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Abstract
VO2max is considered single best indicator of cardiovascular fitness and 

aerobic endurance. We analyzed retrospectively, are there any relationships 
between muscle parameters and oxygen consumption in a study where the 
myoton equipment was used to establish muscle biomechanical properties, 
such as elasticity, stiffness, and tension (measured as oscillation frequency) 
in triathletes. Eight muscles were studied in 14 male triathletes over three 
years. Relaxed and contracted states of muscles were measured. VO2max 
was recorded in these athletes up to four times during this period. Average 
values were calculated for each athlete and High (max 71.8–min 62.3 ml/
kg/min) and Low (59.1–51.3) oxygen consumption groups were formed. 
Higher oxygen consumption correlated significantly (r=-0.58; p=0.029) 
with improved elasticity (represented by smaller decrement values) of the 
rectus femoris muscle in a contracted state. Also, in the High VO2max 
group, this muscle (in a relaxed state) was significantly more elastic 
and stiffer at the same time compared to the Low group. An ultrasound 
registration was also conducted to observe the depth of the device's impact 
in the posterior crural muscles. It was confirmed that deep and substantial 
tissue disturbances were caused by this impact. According to our findings, 
myotonometry is an adequate method to establish muscle parameters. 
Elasticity and stiffness of the rectus femoris muscle may determine success 
in triathlon.

Keywords: Muscle elasticity; Oxygen consumption; Triathletes; 
Ultrasound

Introduction
The structural proteins of muscle filaments and the corresponding fascia 

tissue are contributing to the biomechanical properties of muscles themselves 
and myofascial structures in general [1-3]. Kyröläinen et al. [4] observed the 
lower-mobility titin band only in the most economical runner in a small group 
of sprinters. According to Heyward [5], at age 20–29 the level of superior 
oxygen consumption among general population in men is >56 ml/kg/min. 
It has been suggested that VO2max 65 ml/min/kg separates the top-level 
endurance runners from the rest [6]. On the other hand, it would be logical 
to assume that if the locomotion of an athlete is exceptionally economic due 
to the beneficial muscle composition and properties, the value of maximal 
oxygen consumption may not be enormously high.

Economy of locomotion could serve as a predictor of athletic ability, 
and if this is the case, the biomechanical parameters of muscles must play 
a role. Muscle properties have been shown to differ among highly and less 
trained athletes [7,8]. Stiffness has been found to contribute strongly to the 
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efficacy of the athlete’s performance [9-11]. However, this is 
not always the case [12]. Muscle stiffness has been reported 
to differ according to performance ability, and it has been 
suggested that stiffer muscles allow cyclists to perform better 
on certain occasions [13]. Dumke et al. [14] demonstrated 
that muscle stiffness is related to running economy at a speed 
that approximates endurance competition. Myotonometric 
research show biomechanical properties correlating to aspects 
of muscles’ function and competition results [15-17]. Jiménez-
Sánchez et al. [18] found, that passive resistive torque of the 
triceps surae muscle (measured with the isokinetic device) is 
higher in more stiff, tense and elastic muscle.

During triathlon competitions, running performance 
seems to be extremely important [19]. Triathletes differ in 
their parameters from pure endurance runners by larger 
muscle mass necessary for cycling and swimming [20], 
though. Bonacci et al. [21,22] showed that switching from 
cycling to running is a crucial neuromuscular event that 
ensures success and singles out the elite from the rest. 

Elasticity of specific muscles is defined less in literature. 
It is a quality describing the ability of the body to resume 
the initial form after deformation by compression, stretching, 
twisting or bending. Industrial elastic springs are made from 
stiff and plastic materials. Cavagna et al. [23] suggested that 
elastic energy is stored and released in muscles and tendons 
during sprints. In wallabies and kangaroos, elastic energy 
may account for up to half of the performed work at hopping 
without additional energy cost [24]. Elasticity is usually 
mentioned in studies using elastography—detection of 
share-wave propagation in tissue(s)—, but this propagation 
depends on the arrangements of the muscular structures [25-
27]. In our study a different method and device was used and 
biomechanical properties like elasticity, stiffness, and the 
tension in the muscle were established. Ditroilo et al. [28] 
showed that elasticity depends on the stretch and that muscles 
become slacker/more plastic when less stretched. Jarocka et 
al. [29] showed that if the contraction force rises gradually, 
muscle elasticity does not behave accordingly. Instead, 
it rises rapidly at a low contraction force to a high plateau 
level while stiffness and tension correlates almost linearly 
with the generated power. It is important to note that all three 
parameters are calculated from the same single measurement. 
According to most recent observations, the elasticity of the 
muscles in master athletes is lower than in sedentary coevals 
[30] and intensive physical exercise significantly increases 
stiffness in the Achilles tendon [31]. Most recent work 
correlations strongly Achilles tendon elasticity (among other 
parameters) to countermovement jump height [32].

As the impact from the myoton device is light and given 
on the skin, there are questions about its ability to reach and 
describe muscle properties. We quote, “So it is possible 
that during rest conditions, the Myoton-3 measures mainly 

the oscillations of the skin and subcutaneous tissue which 
are provoked by its testing-end.” [29]; “Myotonometry is 
quick and inexpensive, but tends to be superficial or merely 
qualitative.” [27]. On the other hand, “The linear relationship 
with force output suggested that the device was giving a valid 
recording of the viscoelastic stiffness of the muscle rather 
than that of the subcutaneous tissue.” [33]. This is confirmed 
by Zinder and Padua [34], and using newer myoton device by 
Kelly et al. [35], and Li et al. [36]. A reliability study made by 
Bravo-Sánchez et al. [37] revealed that the thicknesses of all 
tissues beneath the testing-end (muscle tissue, connective and 
superficial tissue, adipose tissue) correlated separately with 
the myoton registered stiffness values. Fröhlich-Zwahlen et 
al. [38] obtained analogues results previously. As the effect 
of the device on tissues was not clear, we decided to study 
this using an ultrasound (US) registration that allows to detect 
deep tissue disturbances [26]. This experiment was conducted 
to answer a single question—does the 0.4 N mechanical 
impact from the device reach the muscle tissue—as it has not 
been studied so far.

Methods
Atheletes

The study protocol was approved by The Ethics Review 
Committee on Human Research of the University of Tartu 
(No. 94/17; 21.05.2001 for athletes and 242/T-21 for the 
US study). All participants gave their informed consent in 
writing. Fourteen male triathletes were observed during a 
period of 36 months. Athletes of the national junior team 
were studied from whom most had been trained regularly as 
triathletes under the same coach. Elder triathletes were high 
rank hobby athletes. The criterion was set that the athlete 
must have been highly active more than 3 years to be chosen 
into the study. Their height was from 176 to 192 cm, and their 
body mass varied from 66.1 to 81.6 kg, age varied between 
17–41 years at the beginning of the study. Average values of 
height, weight and BMI were used. 

During the study period, the athletes were tested on 
VO2max up to 4 times. According to their average VO2max 
results, the group was divided into half.

Separately, three non-athletes but athletic men with BMIs 
27, 26, and 23, were used for the US study.

Myotonometry
The testing-end of the device with the effective weight P, 

is placed on the skin surface transversally to the muscle (level 
S as dotted line; Figure 1B) compressing the tissue in terms 
of ΔS. The connected to testing-end electromagnetic driver 
(Figure 1A) is fired (time-point t1) producing a short impulse 
(tk=15ms=t1-t2) terminating with a quick release at moment 
t2. This generates a mechanical force of 0.4 N (Newton). The 
device then monitors evoked primary oscillatory waves, as the 
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testing-end stays in contact with tissue surface. Acceleration 
of the testing-end is recorded at a 3 KHz frequency.

Elasticity is the ability of a tissue to restore its initial 
shape and is characterized by the logarithmic decrement of 
the damped oscillations (Equation 1). The smaller the value, 
the more elastic is the tissue showing that less energy is lost 
in each following oscillation. Stiffness reflects the resistance 
of the tissue to the force that changes its shape (Equation 
2). The equipment detects it with the testing-end during the 
initial impact. The higher the value, the stiffer is the tissue, 
showing that more energy is needed to modify muscle shape. 
The frequency of the damped oscillations (Equation 3) 
characterizes the state of the tissue – the higher the value, the 
more tense is the tissue. We used Myoton-2 on athletes and 
Myoton-3 in the US study. The working principle and build-
up of both models is the same (Figure 1A).

Equation 1: Decrement value ( )

a–amplitude (Figure 1 B). Smaller decrement represents 
better elasticity, large values higher plasticity 

Equation 2: Stiffness (C [N/m])

Characterizes the deformation of the muscle caused by 
the testing-end (Figure 1B).

Equation 3: Oscillation frequency (f)

T is the period between the peaks of amax and a4 in seconds 
(Figure 1B)

Figure 1: Myotonometry [with courtesy to Dr (Habil. Biol.) PhD Arved Vain]. A) Working principle of Myoton models 2 and 3. B) Schematic 
graphs and formulas (see the text). Waveforms of displacement (s), velocity (v), and acceleration (a). C) Graphic presentation of the acceleration 
values recorded during the measurement.
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Procedures

Muscles: BB – biceps brachii (caput longum); TB–triceps 
brachii (caput longum); BF–biceps femoris (caput longum); 
RF–rectus femoris; TA–tibialis anterior; GC–gastrocnemius 
(caput mediale); LD–latissimus dorsi; PM–pectoralis 
major (pars sternocostalis) were measured bilaterally in 
both relaxed and contracted state while the subjects rested 
supine or prone, depending on the muscles measured, on a 
portable massage table. All the measurements were carried 
out by the same person. The measuring point was marked 
on the skin at the most prominent point of the muscle belly 
at contraction [39]. Contraction was standardized simply by 
the same position of the limb and additional weight (a 2.3 
kg dumbbell) was used when the muscles of the upper body 
and the brachium were measured. A heavier weight caused 
muscle tremor which disrupted the measurements. To evoke 
contraction in the muscles of the brachium (BB and TB), the 
subject was holding his arm at the level of the shoulder and 
raised it to an angle of 45° from the horizontal axis (measured 
with a fixed angle), holding a dumbbell. To contract the 
PM muscle (supine position), the subject stretched out his 
arm horizontally on the side over the table edge, holding a 
dumbbell in his hand. For LD (prone position), the subject 
stretched his arm similarly over his head. The contraction of 
the BF and the TF muscles was evoked by raising the leg to an 
angle of 45°. To contract the GC and the TA, the maximum 
tarsal dorsiflexion and plantarflexion were performed against 
the fixed table. Most measurements were taken weekly on 
Wednesday mornings before the training sessions. There 
were few periods when measurements were taken daily for 
3–5 days, also in a field situation before the warm-up for the 
competition and immediately after the competition. In two 
longer periods from summer to winter (about five months), 
no measurements were taken.

The subjects were tested for VO2max up to four times 
during this period. Standardized complex laboratory tests 
of functional aerobic capability were performed on a 
Technogym Runrace HC 1400 (Italy) treadmill. The same 
gradually increasing load regime was used. After 5 min warm 
up at speed 8km/h, the starting speed was set to 10km/h and 
then raised by 2km/h after every 3 minutes up to 14 km/h. 
From that point, the speed was raised in the same rhythm by 
1 km/h until exhaustion. Respiration parameters with O2 and 
CO2 fractions in the exhaled air were measured using a True 
Max 2400 (Parvo Medics, USA) computerized complex. The 
criteria used to confirm that VO2max had been reached was 
the achievement of the plateau level in O2 uptake with increase 
in work-rate at the R value greater than 1,1. The group was 
divided into half according to average oxygen consumption, 
seven subjects in both groups. Those in the higher group were 
marked as ‘High’ and the others as ‘Low’.

Ultrasound Measurement
We made US recordings on the Musculus gastrocnemius 

(GC) in the same direction as the mechanical impact from 
myoton. This muscle was chosen because it is easily 
accessible. Due to the unavailability of the same device used 
on athletes and corresponding Myoton-2 models, we used 
similar but newer Myoton-3 with same build-up and impact 
force, for that purpose (Figure 1 A,B). The use of Myoton-3 
was also reasoned by the fact that prior to MyotonPRO, this 
model was mainly used.

An ultrasonic apparatus General Electric LOGIQ E9 
with an electronic linear array probe 11L (11 MHz wave 
frequency with 45 mm scanning length) was used to obtain 
images of the lateral GC muscle area, which were recorded 
to a video file at 25 Hz. We placed the US inducer on the 
ventral surface of the GC along the longitudinal vector of 
the leg on the belly of the muscle and applied impact along 
the same line with the US beam. The location of the test-end 
aside the US probe is marked with an arrow in Figure 2. The 
location of the measuring point was chosen as homogenous 
as possible, in the area of the lowest pulsation from vessels 
registered previously by Color-Doppler.

Image Analysis
To confirm the visual findings, we used Matlab 5.3 

software and analyzed recorded video material separating 
frames from the black and white video clips obtained from 
the US recording. Extracted frames were divided into pixels 
on X (768 dots per image) / Y (576 dpi) scale and each dot 
was monitored on four sequential images establishing the 
standard deviation of the change on the dark/light scale. New 
images were generated visualizing the deviations of each 
monitored dot and higher deviation is presented with the 
brighter white color (Figure 2).

Statistics
The Statistica software (version 8; StatSoft Ltd, Bedford, 

UK) was used. ANOVA was used to compare the general 
parameters like height, weight, BMI, age and VO2max. 
The values of the biomechanical parameters in relaxed and 
contracted states were analyzed separately. According values 
were pooled either for one person to receive the average 
“general” value of each biomechanical parameter, or for each 
muscle. These average values were correlated with VO2max. 
To compare the muscles between both groups, both sided 
muscles were considered separately. Non-parametric Mann-
Whitney U-test (MW) was used to compare the biomechanical 
parameters and Spearman Correlation R was also calculated.

Results
General Parameters

The age of the athletes did not differ between the groups 
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(Table 1 shows the age at the end of the study; ANOVA 
F(1,12)=0.13; p=0.728). There was a significant difference in 
the height and VO2max values between both groups (Table 
1). The general biomechanical parameters of muscles did not 
differ between the groups. The VO2max did not in correlate 
with body mass, BMI, age, or height.

Image Analysis from the Ultrasound Recordings
The answer to our study question was that the 0.4 N 

impact from the myoton device is sufficient to reach the 
muscles through the skin and subcutaneous tissue causing 

substantial tissue disturbances in muscles. Representative 
image is presented as Figure 2C. 

Elasticity
Elasticity improves as the decrement value lowers, 

hence, if the other parameter grows, the negative correlation 
reflects better elasticity and if both parameters grow, positive 
correlation reflects lesser elasticity or higher plasticity in 
turn. For this analysis we calculated single general value for 
each athlete (N=14). General decrement value in a relaxed 
state showed higher plasticity at higher body weight and BMI 

Figure 2: Illustrative placement of devices to receive the ultrasound recording. Tissue reaction on impact. A) An original image from US video; 
B) Results of image analysis with MatLab before the impact; C) immediate effect of the impact. White arrow–impact site. Brighter white color 
on image B-C presents stronger disturbances. Upper guideline marks the superficial aponeurosis of the gastrocnemius muscle, lower guideline 
marks the depth of 4.5 cm in the tissues.

Group Height (cm) Body mass (kg) BMI Age (years) O2 ml/kg/min
High 188.7±3.8* 78.8±11.3 22.0±2.5 24.4±5.4 66.4±3.1**

Low 182.0±6.7 75.5±7.7 22.7±1.8 25.9±9.1 59.5±2.9
Mean±SD are given. N=7 for each group. Age is given at the study’s end year. ANOVA was used and *p<0.05, **p<0.0001 compared to the 
Low VO2max group are presented

Table 1: General parameters.
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(weight R=0.73, p=0.003; BMI R=0.86, p<0.0001). Oxygen 
consumption did not correlate with general elasticity while 
did with the elasticity of the contracted RF muscle (R=-0.58; 
p=0.029).

To compare between the High and the Low groups, 
each muscle was considered separately (N=2×7=14 muscles 
in both groups). A significant difference was revealed in 
the average elasticity of the RF in both relaxed (MW test; 
p=0.035) and contracted (p<0.001) state (Figure 3; Table 2).

In a relaxed state, the RF muscle was significantly more 
elastic in High group on both sides (left side: High 1.16±0.13 
v. Low 1.78±0.20, p=0.002, N=7; right side: High 1.31±0.18 
v. Low 1.71±0.22; p=0.002; N=7). No difference between the 
groups was observed for contraction (left side: High 1.07±0.2 
v. Low 1.28±0.18, p=0.06, N=7; right side: High 1.14±0.17 v. 
Low 1.27±0.16, p=0.18, N=7). 

Additionally, the LD muscle in a contracted state showed 
a significant difference between the groups (p=0.043; 
Figure 3; Table 2), but showed no correlation with oxygen 
consumption.

Stiffness and Frequency
Both general parameters correlated well with body height 

(Height/Freq R=0.68, p=0.008; Height/Stiffness R=0.72, 
p=0.004; N=14) but no difference was evident when taller 
High VO2max group was compared to the shorter Low group.

Between the two groups, three muscles showed a 
significant difference in relaxed state and only in stiffness—
both thigh muscles (BF p=0.039 and RF p=0.035) and PM 
(p=0.03; Table 2). Interestingly, the antagonistic thigh 
muscles showed the opposite behavior—RF was stiffer in the 
High group and BF in the Low group. 

Discussion and Conclusions
To our knowledge, this is the first study on the actual tissue 

impact of myotonometry in general and Myoton-3 device in 
particular. We stress that the aim of the US experiment was 
simply to assess the adequacy of a 0.4 N mechanical impact 
to reach the muscles. As a result, we observed deep tissue 
disturbances as the impact penetrated the skin and subcutaneous 
tissues in a relaxed state of the muscle. Our conclusion was 
supported by the finding that these strong disturbances were 
observable on 11 consecutive newly generated images that 
makes the duration of the impact ≈ 440 ms (1000 ms / 25 
frames per second x 11 frames), which is consistent with the 
approximate duration of strong oscillations (Figure 1C). It 
was not our aim in this study to match the results from other 
measurement with the findings on video-recordings, neither 
to make any quantitative analysis nor find any correlations in 
this matter. These findings are also in same line with our jet 
unpublished data. According to our findings we can firmly 
state, that the device is appropriate for describing specifically 
muscle properties. This was suggested already by Bizzini and 

Average ±SD Decr. Stiff (N/m) Frequency (Hz)

Mus. Level Relaxed Contracted Relaxed Contracted Relaxed Contracted

BB High 1.16±0.16 0.85±0.04 154.4±11.0 218.7±25.4 9.30±0.39 12.19±0.92

BB Low 1.21±0.17 0.91±0.13 154.9±15.5 218.9±32.7 9.52±0.60 12.28±1.08

TB High 1.30±0.13 0.94±0.16 201.7±15.5 307.5±70.3 11.65±0.61 15.28±1.89

TB Low 1.33±0.16 0.95±0.09 191.0±26.1 322.6±60.6 11.34±1.15 15.77±1.84

LD High 1.28±0.17 0.95±0.13* 154.5±11.3 381.3±71.2 8.74±0.47 17.24±2.12

LD Low 1.21±0.17 1.06±0.14 154.7±15.3 350.2±42.4 8.98±0.44 16.80±1.23

PM High 1.37±0.25 0.75±0.10 174.2±15.1* 334.8±24.8 10.29±0.55 15.73±0.57

PM Low 1.32±0.28 0.89±0.23 161.2±16.4 314.7±32.0 9.88±0.55 15.19±0.98

BF High 1.50±0.45 1.24±0.14 233.4±10.5* 436.8±78.6 13.33±0.54 18.72±2.23

BF Low 1.53±0.17 1.25±0.24 250.8±24.4 418.3±61.7 13.88±1.14 18.22±1.55

RF High 1.37±0.34* 1.08±0.15* 219.2±17.7* 325.5±81.7 11.98±0.84 15.93±2.44

RF Low 1.61±0.24 1.31±0.16 207.9±13.2 302.7±65.0 11.40±0.63 15.23±2.23

TA High 0.89±0.11 0.78±0.09 399.7±42.8 822.4±100.7 18.52±1.42 26.82±2.16

TA Low 0.84±0.11 0.81±0.11 383.7±50.9 835.7±112.8 18.57±1.57 27.62±2.14

GC High 1.05±0.17 1.02±0.16 215.8±28.0 366.6±69.0 11.33±1.38 17.07±1.60

GC Low 1.13±0.20 1.06±0.17 224.2±31.5 370.4±52.4 11.74±1.18 17.43±1.58

Average values are presented with ±SD; N=14 (7 persons x 2 muscles) for each group. The Mann-Whitney U-Test was used. * means a 
significant difference (p<0.05) with the respective Low group parameter

Table 2: Biomechanical parameters of skeletal muscles.
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Mannion [33]. It is our suggestion that this is possible due to 
the incompressible nature of soft-tissues consisting mainly of 
water [1] allowing equalizing the pressure for Korhonen et 
al. [40] have proven the compartmental pressure to correlate 
well with regional biomechanical parameters.

Our second main finding was that oxygen consumption 
correlates with the biomechanical properties of the RF 
muscle, allowing describing up to 1/3 of the general VO2max 
with the elasticity of this muscle in studied triathletes. This 
is supported by the difference in elasticity of this muscle 
between the High and Low groups and in addition, the 
analysis between general decrement values from activated 
muscles with VO2max showed R=-0.45 with p=0.1. The main 
reason for the prominence of RF muscle is clearly the cycling 
and running events. Hein and Vain [41] showed that motion 

over the hip joint is related to the biomechanical properties 
of the agonist-antagonist muscles. They stated that the 
knee extension range of motion was primarily related to the 
elasticity of contracted posterior group of thigh muscles and 
that the tension (oscillation frequency) of m. semitendinosus 
was most responsible for limiting trunk forward flexion. 
This seems to support our finding that BF is stiffer in low 
endurance capable group, reflecting impeded locomotion 
over hip and/or knee joints when cycling or running. Zajac 
[42] explains, that the muscles producing highest work output 
during pedaling are uniarticular hip extensors (e.g. gluteus 
maximus) with anterior thigh muscles i.e. the uniarticular 
knee extensors (vastus medialis, lateralis, and intermedius) 
and that these muscles deliver their work output to both the 
crank and leg during leg extension. It has been shown that 
in cycling, the leg muscles exploit different metabolic paths 

Figure 3: Elasticity and stiffness in significantly different muscles. Differences in muscle biomechanical parameters according to 
VO2max. Exact data is presented in Table 2.
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than the ones of arms and that legs are responsible for using 
most of oxygen [43,44]. This knowledge seems to support 
our findings here. Cycling has been suggested to be crucial 
for successful running in triathlon [21,22]. Still, Hausswirth 
et al. [45] pointed out that a specific tactical decision, like 
drafting etc., allows triathletes to save considerable energy 
for running, suggesting also that this could mainly benefit 
good runners. Chapman et al. [46] and Candotti et al. 
[47] suggested that triathletes have a more robust cycling 
technique and that their recruitment of the BF muscle differs 
from cyclists. In transition from cycling to running, the 
recruitment of the tibialis anterior muscle seems not to be 
affected [27] and we did not see this muscle (neither the GC) 
to emerge. A recent study shows that in cyclists sprinting 
event, anterior thigh muscle plasticity accumulatively 
raised in a course of competition and measured leg flexors 
showed greater decrement values (lower elasticity/higher 
plasticity) than extensors. The 200m flying sprint—similarly 
to continuous maximum effort, affected most the elasticity of 
anterior thigh [48]. Differently from cyclists or triathletes, in 
endurance runners the VO2max is lower if it is measured on 
veloergometer compared to treadmill [49-54]. Therefore, it 
seems that running only does not allow fulfilling the cycling 
task with the same efficacy, while triathletes are able to run and 
cycle with similar intensity. In future, comparing triathletes 
with cyclists and runners may provide more knowledge about 
these issues.

Tissue elasticity (in a relaxed state) was strongly 
associated with both body weight and BMI in the way that 
more body mass was accompanied with higher plasticity. 
Negative correlation between the RF and BF muscle thickness 
(established by US) and decrement value was observed by 
Fröhlich-Zwahlen et al. [38] although they misinterpreted the 
results concerning the decrement value related to elasticity—
the higher the decrement value, the less elastic or more plastic 
is the tissue. This means, that they observed higher elasticity 
at higher thickness in thigh muscles in non-athletes.

From previous research, it can be concluded that if a 
muscle is contracted, the force can be derived at least to some 
extent correctly from the stiffness or tension if measured alone 
(but not from elasticity; Jarocka et al. [29]). As these two 
parameters also depend on the stretch [28,55], the correlations 
between biomechanical parameters and the height allow us to 
suggest that in taller people muscles may be naturally more 
stretched and that fore stiffer. This may be the reflection of 
the effect of Gravity force on standing posture.

We also observed a trend between the VO2max and the 
elasticity in contracted BB (R= -0.47; p=0.09). Accompanied 
with the LD muscle showing better elasticity in a contracted 
state in the High group, these findings in these two muscles 
may reflect the effect of swimming trainings. On the other 
hand, as the contraction in our study was called out with a 

simple task, the excessive performance in the High group may 
have interfered causing these differences, for both muscles 
showed improved elasticity accompanied by slightly higher 
stiffness and tension [29]. It is a shortcoming of our work 
that the relaxed and contracted states were not registered by 
any other objective measures like EMG or generated force. 
It was our decision in order to simplify the procedure. As 
we calculated average over all the measurements, each single 
one less affects received values. Most recent study by Mencel 
et al. [56] cleared the doubts about accuracy of measurement 
point. According to their findings, the deviation up to 20% 
distally from muscle-belly is irrelevant in large muscles. 
Mencel et al. [56] used MyotonPRO, still the general principle 
of oscillatory measuring of the mentioned parameters is the 
same in both devices.

There are some aspects in our study that we want 
to emphasize. First, the study group is small. This may 
compromise the ability to translate our main finding to other 
sports. Important aspect is that all values are pooled over 
all three years. In each athlete, more than 30 measurement 
sessions were conducted. During this period, we observed 
that muscle parameters are strongly affected by a single 
training or competition event (data not published). Pooling of 
data abolishes these scattering effects. It is important to note 
that testing muscles only in a relaxed state definitely does 
not reveal all the valuable information and we recommend 
measuring also in the activated state. Contraction must be 
sufficient and standardized for each muscle, though.

Despite the rapidly growing number of publications 
on myotonometry, available material is scarce. Only a few 
aspects of these properties are covered in the literature, most 
of them describing stiffness or tension as properties and 
measurements made from tendons. Elasticity seems to be 
more stable and less volatile biomechanical property [57,58], 
that is also our experience, and authors are not reporting 
the results. That fore there is an urgent need for more 
studies using this methodology. According to most recent 
publication by Wdowski et al. [32], higher countermovement 
jump performance is enabled by higher elasticity (smaller 
decrement value), stiffness, and tone, with smaller creep-
ability and quicker stress-relaxation times measured from 
Achilleus tendon. Two latter parameters are unique to newest 
myotonometric device [59-63].

In conclusion, myotonometry is a simple method to 
obtain objective information about the state and condition of 
muscles with the potential to monitor the training process. 
This would be beneficial in optimizing trainings, detecting 
muscle soreness in order to avoiding traumas, and monitoring 
rehabilitation. Large groups of athletes, separating sprinters 
and endurance athletes, in uniform events as running, cycling, 
and swimming are good candidates for future research.
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