] 2022 multicentric 
database 218 Deep learning Clinicopathologic 

Image 1-year relapse 0.74

5 Laios [16] 2021 a single institute 209 SVM Clinical 2-year OS 0.66

6 Li [17] 2021 a single institute 117 SVM Radiomics in MRI 
image 1.5-year RFS 0.85

7 Feng [18] 2022 a single institute 98 Decision tree Blood marker OS 0.69

8 Arezzo [19] 2022 a single
institute 64 Random

forest Clinicopathologic 1 year PFS 0.92

CCS: cancer-spesific survival; GBS: Gradient boosting machine; OS: overall survival;
PFS: progression-free survival; RFS: recurrence-free survival; SVM: Support vector machine

Table 2: Previous reports studying the machine learning model for the prediction of prognosis in the patients with ovarian cancer

reported an artificial intelligence (AI)-based Gleason grading 
for diagnosing prostate cancer in biopsies. In this study, the 
largest histopathology-based model competition, joined by 
1,290 developers, was held in Kaggle, using 10,616 digitized 
prostate biopsies; the algorithms achieved AUC of 0.862 and 
0.868 with expert uro-pathologists [11]. A new diagnosis and 
prediction system should be analyzed from a multifaceted 
aspect of cancer. The construction of accurate models could 
lead to risk stratification, which could provide cost-effective 
and personalized medicine. In the past few years, a growing 
number of studies have been published on prediction models 
using machine learning models for ovarian cancers (Table 
2) [12-19]. However, most studies used a small dataset in 
a single institute, and machine learning models using large 
datasets are still difficult to find. In the largest study, Grimley 
et al. used 25,291 patients in the SEER database, reporting a 
machine learning model for the prediction of ovarian cancer 
prognosis [12]. They predicted the 5-year cancer-specific 
survival using six clinicopathological data, including TNM 
classes, age, pathology, and grade. The model achieved an 
AUC (C-index) of 0.739 compared to an AUC of 0.731 in 
the prediction using only the FIGO stage. In other studies, 
most used datasets from a single institute, and the size of the 
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profile, tumor markers, blood examination, and the detailed 
content of surgery were not used, which could be efficient as 
strong predictive factors. Third, the cohort distribution was 
heavily skewed toward advanced-stage disease and included 
more patients in the dead groups. Since we excluded patients 
who were alive within 5 years after diagnosis, more deaths 
occurred. This bias could lead the robustness of the model 
for the fresh dataset. Currently, the application of machine 
learning in cancer is a growing field with great potential, 
which could lead to the risk stratification, promoting optimum 
allocation of interventions and resources. However, more 
accurate prediction models are desired for clinical application 
and suitable variables and algorithms could be found through 
the trials of model construction. Future studies should analyze 
more efficient variables and suitable algorithms for the 
prediction of survival in the patients with ovarian cancers. In 
this study, we demonstrated the possibility of using machine 
learning to predict the prognosis in patients with ovarian 
cancer. 
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