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Abstract
Idiopathic pulmonary fibrosis (IPF) constitutes a long-term disease 

with a complex pathophysiology composed of multiple molecular 
actors that lead to the deposition of extracellular matrix, the loss 
of pulmonary function and ultimately the patient’s death. Despite 
the approval of pirfenidone and nintedanib for the treatment of the 
disease, lung transplant is the only long-term solution to fully recover 
the respiratory capacity and gain quality of life. One of the risk factors 
for the development of IPF is the pre-existing condition of diabetes 
mellitus. Both, IPF and diabetes mellitus, share similar pathological 
damage mechanisms, including inflammation, endoplasmic reticulum 
stress, mitochondrial failure, oxidative stress, senescence and signaling 
from glycated proteins through receptors. In this critical review 
article, we provide information about this interrelationship, examining 
molecular mediators that play an essential role in both diseases and 
identify targets of interest for the development of potential drugs. We 
review the findings of clinical trials examining the progression of IPF 
and how novel molecules may be used to stop this process. The results 
highlight the importance of early detection and addressing multiple 
therapeutic targets simultaneously to achieve better therapeutic 
efficacy and potentially reverse lung fibrosis.
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Introduction
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive fibrotic 

lung disease characterized by a restrictive ventilatory defect and impaired 
gas transfer due to deposition of fibrotic tissue in the lung interstitium 
[1]. The pathology of IPF is characterized by disruption of normal lung 
architecture due to the deposition of excessive collagen and extracellular 
matrix (ECM) in the alveolar walls and the aggregation of proliferating 
fibroblasts and myofibroblasts, which are recognized as fibroblastic foci 
on histologic evaluation [2]. IPF encompasses 17 to 37% of all interstitial 
lung disease diagnoses [3] and commonly affects patients over 60 years, 
which undergo progressive failure of lung function that causes death 
on average three years after diagnosis [4]. The etiology of IPF remains 
unclear, but growing evidence points towards complex interactions 
between genetic and environmental factors in the setting of age-associated 
disease processes [5,6]. This leads to alveolar injury, aberrant epithelial-
fibroblast interactions and thickening of lung matrix, resulting in the 
remodeling of lung interstitium [1]. Treatment options for IPF are limited 
and are largely palliative. Two pharmaceutical agents, pirfenidone and 
nintedanib, are licensed as novel IPF treatments. However, these agents 
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other extracellular ligands such as epidermal growth factor 
(EGF), fibroblast growth factor, connective tissue growth 
factor (CTGF), nuclear factor-κB (NF-kB), among others 
[15]. TGF-β1 mediates fibrous proliferative effects by 
inducing apoptosis in alveolar epithelial type I cells [16].

 The investigation of miRNAs levels  in fibrotic tissue 
in animal models and human disease has led to a better 
understanding the progression of fibrosis [17]. Some 
miRNAs are expressed only in fibroblastic foci, but not in 
whole IPF lung tissue nor cultured fibroblasts [18]. More 
recently, the combination of laser capture microdissection 
and next-generation sequencing in fibroblastic foci identified 
key miRNA molecules, including  miR-370-3p, miR-222-
3p, miR-146a-5p, and miR-203a-3p. These miRNAs were 
previously described only in liver fibrosis [19]. In addition, 
miR-4454 and miR-23a-3p were found to be involved in 
cardiac and renal fibrosis [20, 21].

Another biological process involved in the progression 
of pulmonary fibrosis is endoplasmic reticulum stress (ER 
stress). The accumulation of unfolded or misfolded proteins 
activates a signal response termed unfolded protein response 
[22]. ER stress in lung is involved in severe damage to 
epithelial cells [1], fibroblast proliferation and myofibroblast 
differentiation [23]. ER stress inhibitors reduce EMT in animal 
models of pulmonary fibrosis and fibroblast proliferation; this 
last mechanism specifically regulated through the modulation 
of the PI3K/AKT/mTOR signaling pathway [24].

Cellular senescence is another key process during fibrosis 
establishment and evolution. The senescent phenotype is 
characterized by two major features: loss of cell division 
capacity and secretion of a large number of mediators known 
as senescence-associated secretory phenotype (SASP) [25]. 
Senescent cells do not respond to mitogenic stimuli, but 
rather undergo growth arrest and are positively identified 
by the expression of senescence associated-β-galactosidase 
(SA-β-gal) [25]. The SASP pattern of expression includes 
multiple growth factors, cytokines, chemokines, and matrix 
remodeling proteases such as TGF-β1, CTGF, TNF-α, IL-
1α/β, IL-6, IL-8, ICAM, MCP1, MMP2, MMP3, MMP9, 
[26]. Accordingly, senescent cells induce the development 
of a pro-fibrotic and pro-inflammatory local environment, 
gradually affecting the whole organ [27]. In lungs, alveolar 
epithelial cells type II can become senescent, losing their 
capacity to regenerate alveolar epithelial cells type I lost by 
external injuries. SASP attributable to these cells triggers 
trans-differentiation of fibroblasts into myofibroblasts, 
amplifying the risk of developing pulmonary fibrosis [28]. 
But fibroblasts per se also become senescent, and express 
high levels of SA-β-gal and cell cycle inhibitors like P16, 
P21 and P53 [29]. Mitochondrial dysfunction, telomere 
shortening, epigenetic modifications, DNA damage, protein 
homeostatic imbalance and decreased autophagy are among 

decrease the rate of decline in the lung function and risk of 
acute deterioration of lung function, rather than halt or reverse 
the fibrogenic process [7,8].  Lung transplantation is the only 
option that offers hope for long-term survival, but it is only 
available to very few individuals [9]. 

Initiation and Development of Fibrosis
After an injury, lung tissue triggers a physiological 

reparative response. During this healing process, there is 
an interaction of multiple cell types, including immune 
system cells, epithelial cells, and fibroblasts. Besides the 
activation of lung epithelium stem cells and fibroblasts, 
alveolar macrophages initiate a pro-inflammatory response 
leading to the clearance of an insult and triggering a healing 
process through the secretion of growth factors, including 
transforming growth factor β1 (TGF-β1) [10]. If the injury 
signals persist, inflammatory response increases, leading to the 
cellular release of cytokines such as tumor necrosis factor-α 
(TNF-α), interleukin-1β (IL-1β) and interleukin-8 (IL-8) and 
the recruitment of neutrophils, monocytes and T cells to the 
alveolar space. This ultimately leads to matrix deposition 
and the progression of fibrosis [10]. The unregulated 
expression of pro-fibrotic factors like TGF-β1 [11] results in 
the accumulation and trans-differentiation of fibroblasts into 
pro-secretory myofibroblast phenotype, α–smooth muscle 
actin (α-SMA)-positive, which leads to excessive deposition 
of ECM constituents [10]. Under physiological conditions, 
fibroblasts express different subtypes of collagen and elastin. 
In the correct proportion, tissues acquire different degrees 
of stiffness and/or flexibility. Fibronectin and laminin, also 
expressed by fibroblasts, facilitate the connection between 
cells and ECM and interact with transmembrane adhesion 
protein such as integrin [12]. The abnormal activation of 
lung fibroblasts constitutes a modulating factor after injury, 
tipping the balance to the development of fibrosis, instead of 
towards a physiological reparative response [13]. Besides the 
stimulation of ECM protein expression, TGF-β1 reduces the 
function of enzymes involved in ECM degradation such as 
collagenase and matrix metalloproteinases (MMP), thereby 
resulting in accumulated ECM deposition. Besides ECM 
degrading enzymes, fibroblasts of the fibrotic lung also 
express four types of tissue inhibitor of metalloproteinase 
(TIMPs) [14]. The result is an unevenness between MMPs 
and their inhibitors in favor of TIMPs, which explains the 
decrease in collagen degradation in the damaged parenchyma. 

During the development of fibrosis, resident epithelial 
cells also trans-differentiate into myofibroblasts, in a process 
called epithelial-mesenchymal transition (EMT) [15]. 
Epithelial cells undergo cytoskeletal remodeling, lose their 
cell-cell adhesion markers, like E-cadherin, and acquire 
mesenchymal phenotype markers such as N-cadherin, 
vimentin and α-SMA, contributing to fibrosis progression 
[15]. EMT is mainly driven by TGF-β1, but also by some 
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factors involved in IPF [30]. Inhibition of autophagy has 
been related to accelerated senescence in epithelial cells, 
enhanced EMT and fibrosis [31]. Besides, lack of autophagy 
in lung fibroblasts may promote their trans-differentiation 
into myofibroblast phenotype through cellular mechanisms 
involving the inhibition of beclin-1 [32], caveolin-1 [33] or 
mTOR signaling pathway [34].

Development of fibrosis leads to a failure of physiological 
lung function characterized by insufficient gas exchange and 
interruption of oxygen supply [35]. Although hypoxia could 
be considered a result of fibrotic induration, hypoxic signals 
could trigger feedback loops during in the pathogenesis of the 
disease, perpetuating the fibrotic state through the stimulation 
of myofibroblast differentiation, ECM deposition and cell 
cycle modification [36]. In this regard, hypoxia-inducible 
transcription factors (HIF-1α and HIF-2α) play central roles 
by controlling the expression of a myriad of genes during 
acute or chronic hypoxia [37]. 

A recent concept classifies IPF as a metabolic disease, in 
which abnormal lipid levels have been quantified in serum 
and bronchoalveolar lavage fluids of patients [38]. It has been 
shown that high fat diets could increase the risk of developing 
pulmonary fibrosis [39]. A recent study showed that high-fat 
and high-fructose diet induced lung fibroblasts inflammation 
through transcriptional up-regulation of dedicator of 
cytokinesis 2 molecule, facilitating fibrotic progression 
[40]. Elevated cholesterol levels in serum potentiate lipid 
accumulation in alveolar epithelial cells and up-regulation 
of toll-like receptor 4/NF-κB signaling, leading to low grade 
pulmonary inflammation and fibrosis [41]. High lipidic 
levels also affect normal epithelial stem cells proliferation, 
decrease mitochondrial b-oxidation capacity, and induce M1 
macrophage polarization, all of this contributing to pave the 
way for lung fibrosis development [42]. 

Diabetes Mellitus and IPF
Diabetes mellitus (DM) is a group of metabolic 

disorders in which genetic susceptibility is associated 
with environmental factors. More specifically, phenotypic 
expression results from the interaction of genes and the 
environment [43]. One of the main consequences of DM is 
the development of long-term vascular complications, due 
in part to chronic hyperglycemia, which causes damage to 
the blood vessels (angiopathy). Diabetic complications are 
classified into microvascular diseases, when the damaged 
vessels are of small caliber, and macrovascular diseases, 
when the arteries are compromised. Microvascular 
complications typically include retinopathy, nephropathy, and 
neuropathy. Macrovascular diseases include cardiovascular 
diseases, which can result in myocardial infarction, and 
cerebrovascular diseases, which lead to stroke [44]. In the last 
decades, increasing evidence corroborates the lung as another 

target organ for diabetic complications [45]. Just as sustained 
hyperglycemia is considered the "foundational stone" in the 
development of diabetic complications, there is experimental 
evidence indicating its involvement on a molecular level 
for development of pulmonary fibrosis in patients with DM 
[46]. Both clinical entities share numerous characteristics and 
molecular intermediaries that contribute to symptoms and 
reduce the quality of life in patients. Among these features 
are inflammation [47], ER stress [24], senescence [48], 
endothelial and mitochondrial dysfunction [49], oxidative 
stress [50], failure in tissue repair mechanisms [51], non-
enzymatic glycation [52], excessive expression of proteases 
[53], and increased expression of TGF-β1 [54], all of which 
are driven and finely tuned by epigenetic mechanisms and 
a strong interaction of the organism with its environment 
(Figure 1). Previously, there were contradictory results 
regarding the association between IPF and DM [55], but a 
recent meta-analysis conducted by Bai and colleagues [56] 
demonstrated a positive correlation between both pathologies, 
although they could not find the specific causal relationship.

IPF patients present with a higher prevalence of DM 
compared to people with other lung diseases or healthy 
individuals [57]. Particularly, hyperglycemia is actively 
associated with pulmonary fibrosis [46]. It has been 
demonstrated that glucose burden might cause interstitial 
fibrotic alterations and alveolar microangiopathy [58] 
by increasing oxidative stress mediators, endothelial and 
immune cells activation and secretion of pro-inflammatory 
and pro-fibrotic cytokines [47]. Among other factors, the 
exacerbated generation of reactive oxygen species (ROS) by 
mitochondria contributes to explaining the development of 
microvascular complications in DM [59]. Also, in IPF lungs, 
mitochondrial ROS production is increased, and these levels 
can activate inflammatory mediators like (NF-kB) [60].

In lungs of IPF patients there is a downregulation of key 
enzymes involved in glycolysis, mitochondrial β-oxidation 
and tricarboxylic acid cycle [61], the same phenomenon that 
is observed in granulation tissue from diabetic foot ulcers 
[62]. From a histological point of view, pulmonary capillaries 
show thickening of the basal lamina [63], also characteristic 
of ischemic and neuropathic diabetic foot ulcers, which 
exhibit arteriolar wall thickening and dense fibrotic matrix 
infiltrated with inflammatory cells [64]. Several molecular 
mediators of glucose metabolism have been implicated in the 
fibrosis of lung tissue. For example, aerobic glycolysis plays 
a role during the pathological activation of lung fibroblasts, 
contributing to the progression to a fibrotic state [65] and also 
activates the YAP–TAZ signaling pathway. One of the most 
important transcription factors of CTGF [66]. CTGF is also 
an essential mediator of ECM protein expression in response 
to hyperglycemia, as well as TGF- β1 [67] and regulates 
glucose uptake in fibroblastic foci as a fuel to maintain ECM 
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accumulation and fibrotic lesions. Among the enzymes 
involved in aerobic glycolysis, 6-phosphofructo-2-kinase/
fructose-2, 6-biphosphatase 3 (PFKFB3) is required for the 
initiation and sustainment of myofibroblast differentiation 
[68] and has been implicated in the ECM production by lung 
fibroblasts [69]. It has been shown that the downregulation 
of PFKFB3-associated aerobic glycolysis decreases 
collagen synthesis in lung fibroblasts challenged with LPS 
via regulating the AMP-activated protein kinase (AMPK)/
mammalian target of rapamycin pathway [70]. 

Also, GLUT1-dependent glycolysis regulates the 
activation of fibrogenesis in aged lungs in vivo and in 
vitro [65]. This glucose transporter is highly conserved in 
mammalian cells [71] and, among other mechanisms, is 
regulated by the STAT3/p-STAT3 signaling pathway [72]. 
Previous studies have demonstrated that GLUT1 [73] and 
STAT3/p-STAT3 signaling pathway [74] are involved in the 
progression of fibrosis. IPF-derived lung fibroblasts express 
higher levels of GLUT1 compared to normal lung fibroblasts. 
In an equivalent way, GLUT1 is significantly increased in 
IPF patient’s lung tissues, mainly in FF, compared to the 
lungs of control subjects [75]. It has been demonstrated that 
the pharmacological inhibition of GLUT1 diminishes the 
expression of α-SMA in primary fibroblasts, through the 
modulation of STAT3/p-STAT3 signaling pathway [75] or 
through the activation of AMPK [65]. AMPK activation also 
diminishes the expression of miR-27a [76], a potent inhibitor 
of peroxisome proliferator-activated receptor gamma 
(PPARG), which is necessary to decrease the pro-fibrotic 
state.

Another common feature between IPF and DM is the 
deregulation in lipid metabolism. Lipid metabolism is 
associated with glucose metabolism, as acetyl-CoA can be 
converted into lipids. Lysophosphatidic acid (LPA) and 
sphingosine 1-phosphate (S1P) are highly involved in the 
differentiation of fibroblasts to myofibroblasts and EMT 
pathways [77], TGF-β1 activation, prevention of apoptosis 
in fibroblasts, induction of epithelial apoptosis, and increase 
of vascular permeability [78]. Inhibition of S1P diminishes 
the expression of CTGF, leading to the amelioration of 
fibrosis [77]. Different metabolomic studies have shown 
an accumulation of circulating free fatty acids (FFAs) in 
IPF lung tissue, plasma, and bronchoalveolar lavage fluid 
of IPF patients, and have been found to correlate with the 
disease progression and outcome [61]. High levels of FFAs 
may influence pulmonary fibrosis by regulating the TGF-β1-
induced activation and proliferation of fibroblasts.  It also 
has been indicated that alterations in the FFAs metabolism 
contribute to epithelial ER stress, apoptosis, EMT, and M2 
polarization [79], all of them crucial elements during the IPF 
development.  

Key Factors in the Development of Fibrosis

Connective Tissue Growth Factor (CTGF, CCN2)
Another molecule highly implicated in fibrosis 

progression is CTGF (Figure 2). This protein is induced by 
and acts downstream of TGF-β1, potentiating its profibrotic 
activity. After binding to specific receptors, CTGF regulates 
the availability and activity of several cytokines and 
mediates the matrix turnover by binding to ECM proteins 
[80]. CTGF is expressed in mesenchymal cells and mediates 
physiological tissue regeneration and pathological fibrosis via 
ECM deposition, fibroblast proliferation, matrix production, 
angiogenesis, and granulation tissue formation [81]. This 
growth factor was found to be upregulated in bronchoalveolar 
lavage, lung tissue and plasma from IPF patients as well as 
in cultured fibroblasts [82]. CTGF is secreted by alveolar 
epithelial cells type II and activated fibroblasts in an autocrine 
and paracrine ways, promoting EMT and fibroblasts migration 
and proliferation, through the activation of several molecular 
pathways involving PI3K and ILK [83]. M2 macrophages 
also secrete CTGF to reinforce fibroblast proliferation, 
migration, adhesion, and ECM production via activating 
the AKT–ERK1/2–STAT3 pathway [84]. CTGF also plays 
important roles in different mechanisms involved in fibrosis 
such as fibrocyte differentiation, senescence, glucose, and 
glutamine metabolism [80,81]. It has been demonstrated that 
CTGF deletion diminished COL1, COL3 and fibronectin 
expression, contributing to attenuating experimentally induced 
pulmonary fibrosis and pulmonary arterial hypertension [85]. 
Besides, neutralization of CTGF by pamrevlumab, a specific 
anti-CTGF monoclonal antibody, suppress TGF-β1-induced 
fibroblast proliferation and myofibroblast differentiation and 
mesothelial to mesenchymal transition in IPF [86].

Besides its implication in lung fibrosis, CTGF also plays 
an active role in DM complications, especially in diabetic 
retinopathy, in which promotes thickening of the retinal 
capillary basal layer and pericytes loss. Besides, CTGF 
stimulates growth of endothelial cells, adhesion, and ECM 
deposition in diabetic retinas, and it is induced by AGE and 
growth factors such as VEGF [87]. Lack of CTGF allele 
in mice with long term DM reduces the perithelial cell and 
acellular capillary generation and controls the thickening 
of the retinal capillary basement membrane [88]. CTGF 
is also related to diabetic nephropathy. It was found in 
glomerular cells, tubular epithelial cells, and interstitial cells 
of the diabetic kidneys and was upregulated in glomeruli of 
streptozotocin-induced diabetic rats and in primary human 
mesangial cells stimulated by glucose [89]. CTGF increased 
the tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) 
expression in diabetes, preventing matrix degradation and 
stimulated EMT in renal tubular cells in diabetes, leading 
to genesis of new fibroblasts in the renal interstitium [90]. 
It has been shown that blocking CTGF not only attenuated 
its effects associated to fibrotic process, but also decreased 
proteinuria, albuminuria, and serum creatinine [91].
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Peroxisome Proliferator-Activated Receptor 
Gamma (PPARG)

Peroxisome proliferator-activated receptors are ligand-
activated transcription factors of the nuclear receptor 
superfamily that regulate metabolic homeostasis of the cell. 
Among them, PPARG is well known to regulate synthetic 
metabolism (anabolism) in the adipose tissue and plays a key 
role in glucose and lipid metabolism, insulin sensitivity, and 
inflammation [92]. PPARG is broadly expressed in various 
cell types, including adipocytes, lung epithelia, fibroblasts, 
and inflammatory macrophages, and is essential for lung 
homeostasis [93]. In isolated human or mouse lung fibroblasts, 
PPARG silencing potentiates profibrotic phenotypes [94]. 
Post-transcriptional regulation of PPARG by microRNAs 
is implicated in different diseases. Specifically, PPARG 
downregulation by miR-27a leads to the activation of TGFb/
Smad3 signaling cascade and further development of fibrosis 
in kidney [95]. It has been shown that hyperglycemia also 
decreases PPARG activity through an upregulation of miR-
27a [96]. This miRNA has shown high expression levels in 
DM and is positively correlated with fasting glucose levels 
in patients with type 2 diabetes [97]. Another element of 
epigenetic control is genomic DNA methylation. Gene 
expression studies have revealed noticeable differences 
in the transcriptional state in the lung parenchyma of 
IPF patients, compared with those in normal individuals 
[98]. Besides, there is a strong association between DNA 
methylation levels and expression of numerous fibrogenic 
genes in mouse fibrotic lung tissues or lung fibroblasts of 
IPF patients [99], suggesting an active role of this epigenetic 
modification during the initiation and progression of IPF. In 
the case of PPARG, previous studies have demonstrated that 
promoter hypermethylation is associated with liver fibrosis, 
osteoarthritis, diabetes, and atherosclerosis [100]. Specifically, 
in IPF patients, an increase in DNA methyltransferases 
DNMT1 and DNMT3a activity has been associated to an 
hypermethylation of PPARG promoter [101]. 

The potential antifibrotic effect of PPARG has been 
demonstrated in several experimental models. Activation 
of PPARG by agonists attenuates fibrosis in kidneys [102], 
liver [103], heart, [104] and lungs [105]. Recent results 
showed that a PPARG agonist inhibited the expression of 
TGF-β1, fibronectin and collagen-I after restoring levels of 
PPARG in a lung fibrosis model induced by silica exposure 
in mice [106]. It is well established that PPARG inhibits 
collagen synthesis at transcriptional level [107] and may 
alter connective tissue target genes by blocking TGF-β1 
signaling [108] (Figure 2). PPARG knockdown has been 
associated with reduced PPARG cofactor 1 alpha and with 
stimulating mitochondrial fragmentation and superoxide 
production [109] and its activation prevents high glucose-
induced increases in TGF-β1 expression [110]. Besides, 

PPARG can beneficially and directly regulate the expression 
of antioxidant enzymes [111], contributing to decrease the 
excessive levels of ROS, molecules directly involved in the 
development of pulmonary fibrosis. Encouraging results 
using PPARG agonists might be used as a starting point to 
carry out new investigations that lead to the development of 
highly effective drugs that potentiate the control of fibrosis 
and metabolic imbalance in those patients who require it, for 
example DM-IPF individuals.

Matrix Metalloproteinase-13 (MMP13)
One of the key features of fibrosis is an excessive 

deposition of ECM proteins in compromised organs, being 
the imbalance of MMPs and their TIMPs as one of the 
elements that significantly contribute to this pathogenic state 
[112]. MMPs are a family of inducible, zinc-dependent, 
secreted or cell surface endopeptidases that are centrally 
involved in the dynamic of ECM. Expression of MMPs and 
their physiological inhibitors TIMPs, is tightly regulated in 
the lung, with notable activity during lung development, 
tissue injury, and host defense [113]. MMPs have been 
highly implicated in fibrosis. Patients with IPF have shown 
increased levels of MMP1, 3, 7, 8, and 9, being MMP7 
substantially associated with greater severity, worsening, and 
short survival time [114]. 

MMP13, also known as collagenase 3, is the principal 
interstitial collagenase and has a high specificity for degrading 
insoluble fibrillar collagens, especially type II and I. MMP13 
was shown to be significantly upregulated at the mRNA and 
protein level in IPF lungs in a study where 16 patients were 
enrolled [115]. This result was corroborated in the multicenter 
observational US Idiopathic Pulmonary Fibrosis Prospective 
Outcomes (IPF-PRO, Registry NCT01915511), in a cohort of 
300 patients [116]. In this study, circulating levels of MMP13 
were directly associated to a reduction on diffusing capacity 
of the lungs for carbon monoxide and composite physiologic 
index [117], indicators for disease severity which correlates 
with the extent of fibrosis on radiography in patients with IPF 
[118]. However, in animal models the scenario is different. 
MMP13 has been shown to be downregulated in a model 
of pulmonary fibrosis induced in rats with paraquat and 
hyperoxia [119]. Also, in a murine model of bleomycin-
induced lung fibrosis, MMP13-/- mice exhibited an increased 
inflammatory reaction and a greater extent of fibrosis 
compared with wild-type animals [115], but in a murine 
model of radiation-induced pulmonary fibrosis, MMP13 
reduced pulmonary inflammation and fibrosis [120]. It is 
known that MMP13 cleaves CCL2 and CXCL12, reducing 
their activity [121]. This suggests that increasing the levels of 
MMP13 could induce an anti-fibrotic effect by decreasing the 
recruitment of CCR2-expressing “profibrotic” macrophages 
[122] and CCR2- and CXCR4-expressing fibrocytes [123]. 
According to these results, MMP13 is considered as an anti-
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fibrotic MMP, and increasing its levels may have therapeutic 
effect in IPF clinical setup. In any case, the effectiveness of 
MMP13 stimulation or inhibition must be very exhaustively 
verified, given its pivotal role (Figure 2).

In diabetes, serum MMP13 was not different in ulcerated 
diabetic patients compared to healthy control individuals [124], 
but a focal increase in MMP-13 expression was observed in 
atherosclerosis [125]. In diabetic retinopathy, the activation 
of the runt-related transcription factor 2 pathway highlighted 
MMP13 as one of the putative target proteins for this diabetic 
complication. A different study demonstrated that elevated 
levels of MMP-13 in human monocytes were associated 
with hyperglycemic conditions, suggesting that this enzyme 
might contribute to diabetic retinopathy through its action in 
myeloid cells [126]. Glyburide, a hypoglycemic drug, has 
shown direct inhibitory effects on many metalloproteinases, 
including MMP-13 [127], suggesting that this mechanism 
could contribute to minimizing the damage observed in the 
retina due to the high glucose burden. Further studies should 
be carried out in animal models to investigate the role of this 
MMP in the diabetic context.

ADAM17

A disintegrin and metalloproteinase 17 (ADAM17), 
also known as TNF-α converting enzyme (TACE), is a 
type I transmembrane protein belonging to the adamalysin 
subfamily of Zn-dependent metalloproteases with the ability 
to cleave cell surface proteins, such as TNF-α, TGF-α and 
EGF receptor (Figure 2). Release of these cell-surface 
proteins to the extracellular space impacts cell adhesion, 
cell-cell interactions, and inflammatory responses [128]. 
Elevated levels of ADAM17 promote an increase of soluble 
IL-6 receptor α in the lungs, contributing to the development 
and progression of pulmonary fibrosis [129]. Another study 
showed that this enzyme is involved in hypoxia-stimulated 
CTGF expression in human lung fibroblasts WI-38 and the 
addition of an ADAM 17 inhibitor to these cells reduces the 
expression of CTGF [130]. 

In diabetes context, it has been demonstrated that the 
ADAM17 inhibitor JTP-96193 reduced TNF-α release 
from the fat tissue, prevented development of diabetes, and 
improved insulin resistance in mouse models of obesity and 
diabetes respectively. This molecule also prevented the delay 

Figure 1: Common underlying molecular mechanisms of Idiopathic Pulmonary Fibrosis and Diabetes Mellitus.
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of sciatic motor nerve conduction velocity in STZ-induced 
diabetic mice [131], contributing to diminish peripheral 
neuropathy associated to diabetes. The interplay between 
inactive rhomboid protein 2 (iRHOM2) and ADAM17 
have been extensively studied due to iRHOM2 activity in 
promoting ADAM17 trafficking, maturation, and activity 
from the endoplasmic reticulum to the Golgi [132]. Some 
natural compounds such as anemonin proved to reduce the 
level of pro-inflammatory cytokines, ROS, iRhom-2, TACE, 
TNF-α, and inducible nitric oxide synthase expression in a 
streptozotocin-induced diabetic nephropathy in rats [133]. 
Another substance, diosgenin, has been shown to reduce 
dyslipidemia, hypertension, and pro-inflammatory cytokines 
(TNF-α, IL-1β, and IL-6) in the aorta of diabetic animals 
through modulating the iRhom2/TACE signaling molecules 
[134]. Other studies have revealed the effect of this compound 
in reducing obesity-induced systemic and local adipose 
inflammation, apoptotic proteins, and oxidative stress in the 
pancreas and adipose tissue of T2DM rats via modulating the 
ER stress-induced iRhom2/TACE signaling pathway [135].

Anti-fibrotic Therapies
Approved drugs

In October 2014, the FDA approved pirfenidone and 
nintedanib for treating IPF [136]. Pirfenidone is a synthetic 
small-molecule derivative of pyridone that improves 
fibrosis, inflammatory responses, and oxidative stress [137]. 
According to clinical trials CAPACITY I, CAPACITY 
II [138] and ASCEND [7], pirfenidone reduced the mean 

decline in forced vital capacity (FVC) percent predicted 
over 72 weeks compared with placebo. The treatment was 
also associated with decreased all-cause mortality and IPF-
specific mortality [7]. The patients receiving pirfenidone also 
had a lower risk of respiratory related hospital admissions 
[139]. Pirfenidone exerts its effect by inhibiting different 
mechanisms that contribute to the development of fibrosis 
in the lung (for a review see [140]): attenuates fibroblast 
proliferation, myofibroblast differentiation, collagen 
synthesis, fibronectin production, and deposition of ECM 
by inhibiting fibrogenic growth factors, specially TGF-β1 
[141] and one of its canonical signaling pathways [142]; 
diminishes the production of cytokines and accumulation of 
inflammatory cells [143] and regulates and reduces oxidative 
stress markers in the lung [144].

The approval of nintedanib by the FDA was based on two 
INPULSIS phase 2 clinical trials [8], in which the drug proved 
to reduce the annual rate of decline in FVC of the lungs at 
week 52 compared to placebo. Nintedanib is an intracellular 
tyrosine kinase inhibitor, originally developed as an anti-
angiogenic cancer drug that binds and blocks receptors for 
platelet derived growth factor, fibroblast growth factor, and 
vascular endothelial growth factor [145]. The inhibition of 
these growth factors signaling reduces the proliferation and 
migration of lung fibroblasts, their trans-differentiation into 
myofibroblasts and the deposition of ECM [145]. 

The combined use of pirfenidone and nintedanib was 
assessed in several clinical trials. The addition of nintedanib 

Figure 2: Key factors in the pathophysiology of Idiopathic Pulmonary Fibrosis. Connective tissue growth factor (CTGF), peroxisome 
proliferator-activated receptor gamma (PPARG), matrix metalloprotease 13 (MMP13) and A disintegrin and metalloproteinase 17 (ADAM17).
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to an ongoing pirfenidone therapy proved to be safe in a 
randomized phase 2 study in Japanese patients with IPF [146] 
and in a later single-arm, open-label, 24-week study [147]. 
The inverse combination was also evaluated in a trial in which 
IPF patients, who completed 4 to 5 weeks of nintedanib with 
no interruption or dose reduction, were randomized to receive 
nintedanib with add-on pirfenidone or nintedanib alone in 
an open-label study for 12 weeks. Both arms of this study 
showed good safety and tolerability, with only the known 
adverse events described for each drug [148]. 

Although both drugs contribute to slow the progression 
of IPF, they do not reverse the fibrotic state, being lung 
transplantation the only definite cure. Besides, there are some 
adverse effects that limit their use. For example, pirfenidone 
might provoke gastrointestinal symptoms, skin rashes, and 
photosensitivity [149] and can cause serious liver function 
abnormalities in 5% of patients, that is why regular monitoring 
is recommended [7].

The leading international societies on the management of 
IPF published a unified clinical practice guideline in which 
nintedanib is suggested for the treatment of progressive 
pulmonary fibrosis in patients who have not responded to 
standard management for non-IPF interstitial lung diseases. 
No recommendations were made either for or against the use 
of pirfenidone for the treatment of IPF [150]. The consensus 
avoided steroid monotherapy, combination of prednisone, 
azathioprine and N-acetylcysteine, N-acetylcysteine 
monotherapy, warfarin, therapies based on vasodilators or 
immunomodulators. Non-drug management procedures 
also include long term oxygen therapy in patients with IPF 
who have significant resting hypoxemia [151], pulmonary 
rehabilitation [152] and lung transplant based on patient 
preference and clinical criteria. According to the survival time 
of about 3 years after diagnosis, the guidelines recommend 
undergoing lung transplantation as close as possible to the 
moment of diagnosis, for those patients qualified for said 
surgical procedure [150]. Although lung transplantation 
entails a substantial risk for the patient, it has been proven that 
it considerably reduces the frequency of deaths associated 
with the disease, even more among those who survive at least 
one year after surgery [153]. 

Specifically, in the European Union, the indication 
of pirfenidone prior to April 2023 did not include patients 
with advanced IPF. However, a recent post-hoc analysis of 
six clinical studies revealed that clinical variables FVC and 
rate of all-cause mortality from baseline to week 52 were 
statistically different for pirfenidone compared to placebo, 
with no statistical differences between advanced and non-
advanced IPF. In both types of IPF patients, pirfenidone 
showed the same safety profile. So, according to these results, 
the indication for pirfenidone in the European Union was 
extended to patients with advanced IPF [154].

Candidates in clinical trials
Given the preponderant role of CTGF in the development 

and evolution of IPF, this molecule constitutes an effective 
target for the development of drugs with anti-fibrotic effect. 
In that sense, the anti-CTGF antibody Pamrevlumab was 
obtained, and it works by promoting clearance of CTGF 
into the circulation [155]. The efficacy of this treatment was 
evaluated in patients with IPF in the phase 2 randomized, 
double blind, placebo-controlled PRAISE trial [156]. This 
study was conducted at 39 medical centers in seven countries 
in which patients received intravenous Pamrevlumab 
or placebo for 48 weeks. Variables examined to verify 
efficacy and safety included FVC, high-resolution computed 
tomography scans and a health-related quality of life survey. 
Pamrevlumab significantly reduced the decrease in FVC and 
the proportion of patients with disease progression compared 
to placebo group. The quantitative tomography scores were 
also significantly lower in the Pamrevlumab group, but 
quality of life measure at week 48 showed a non-significant 
improvement in the antibody group. In 2023, phase 3 
ZEPHYRUS 1 (NCT03955146) clinical trial regarding the 
same candidate concluded, but treatment did not meet the 
primary endpoint of change from baseline in FVC at week 48 
(p=0.29). The mean decline in FVC from baseline to week 48 
was 260 ml in the pamrevlumab arm compared to 330 ml in 
the placebo arm (placebo-corrected difference of 70 ml; 95% 
CI -60 to 190 ml). Although treatment proved to be safe and 
well tolerated, it did not meet either the secondary endpoint of 
time to disease progression (FVC percent predicted decline of 
≥10% or death) (HR= 0.78; 95% CI 0.52 to 1.15). According 
to these results, ZEPHYRUS 2 (NCT04419558) clinical trial 
was discontinued [157].

BI 1015550, an oral preferential inhibitor of the 
phosphodiesterase 4 subtype was assayed in a multicenter, 
randomized, double-blind, phase 2 trial (NCT04419506). 
Two daily 18 mg doses of BI 1015550, either alone or with 
background use of an antifibrotic agent, prevented a decrease 
in lung function in patients with IPF [158]. Based on these 
encouraging results, a double blind, randomized, placebo-
controlled phase III (FIBRONEER-IPF, NCT05321069) 
was designed to test absolute change in FVC at week 52, 
administering 9 mg or 18 mg of BI 1015550 two times per 
day [159]. Another candidate, TAS-115 an oral multi-kinase 
inhibitor, was assayed in an exploratory phase 2 study 
(JapicCTI-183898). A cohort of treatment-naïve, pirfenidone, 
or nintedanib prescribed patients received an oral dose 
of 200 mg/day for 13 weeks. TAS-115 treatment met the 
primary endpoint, lowering the slope of the %FVC decline 
of 0.0750%/day at week 13. Efficacy was also demonstrated 
in week 26. Treatment proved to be safe and tolerable and 
candidate-related adverse events were mostly manageable by 
dose reduction, dose interruption, or symptomatic treatment 
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[160]. Another candidate, TD139, a small-molecule inhibitor 
of galectin-3, was assayed in a randomized, double-
blind, multicenter, placebo-controlled, phase 1/2a trial 
(NCT02257177). Different doses of inhaled formulation of 
the molecule were administered to healthy volunteers and 
IPF patients for 14 days. TD139 was rapidly absorbed and 
well tolerated with no significant treatment-related side-
effects. The concentration of the molecule in the lung was 
>567-fold higher than in the blood, with a plasma half-life 
of 8 h. From an effectiveness point of view, Gal-3 expression 
on alveolar macrophages was reduced in the 3 and 10 mg 
dose groups compared with placebo, in a concentration-
dependent inhibition way, and this inhibition was associated 
with reductions in plasma biomarkers centrally relevant 
to IPF pathobiology [161]. Change from baseline in FVC 
rate to week 26 was the primary endpoint of a multicenter, 
randomized, double-blind, placebo-controlled, phase 2 
study (NCT01766817) with the candidate BMS-986278, a 
lysophosphatidic acid receptor 1 antagonist. Patients treated 
twice a day with the 600 mg dose experienced a significantly 
slower rate of decline in FVC vs placebo (p=0.049), but 
elevations in hepatic enzymes were observed in both BMS-
986020 treatment groups [162]. Although the study was 
terminated early because of three cases of cholecystitis 
related to the candidate, some encouraging results regarding 
effectiveness [163, 164] promoted the design of a new phase 
2, randomized, double-blind, placebo-controlled, parallel-
group, international trial employing lower doses of the 
molecule [165].

Despite the positive results in preclinical studies, some 
other tested candidates did not show signs of efficacy nor 
safety in the clinical scenario. For example, the administration 
of GLPG1205, a selective functional antagonist of G-protein-
coupled receptor 84, demonstrated a poorer safety and 
tolerability profile than placebo and, on the other hand, did not 
result in a significant difference in FVC decline in the phase 
2, randomized, double-blind, placebo-controlled, proof-
of-concept PINTA trial (NCT03725852) [166]. Another 
candidate, BG00011 (formerly STX-100), a humanized anti-
αvβ6 IgG1 monoclonal antibody, was studied in two different 
clinical trials. NCT01371305 was a randomized, double-blind, 
placebo-controlled, dose-escalation phase 2a study, in which 
the primary endpoint was to test the safety and tolerability 
of multiple ascending doses (0.015–3.0 mg/kg, n = 8 each) 
of BG00011. In this case, doses less than 1.0 mg/kg were 
generally well tolerated, although acute IPF exacerbation 
occurred among patients at higher doses. Anyway, there 
were some signs of effectiveness like the inhibitory effect 
of BG00011 on pSMAD2 expression, starting at the 0.3 mg/
kg dose and achieving ⩾70% reduction at 1.0 mg/kg and the 
diminished expression of TGF-β1 activity biomarkers [167]. 
These results paved the way to carry out a placebo-controlled 
randomized phase 2b clinical study (NCT03573505) in which 

the primary endpoint was the FVC change from baseline at 
week 26 after once-weekly subcutaneous administration of 
56 mg of BG00011. At the end of the study, there was no 
significant difference in FVC change from baseline between 
patients who received BG00011 or placebo (p=0.268). 
Besides, IPF exacerbation/or progression was reported in 
13 patients (all in the BG00011 group) and serious adverse 
events, including four deaths, occurred more frequently in 
BG00011 patients. Taking all this into account, the candidate 
was discontinued due to imbalance in adverse events and 
lack of clinical benefit [168]. Lebrikizumab, an interleukin 
(IL)-13 monoclonal antibody, was also assayed in a phase 2, 
randomized, double-blind, placebo-controlled trial, alone or 
with background pirfenidone therapy. The primary endpoint 
of the study was to establish efficacy (annualized rate of 
FVC % predicted decline over 52 weeks) and safety, after 
the subcutaneous administration of 250 mg of Lebrikizumab 
every 4 weeks. Although the candidate was well tolerated 
with a favorable safety profile, its application alone or with 
pirfenidone was not associated with reduced FVC % predicted 
decline over 52 weeks despite evidence of pharmacodynamic 
activity. The conclusion of this study was that blocking IL-
13 may not be sufficient to achieve a lung function benefit in 
patients with IPF [169].

Experimental Anti-fibrotic Compounds
Reinforcing the relationship between hyperglycemia and 

pulmonary fibrosis, it has been demonstrated that different 
hypoglycemic agents exert positive effects in prevention of 
lung diseases. For example, metformin, an oral hypoglycemic 
drug, with strong properties as an antioxidant and anti-
inflammatory molecule, attenuates lung fibrosis by inhibiting 
TGF-β1 signaling, modulating metabolic pathways, inducing 
lipogenic differentiation of fibroblasts and activating 
PPARG [170]. Besides, sitagliptin, a dipeptidyl peptidase 4 
(DPP4) inhibitor, reduced ECM deposition and alpha SMA 
expression by suppressing the phosphorylation of Smad3 
in lung fibroblasts stimulated with TGF-β1 in vitro [171]. 
Another DPP4 inhibitor, vildagliptin, has been reported to 
inhibit EMT, ameliorating the symptoms of fibrosis [172]. 
Glucagon-like peptide-1 (GLP1) and GLP1 receptor agonists, 
like exendin 4, have proven to decrease the expression of 
ECM proteins in lungs of diabetic animals and in high glucose 
conditions in vitro by controlling the expression of NF-kB 
and lowering oxidative stress [76]. On the other hand, natural 
and synthetic PPARG ligands have also shown antifibrotic 
effects [173]. PPARG agonist rosiglitazone was shown to 
and inhibit TGF-b1-mediated EMT and collagen synthesis in 
mouse models [174]. Another PPARG ligand, pioglitazone, 
has also shown properties as an anti-fibrotic compound in 
animal models [175]. Besides their anti-fibrotic effect in 
murine models mediated by BLM administration, PPARG 
ligands are also able to prevent radiation-induced pulmonary 
fibrosis [176]. It has been proposed that the beneficial effect 
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of PPARG activation in controlling lung fibrosis may be due 
to the receptor’s broad cellular distribution within the lung, 
as this is expressed by alveolar epithelial cells, fibroblasts, 
bronchial smooth muscle cells, type II pneumocytes, 
macrophages, endothelial cells, lymphocytes, and dendritic 
cells [177].

Other substances have been tested as putative anti-
fibrotic agents in vitro and in vivo, opening a wide spectrum 
of possibilities for the development of drugs based on 
components of natural origin. These elements are mainly 
focused on preventing the transdifferentiation of lung 
fibroblasts to the secretory myofibroblast phenotype, as well as 
on inhibiting their proliferation and migration. Among them, 
dihydromyricetin, a natural flavonoid extracted from vine tea, 
shown to restrain fibrosis in primary human and murine lung 
cells treated with TGF-b1 and in a bleomycin-induced mouse 
model of IPF by regulating the STAT3/pSTAT3/GLUT1 
signaling pathway [75]. Quercetin, an antioxidant compound 
widely found in vegetables, fruits, tea, and wines has been 
shown to reduce oxidative stress and inflammatory markers 
in IPF by restoring senescent fibroblast sensitivity to pro-
apoptotic stimuli through the activation of Akt in aged mice 
[178]. Other compounds such as resveratrol and indirubin 
also proved to repress pro-fibrotic signaling pathways and 
alleviate the fibrotic deposition [179,180]. Vincamine, an 
indole alkaloid with vasodilator properties and extracted 
from the leaves of Vinca minor, proved to exert an anti-
apoptotic activity and attenuate the fibrotic and inflammatory 
conditions, suppressing EMT by modulating TGF-β1/p38 
MAPK/ERK1/2/TWIST/Snai1/Slug/fibronectin/N-cadherin 
pathway [181].

As senescence is highly implicated in IPF development, 
senolytic drugs have also been assayed to target both, alveolar 
epithelial cells, and lung fibroblasts. These approaches 
are intended to act by removing senescent cells directly or 
by inhibiting SASP [182] and target different molecules, 
organelles, or molecular processes. For example, GRN510, 
a telomerase activator, and raloxifene, an estrogen receptor 
modulator molecule, were used to induce telomerase activity 
and maintain proper telomere size [183]. These interventions 
resulted in attenuation of experimental lung fibrosis, showing 
decreased collagen deposition and loss of lung function, 
and protecting lung epithelial cells from senescence. 
Hexafluoro, a fluorinated synthetic honokiol analogue, partly 
decreased TGF-β1-induced mitochondrial oxidative stress 
and activation of fibroblasts via sertuin-3 stimulation and 
diminished the levels of α-SMA and fibronectin [184]. Some 
other investigational studies have been conducted to modulate 
autophagy. Among them, rapamycin, and sphingosine 
1-phosphate were assayed to activate autophagy by 
inhibiting mTORC1 [185]. Several elements from epigenetic 

mechanisms have been used as targets for inhibiting IPF. 
Enhanced miR 17-92 levels decrease expression of profibrotic 
genes including collagen 1A1 and CTGF [186]. Vorinostat, 
a pan-histone deacetilase (HDAC)-inhibitor, decreases 
lung fibrosis by promoting apoptosis of myofibroblasts, 
improving lung function in an experimental model in mouse 
[187]. Another pan-HDAC-inhibitor panobinostat decreases 
profibrotic phenotype and induces cell cycle arrest and 
apoptosis in IPF fibroblasts, more effectively than pirfenidone 
[188]. Another approach for inhibiting IPF is the modulation 
of miRNAs, by blocking pro-fibrotic miRNAs or restoring 
anti-fibrotic miRNAs. miR-21, miR-133a or miR-106b-5p 
are among the potential molecules which regulate TGF-β1 
expression or function, inflammation, actin expression or cell 
signaling [189].

Future perspectives
The new findings regarding the molecular pathways 

involved in the development of IPF and DM, as well as the 
results obtained in clinical trials, show the need to address 
both medical problems from several angles at the same time, 
not only to slow down the progression of fibrosis in the 
lung and the development of other diabetic complications, 
but rather, to reverse the damage in peripheral organs and 
thereby guarantee their better functioning and higher quality 
of life for patients. The combination of early diagnosis and 
intervention, the application of combined therapies that allow 
the patient to be treated in a personalized way, according 
to the stage of their disease and their personal conditions 
of associated pathologies, will guarantee greater success 
in a short term. Essential support elements include the 
development of visualization technologies and quantification 
software, as well as biomarkers that allow accurate diagnosis 
and reliable monitoring of the evolution of the disease during 
clinical trials and in the treatment of patients with already 
approved drugs.
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