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Abstract
In translational research, using experimental animals remains the 

preferred standard for assessing the effectiveness of potential therapeutic 
interventions, particularly when investigating physiological interactions 
and relationships. However, the execution of these investigations 
is contingent upon minimizing the impact on the well-being of the 
experimental animals. To evaluate the severity level of the animals, 
inspections were conducted routine observations, multiple times each 
day, visually. It is noted that these visual assessments disrupt the animals 
during their periods of rest, resulting in elevated stress levels, which, 
in turn, exacerbate the animals' burden and may consequently exert an 
influence on the outcomes of scientific studies. Our study examined the 
feasibility of implementing a digital monitoring system in a translational 
study conducted within IVC cages. Our objective was to determine 
whether a camera-based observation system could reduce manual visual 
inspections and whether digitally available data from this study could be 
utilized to train an algorithm capable of distinguishing between activities 
like drinking. Furthermore, we aimed to ascertain whether the system 
could monitor the recovery phase following experimentally induced high 
stress, potentially as a substitute for frequent visual inspections. Within 
the scope of our study, we successfully demonstrated the feasibility of 
integrating iMouse system hardware components into the existing IVC 
(Individually Ventilated Cage) racks. Importantly, we established that 
this system can be accessed remotely from outside the animal facility, 
thus facilitating comprehensive digital surveillance of the experimental 
subjects. Furthermore, the digital biomarkers (digitally acquired data out 
of the home cage) proved instrumental in training algorithms capable of 
analyzing the long-term drinking behavior of the animals. In summary, our 
work has yielded an integrated, retrofittable, and modular system that serves 
two critical criteria. Firstly, it enables the execution of visual inspections 
without disturbing the animals. Secondly, it enhances the traceability and 
transparency of research involving animal subjects employing digital data 
capture by generating digital biomarkers.

Keywords: Animal-based study, Home cage monitoring, AI-driven digital 
biomarkers, digital biomarkers, digitalization, Machine Learning, open-
source technology, Digital home cage monitoring, DHC, DHCM

Introduction
Experimental animals have played an indispensable role in elucidating the 

physiological foundations of various conditions and evaluating the efficacy 
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of therapeutic interventions. Their significance extends to 
approving pharmacological products and chemical substances 
for clinical applications [1, 2]. While alternative approaches 
like organ-on-a-chip, organoids, and bioinformatic 
models have emerged and provided valuable insights into 
pharmacological interactions and the intricacies of individual 
organs, they fall short of replicating the complexity of 
living systems [3]. Consequently, animal models remain 
essential for comprehensive comprehension of underlying 
mechanisms, particularly in fields such as disease research, 
physiology, drug testing, and toxicity analysis [4]. These 
models facilitate the translation of findings from pre-clinical 
studies to clinical applications, thereby offering invaluable 
insights into disease mechanisms and potential therapeutic 
strategies. However, it is imperative to prioritize the welfare 
of these animals [5]. Societal recognition of animal welfare 
principles and the necessity to implement the refinement, 
replacement, and reduction strategies (3Rs) when designing 
animal experiments are well-established [3]. To mitigate the 
burden on experimental animals during research procedures 
is paramount. Refinement strategies encompassing 
environmental enrichment (e.g., running wheels, shelters, 
toys), and adjustments to handling and housing conditions 
(e.g., temperature, noise) aim to alleviate stress levels during 
experiments [6]. Routine visual inspections, a customary 
practice in animal research, present a unique challenge in 
minimizing animal burden. While monitoring experimental 
animals' well-being, these inspections disrupt them during 
their resting phases, potentially inducing heightened 
stress levels. Stress represents a multifaceted phenomenon 
encompassing physiological, behavioral, and neurobiological 
responses, which can detrimentally impact research outcomes 
[7-10].

Researchers must be aware of these stress-induced 
perturbations and take measures to minimize their impact 
on the experimental design and data analysis to ensure the 
reliability and validity of their findings. Given this challenge, 
exploring alternative methods for assessing animal well-
being that minimize interference with their natural behaviors 
and stress levels is imperative. Technological advancements 
have facilitated the development of non-invasive, automated 
monitoring systems capable of continuous data collection 
without human intervention. Such approaches can significantly 
mitigate stress-related disruptions and enhance the precision 
and reliability of research results. However, recently available 
commercial Home-Cage Monitoring (HCM) systems are 
either sensor-driven or prohibitively expensive for pre-
clinical research projects [11-15]. To address this gap, we 
have developed a non-invasive, automated monitoring system 
that can be seamlessly integrated into existing experimental 
infrastructure, reducing human influence and thereby 
improving data acquisition in pre-clinical studies. In this 

study, we assessed the functionality of the developed digital 
platform for monitoring, recording, and analyzing laboratory 
animals within their native home-cage environments. The 
system was implemented within an ongoing pre-clinical 
research project to assess its practicality and advantages in 
pre-clinical experiments. We conducted a comprehensive 
proof-of-concept, encompassing integration into the institute's 
infrastructure, research, and development through the testing 
of diverse hardware and software components. Furthermore, 
we evaluated the system's utility in an everyday use case: 
postoperative monitoring. Data acquired through this system 
underwent rigorous analysis via integrated software systems, 
a structured review process, and Machine Learning (ML) 
development and implementation.

Materials & Methods
Generation, Breeding, and Housing of mice

In this study, we employed parental female and male 
mice with transgenic NOD. Cg-Prkdcscid Il2rgtm1Wjl/SzJ 
background (Strain #:005557) from Jax Laboratory. Parental 
females and males were used to develop a breeding colony 
within the LIV animal husbandry. Mice individuals (n = 13) 
were observed within the study at a starting age of 10 weeks. 
To monitor the behavior level before and after surgery, we used 
mice individuals who underwent orthotopic transplantation 
of human liver tumor cells. The individual mice were marked 
and identifiable using ear punches or tail marks. Mice have 
been housed in individually ventilated cages (IVC) to exclude 
infection or transmission of infectious diseases. IVCs were 
changed as described in the standard operation protocol of 
animal husbandry.

Surgery and Recovery phase
To achieve the goal of this study, we employed animals 

from an ongoing pre-clinical study (authority number 
N56/2020). The goal was to monitor the mice before and after 
the transplantation of primary human tumor cells. Shortly, 
tumor cells were transplanted after isolation from fresh 
resections. The mice are anaesthetized with isoflurane in all 
subsequent preparatory and surgical procedures. In the first 
step, the animal is injected subcutaneously with the painkiller 
metamizole (200 mg/kg). In the next step, a hair trimmer 
removes the abdominal hair from the animals. The shaved 
area is then cleaned and disinfected with Betadine. This first 
cleaning takes place away from the operating table. After the 
onset of action of the painkiller metamizole (20-30min), the 
animal is now fixed on the operating table, and the abdomen 
is cleaned and disinfected two more times with Betadine. The 
operating table is tempered at 37°C to prevent the animals from 
cooling. A laparotomy is performed along the midline over a 
length of 3 cm. After imaging the left lateral lobe of the liver, 
intrahepatic injection of the tumor cells follows. Applying the 
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cell solution preheated to body temperature (0,5x10E6 HCC 
tumor cells dissolved in sterile matrigel) is carried out in a 
standardized volume of 20µl utilizing a very thin injection 
cannula (30-gauge, 0.3 mm). Possible bleeding is quenched by 
absorbable hemostatic. After the closure of the muscles using 
a non-resorbable filament and skin using two clips, the mouse 
is separated from the isoflurane anaesthesia and transferred 
to the conventional cage (Home-cage). Postoperatively, 
mice receive carprofen (5mg/kg subcutaneously) every 24 
hours for 72 hours. The painkiller application was stopped 
after 72 hours. Subsequently, the mice are examined daily 
to detect pathological changes. Pathological criteria include 
anaemia (inspection of tail colour), signs of local infection, 
splenomegaly (palpation), weight loss (weighing two times 
a week), as well as apathy and motor deficits (for example, 
sluggishness or pulling a limb).

System architecture, hardware, and software
The iMouse solution is installed around existing 

home-cages via retrofit. Therefore, the hardware is named 
"DigFrame” because it encloses the home-cage (Figure 
1). Our system consists of a standardized control unit per 
cage. This control unit is connected by 230V power and 
the internet (Figure 1) via LAN. Within the control unit, 
we install one compute unit per camera. The camera (1-4 
cameras per home-cage (front, left, right, back) are integrated 
into internally developed housings and featured with an 
integrated IR filter, equipped with a wide-angle lens of a view 
of 120mm (Figure 1E). Cabling with a compute unit and 
camera is done by a home-cage-specific pre-configured cable. 
The camera's stem is supported by a home-cage-specific IR 
nightlight (920nm) to allow 24/7 remote observation (16). 
To ensure the field of view covers most of the home cage, 
we place cameras on the four sides of the cage. The focus 
was on easy handling, simple installation, and serviceability. 
Cameras were mounted at the existing housing rack, located 
at the guide rails, which enables a consistent view in the 
IVC (Figure 1A). Each camera is connected to a dedicated 
computing unit. The computer unit connects to the computer 
network via a LAN cable connection. We explicitly decided 
to use a scalable open-source software named ZoneMinder 
as the foundation to observe the mice during their recovery 
phase and during the experiment (Figure 2). ZoneMinder is 
a widely used and scalable monitoring platform system that 
can capture video from various camera devices and perform 
complex motion detection on the captured video in real-
time. We developed essential functions for the project and 
named the widely modified platform iMouseHub platform. 
The employed cameras were used for real-time monitoring, 
recording, and motion detection when setting up zones via 
the iMouseHub platform (Figure 2). To record da a, we 
implemented scalable computer hardware. This hardware 
was securely integrated into the existing IT infrastructure of 

the customer LIV. Users can access the iMouse solution by 
computer (full functionality) or the mobile app via tablet or 
mobile phone (view mode), as described in Figure 1.

Setting up zone-based recording
For the zone-based recording, we first created zones by 

naming them and adapting the zone shape to the spot of 
interest, e.g., the drinking outlet or the food area. Depending 
on the size of the zone and the predictable activity within the 
zone, we adapted the sensitivity of detecting, the change in 
the visible pixels or blobs in percentage, and the method of 
alarm checking; both components have been used for starting 
the detection and recording of motions (Figure 2C). E.g. for 
the detection of drinking activity, we used the type active 
alarm pixel with a threshold of 20 (fast, high sensitivity). For 
the climbing activity detection, we used the active type, with 
the alarm check method by measuring blobs, the threshold at 
40 (best, medium sensitivity). To standardize the recordings 
with different zones, we implemented six shades of motion 
detection, three by blobs and three by pixel variation.

Video recording and storage
Recordings were performed for analyzing the zone-

based activity level of the animals, for AI training, and for 
comparative analysis within the postoperative phase (7 days) 
of animals undergoing a surgery procedure. The recording 
of short video files has been performed with a resolution of 
640x480 pixels by 20 fps, and video files had a maximum 
length of 10 s. For storage, the LIV internal server network and 
the LIV cloud storage for external access were used. Process-
wise, all recorded video files were stored with standardized 
information (time stamp): date, camera name, and cage 
number to ensure traceability. For security purposes, all files 
were accessible only to authorized persons and encrypted in 
the storage space for additional protection.

Video Processing by Learning Algorithms
The OpenCV framework within the Python programming 

language was employed to process the videos. The AI 
architecture relied on Pytorch, a Python framework for deep 
learning and processing unstructured data and consists of 3 
main models: YOLOv7 for object detection, ResNet50 for 
behavior classification, and DeepSORT for object tracking. 
The first two models demand data labelling as a precondition 
to training and implementing them. This process is vital 
as it allows the models to learn from the labelled data in a 
supervised learning process, as shown in Figure S 3. AI. The 
mentioned algorithm - based on the official repo (17) - is 
performed frame by frame on videos with the goal of detecting 
the desired objects. The second o e enables tracking of the 
objects and differentiating between them based on the objects' 
previous and present positions and moves' estimations. The 
last algorithm is used for behavior classification based on the 
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Figure 1: iMouse System Integration in the Existing animal husbandry Environment. (A) Illustration of the Security and Data Management 
Concept. The three main pillars are the laboratory, the institute network, and the user. The registered user can access the system remotely or 
within the institute network. The data collection and institute network are secured for remote access by implementing an OpenVPN. (B-C) 
Technical drawing of the Home-cage placed in the rack and the implementation of the observation units around the cage. Drawing show ng 
the perspective with (B) or without (C) the Home-cage placed in the rack. Observation units are integrated at four positions: front, right, left, 
and rear (B, C). The observation units are connected to the Compute Unit behind the rack. The Compute nit is connected to the institute's 
electricity- and information network. (D) Simplified flow diagram of the iMouse system's workflow, including the system's Vision. The 
scientist or user will set up the experimental frame (1), while the system will provide the data [2, 3] for the scientist and the AI pipeline (4). Here 
is the connection to the Laboratory management system possible [5]. (E; upper pa t) showing the detailed technical drawing of the integrated 
cameras around the Home-cage. (E, middle part) Live view inside the Home-cage and the four perspectives of the cameras to monitor the 
different activity zones of the mice inside the Home-cage. (E; lower part) Representation of the four cameras and the focus on the Home-cage.
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cropped images of mice on each video frame. The goal is to 
detect mice in a video and classify the behavior of each of 
them. The output of such a process is in both textual and visual 
forms. The function returns a listing of information, such as 
which mouse and which activity, typically in a format called 
JSON (e.g., "labels": ["mouse1", "mouse3"], "behaviors": 
["drinking"," sleeping"], "coordinates": ["0,3 100,200", 
"400,100", "500,600"]). The visual result is displayed as an 
image with the bounding boxes and labels drawn over the 
original image. The textual data is inserted into the database 
alongside the event record to be searched for and referenced 
later. The visual I age is likewise stored alongside the event 
video for later display. Using 260 vi eo events, 130 "real" 
drinking, and 130 "false" events, we reached accuracy levels 
of 89% in the drinking training phase, as shown in Figure S 4. 
After that, we used the longitudinal dataset for post-operation, 
as described in Figure 2, to tackle the ML algorithms.

Results
The digital home cages (DigiFrames) provide remote 
digital observation.

Within the project, one of the main challenges was 
integrating the iMouse solution into the existing structure 
of animal husbandry. Here, the concerns of integrating an 
open-source system for the facility's users and operators had 
to be overcome first. For this purpose, we first developed a 
security concept that ensures the integrity of the research 
and the institute and protects sensitive and valuable data. 
This concept uses a VPN connection, as shown in Figure 
1A. We started the implementation of the digital home cages 
with two DigiFrames on the right side of an ordinary rack 
system, which was used in an ongoing study on the LIV in 
Hamburg (Figure 1 A-C). Figure 1 (B and C) shows that the 
observation and the control unit were integrated around the 
home cages (DigiFrame). This kind of implementation did 
not change the handling processes of the facility employees or 
the user for the daily inspection or the changing of the cages. 
The control units are connected to the institute's internal IT 
system via a LAN connection over a dedicated switch unit. 
A virtual machine (VM) hosts them on the institute server; 
the platform (iMouseHub) is accessible and installed on the 
same VM. Videos recorded by the system are stored on the 
internal physical server, so the user can keep and review the 
files, including identifying metadata. The iMouse platform is 
accessible via the institute network or, if the user is not in 
the institute, via VPN, as illustrated in Figure 1A. We aimed 
to analyze the visibility of a monitoring system for IVC 
home-cages in animal husbandry. This can provide complete 
transparency of ongoing experiments by displaying the day 
and night activity of the animals in their natural habitat 
without disturbing. Therefore, we established the DigiFrame, 
as a retrofit adaptation on the IVC home-cage, regardless of 

the manufacturing company. The design modular DigiFrame 
solution is standardized and can be used for nearly all types of 
home-cages. Nonetheless, in this study, we show the concept 
of the DigiFrame representatively in one rack system, the 
Emerald line from Tecniplast. Figure 1E shows we included 
four observation units (cameras) around the IVC home-cage, 
with the resulting perspectives. As a result, the DigiFrame 
concept gives a complete view into the home-cage at any 
time since we also included a night vision system. According 
to others, we utilized a specialized 920nm light- emitting 
diode (LED), chosen for its imperceptibility to rodents [16].

The iMouse platform facilitates structured digitally 
available observation data sets

In Figure 1D, we show the simplified systems architecture. 
The user of the system creates the input experimentally, while 
the recording will be managed automatically by the system. 
The user can access and view the recordings and perform 
live observation for overall activity analysis or serenity 
assessment. Moreover, the recorded files were used for the 
Machine Learning process, and the algorithm is producing 
reports for AI-based analysis as described previously. After 
logging in, the user can perform live view, recordings, and 
zone-based motion detection, depending on the study and 
the needed dataset (Figure 1D). To handle the system, we 
adapted an existing, scalable, industrial- proven open-source 
software platform with scientifically necessary functions, to 
create the iMouseHub platform with an experimental focus. 
We implemented the possibility to allow and manage multiple 
user access simultaneously. After log-in as shown in Figure 
2A, the user attains directly to the user-specific dashboard. 
Here, all experiments are listed, and the user can access the 
main functions of the system (Figure 2 B-D). The live view 
provides direct access into the observed and the user-assigned 
home-cages, as shown in Figure 2B. Here, all perspectives 
are displayed in parallel. One of the main functionalities of 
the software is the experiment design. Here, the rs can set up 
the observation period of interest by setting up the timeline 
and the included observation units (cameras). Since the 
recording over a more extended period by several observation 
units leads to a large data set, we implemented a more specific 
recording option by creating zones of interest for motion 
detection (Figure 2C). In Figure 2C, two created zones are 
displayed in red, the Eating zone, and grey, the Nesting zone. 
Here, the system provides different options for setting up the 
zones, as shown in Figure 2C, right side. Setting up the zone 
in the experimental setting is crucial for precise recording 
and preventing data waste. During a pre-study period of 
zone evaluation, we tested multiple conditions to determine 
the best options for being sensitive and accurate enough to 
detect all ongoing events but excluding events caused by 
light changes and reflections. Therefore, we implemented a 
pre-setup, listed in Table 1. We used the same settings for 
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Figure 2: Description of the main iMouseHub platform functionalities.

iMouseHub platform screenshot, showing the main functions necessary to set up, view and analyze experiments. (A) Displaying the Dashboard 
of a registered user. The available observation units (physical cameras) for the user are displayed on the upper part. The user can choose the 
husbandry rack and the DigiFrame used for the ongoing experiment. The observation units are shown as dots around the cage; here, the amount, 
the position, and the recording/ monitoring status are mentioned (Legend). The lower part of the dashboard shows the user-specific experiments, 
which can be viewed and edited by the user. (B) Showing the live view page of the system. The user can choose a particular DigiFrame for 
observation. (C). Display the Motion Detection option of the system. The user can create zones of interest from every observation unit, 
specifically for every experiment. The user can name and fit the zones to the area of interest. (D) Shows the Experiment page of the system. 
The system acquires events and collects them into an experiment folder. On the right side, the first day of an experiment is displayed, showing 
the zone-specific events in time on the x-axis plotted against the duration of the events in sum on the y-axis. All observation units being part of 
the experiment are listed on the left side. The listing here is also categorized into the DigiFrames.
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the different zones during the study. Figure 2D shows the 
structure of the experiment section. The upper part gives 
general information about the experiment, including name, 
duration, and user. In the expert mental section, associated 
observation units and their observation status are displayed as 
thumbnails. The recorded events are listed in the center of the 
experimental page, regardless of the recording method (zone-
based or continuous). The events are plotted time-dependent 
by hour per day and duration in seconds. In Figure S1, a 
representative event is shown. The systems provide all event 
metadata information, leading to distinct traceability and 
transparency of all events.

Live viewing allows intensively observing animals 
with high severity levels without interfering with the 
recovery phase of the animals

During the underlying translational study, animals were 
employed as a therapeutic testing model for orthotopic 
transplantation of liver cancer cells. That animal were 
manually scored directly after the operation and within the 
following 72 h every 6 h. This procedure is necessary to 
ensure the recovery of the animals. Here, we also employed 
the camera- based iMouse solution to realize intensive 
observation within 6 hours after the operation and before the 
first manual scoring procedure. At the start of every of the 
four remote observation sessions (1.5, 3, 4, 5 and 6 hours 
post-operation), the user starts the recording for 5 minutes. 
Figures 3 AD show representative pictures of one group of 
animals during their digital postoperative observation. Mice 
were observed regarding their habitus emaciation, unusual 
posture, limb position, and fluid losses (dehydration). 1, 5 
hours post-operation, the animals show a visible slowed and 
laboured breathing frequency. We could observe the bristling 
of hair as well as their altered exploration behaviour. Mouse 
ID1 showed explorative behavior but slow movement and 
cautious gait. Mouse ID2 showed grooming activity, posture 
curvature of the back and narrowed eyes (Figure 3A). Wound 
closure metal clips were visible and in good condition. As 
shown in Figure 3B, both mice showed grooming activity 3 
hours post-operation and exhibited features of high severity 
levels. Mouse ID2 showed slow and limited movement 
behavior. Mouse ID2 showed 4,5 hours post-operation higher 
movement frequencies, movement into the housing zone, 
regular grooming, and eating events. 6 hours post-operation, 
mouse ID2 showed open eyes but less movement, while 
mouse ID1 exerted drinking and eating as well as exploring 
and reaching out behavior. Metal clips were visible and in 
good condition. During observation, gravity conditions were 
normal. During the digital observation, we could acquire the 
main criteria of the postoperative based severity levels and 
the persistence of the wound closer metal clips during this 
time, including grooming of the animals. We summarize the 
information on the remote observation in the graph shown in 

Figure 3E. Here, we used the severity score from 5 = high 
to 1 = no severity, which we concluded from the captures 
shown in Figure 3 A-D and the underlying recorded data 
sets of this observation. Since we could monitor the mice 
in an undisturbed way, we could include more information 
like eating, drinking, nesting, and grooming in the graph to 
give a general health status. We evaluate these findings by 
employing another 3 groups (1x n = 2; 2x n = 3) of mice 
used for orthotopic transplantation and observed equal 
observations. After 6 hour operated animals already showed 
drinking, eating, nesting, and climbing behavior.

Automated recordings via specific zones enable 
multiple activity analyses over time.

To evaluate the relevance of accessing a home-cage 
monitoring system like the iMouse solution during pre-
clinical basic research studies, we employed another small 
round of 3 NSG mice used for orthotopic transplantation of 
liver cancer cells. The 3 female mice were hosted in the same 
cage for three days after maintenance and before operation. 
After the op ration, the mice were returned to their familiar 
home-cage for the wake-up phase. After the wake-up stage 
(20min), the mice were placed back into the same rack but 
into the DigiFrame slot for observation. Next, we started the 
pre-set-up experiment and ran the observation experiment for 
seven days under the same litter and enrichment conditions (no 
houses, no toys, no tunnel, but cellulose). The reason for the 
low enrichment is the usage of metal clips for wound closure 
after the operation. The iMouse system was set for motion-
based recording of climbing, eating, drinking, and nesting 
zones. As shown in Figure 4A, the system recorded activity 
levels higher at night and lower during the day. The system 
summarizes the activity duration and displays those per hour 
and day. Therefore, Figure 4A plots a higher activity level as 
a longer duration. For reviewing the recording and explaining 
the recording modalities given by the system, we selected a 
single event, 731553, which was detected on the 19th of Dec. 
2022 at 08:13:00 by the observation unit EL-C1 R (pointed 
out by the black arrow in Figure 4A). The event includes 
many alarm frames, which are visible in the lower timeline 
(red columns) and refer to multiple activity recordings. As 
shown in the single frame Figure 4B, all three mice are 
active in different zones. Therefore, the reason for motion 
detection is climbing, drinking, and nesting. To describe the 
complexity of the motion-based recording, we analyzed two 
single frames (ID 116 and ID 120), shown in Figures 4 C 
and D. Both frames overcome the threshold for setting an 
alert and, therefore, recording (10%). The single frame 116 
scores 40 as an additional effect from the drinking zone pixel 
changes (16%) and the climbing zone blob changes (30%). 
The single frame 120 scores 35 due to the climbing zone blob 
change (42%). This is in line with the visible movement of the 
mouse in the climbing zone in frame 120 (marked by black 
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E 

Figure 3: Representative captures displaying remote observation of animals with high severity levels during the 6 hours post-operation.

(A - D) Showing wide-angle right-side captures of the observed area in the home- cage. Here 2 mice were shown, which have been monitored 
and recorded 1,5; 3; 4,5- and 6- hours post-operation for 5 min in total. At the last timepoint, 6 hours post-operation, the manual observation, 
and the scoring of the 2 animals takes place to ensure recovery of the animals after operation procedure. Captures were collected from video 
material, which was recorded manually during live observation at the indicated timepoints. To identify the individual animals, they have been 
marks retrospective with boxes when visually detectable (ID1 = red box; ID2 = withe box). On the left side of the Figures 3 A-D captures in 
their original size are displayed, on the right side, close-ups present described observations of the animal’s behaviors. (E) Shows the graphical 
summarization of the obtained observation slots (5min each timepoint) including behavior types, general conditions status leading to the 
severity level score and the timeline, for both monitored mice, mentioned with ID1 and ID2.
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A 

B 

C 

Figure 4: Motion detection and activity recording during postoperative monitoring

(A) Activity raw data analysis provided from the iMouseHub platform after seven days of postoperative monitoring of one DigiFrame using
motion detection. X-axis plots the hours per day; on the y-axis, the duration of the motions during the day is visualized. The days are displayed
from the system in different colors and mentioned in the upper part of the graph. (B) Single f ame extraction of one motion detection plotted
in A, visualized by an arrow pointing to the frame's metadata. On the right side, the single frames are listed in a table. The frame ta le gives
information on the event ID, the Frame ID, the type, the time stamp, the time delta, and the score for every frame. The fundament for the
motion analysis, the type, the time delta, and the score are crucial. On the right side, two single frames (Frame ID 116 (upper frame) and 120)
are pointed out by black arrows. The system t pes both frames as alert frames. During the experiment, motion detection was performed for four
zones (C and D; eating, drinking, nesting, and climbing). In (C), frame ID 116, and in (D), frame ID 120 are displayed, including the system's
motion detection analysis raw data table (on the right). The raw data table shows the pixel differences in all four experiment zones. C shows
that the system mentioned alarm pixels in the climbing (30%) and the drinking (16%) zone, giving an overall score of 40, as also mentioned in
B. In D, the al rt table displays the alarm pixels in the climbing (42%) and the drinking (9%) zone, leading to an overall score of 35.
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Figure 5: Machine Learning training enables analyzing drinking behavior.

Visualizations show metrics displaying the results of the modeling part (A, B, C), an example of the output data plotted in the bar chart 
(D), and examples of the achieved results in the form of information placed on the extracted video frames (E, F, G). (A) Confusion matrix 
displaying the results of the behavior classification on the validation set. Upper-left side shows true positives, the upper-right shows false 
negatives, the lower-left shows false positives, and the lower right shows true negatives. (B) The plot shows the precision, recall, and mAP0.5 
scores during the training process in relation to the iterations. The Y-axis shows the metrics scores, and the X-axis displays the iterations. (C) 
Precision -recall curve determining the tradeoff between the precision and recall for different threshold levels. The Y-axis shows the precision 
score, and the X-axis shows the recall score. In (D), results of individual mouse drinking/not drinking behavior were plotted, displaying three 
mice recorded within 10s at 10 pm on the 15th of Dec. The bars represent the number of events detected in relation to the predicted behaviours 
on a random video. Y-axis shows the number of detections, and X-axis displays mouse ID in one cage simultaneously. In (E-G), representative 
visual confirmations of object detection, behavior classification, and object tracking parts are shown. Extracted frames in night mode are 
displayed on the upper and lower sides in day mode. (E) shows the visual confirmation of the object detection with bounding boxes around 
each detected object. The object’s class names and detection probabilities are displayed on the top-left side of each bounding box. (F) shows 
the combination of the object detection and object tracking parts. A red dot informing about the center point of each detection is placed on 
the center part of each detected object with the unique ID number just next to it. (G) displays the combined results of object detection, object 
tracking, and behavior classification. The predicted behaviour of each detected object is displayed on the upper-left side of each frame in the 
form of short information containing the predicted behaviour and the object's ID number.



Łaz M, et al., J Pharm Pharmacol Res 2023
DOI:10.26502/fjppr.091

Citation: Maciej Łaz, Mirko Lampe, Isaac Connor, Dmytro Shestachuk, Marcel Ludwig, Ursula Müller, Oliver F. Strauch, Nadine Suendermann, 
Stefan Lüth, Janine Kah. The iMouse System – A Visual Method for Standardized Digital Data Acquisition Reduces Severity Levels 
in Animal-Based Studies. Journal of Pharmacy and Pharmacology Research. 7 (2023): 256-273.

Volume 7 • Issue 4 266 

arrows), compared to its position in frame 116, which results 
in the recorded blob changes of the analyzed single frame. 
In comparison, the mouse in the drinking zone is causing a 
lower change in the pixels (9%), which is below the detection 
limit (10%). In conclusion, distinguishing single activities for 
single mice is not viable when setting up multiple zones for 
activity recording. Nevertheless, motion drinking was part of 
both alert frames. As a result, the so far described method was 
to provide activity measurements, as plotted in Figure 4 A. 
This analysis was acquired without disturbing the mice during 
their recovery and post-operation phase. In the underlying 
study, animals were usually monitored every 6 hours within 
the first 72 hours after operation. To reduce the induced stress 
after the operation, it is critical to understand which amount 
of manual observation is needed. Our recorded dataset shows 
a high activity level shortly after the operation, indicating that 
the animals are recovering earlier from postoperative burden 
than expected. Here, the digital observation gives a more 
precise understanding of the needed manual observation.

Training of Machine Learning algorithms with 
automatically recorded data sets provides individual 
identification and behavior classification.

We reanalyzed the longitudinal post-operation dataset 
(Figure 4A) using AI models to understand the potential, 
advantages, and limitations of implementing machine 
learning algorithms within digital observation. We used ML 
algorithms to analyze the video files acquired by motion 
detection. The videos were recorded in both day and night 
modes. The first step was to randomly extract the drinking 
events from the overall activity levels of mice after the 
operation located in the cage for seven days. After the 
extraction, we divided the dataset into a training set and a 
validation set – during the later stages, data extracted from 
the specific video will not be reshuffled but will belong to 
the same set as the video; that would prevent data leakage 
between the training and the validation sets. Next, data 
preprocessing and labelling steps were taken as a precondition 
to implement the ML models, as summarized in Figure 
S2. Figure 5 illustrates the outcomes of the AI modelling, 
encompassing mice detection, behavior classification, and 
visual object tracking. Figure 5 is therefore divided into 
Metrics describing the statistical results of the modelling 
part, the output bar chart generated after analyzing a short 
video file, and the visual confirmation of the achieved results. 
The first part presents metrics that describe the statistical 
results of the modelling process. Figure 5A r presents a 
confusion matrix displaying the classification outcome on 
the validation set. This matrix provides detailed information 
about the classification tasks, going beyond simple accuracy 
measurements. For classification, we utilized 1167 cropped 
frames of mice, with a roughly equal distribution between 
daily and night modes. The dataset comprised 21% positive 

class images ('drinking') and 79% negative class images ('not 
drinking'). The training set constituted approximately 83% of 
the dataset, while the validation set accounted for 17%. We 
employed the oversampling method to balance the classes, 
which yielded favourable results. Ultimately, e achieved 
an accuracy of 94.36%, with a sensitivity metric of around 
88.1% and a specificity metric of approximately 96.08%. It 
can be anticipated that the dataset's classes will become more 
balanced, and the disparity between sensitivity and specificity 
metrics will diminish. Figures 5 B and C display the general 
outcomes of the object detection modelling results. Figure 5B 
p presents the overall results of training the object detection 
model evaluated on the validation set. The chart di plays the 
mean average precision metric calculated at IoU (Intersection 
over Union) threshold amounting to 0.5 (‘mAP0.5’), precision 
metric, and recall metric concerning the iterations during the 
training process. Figure 5C p presents the precision-recall 
curve displaying the tradeoff between precision and recall 
for different threshold levels measured after the last iteration 
of the process of training the object detection model is 
completed. The precision-recall curve was built based on the 
validation set.

The area under the precision-recall curve yields the same 
result as the 'Map 0.5' measured at the end of the training 
process. We relied on 708 video frames for the object 
detection component, with a comparable number of images 
in both day and night modes. The training set encompassed 
82% of the dataset, while the validation set constituted 18%. 
Our conclusions were based on the previously mentioned 
'mAP 0.5' metric. We achieved an approximate mean average 
precision score of 0.819, enabling the successful detection of 
mice in daily and night modes, forming the foundation for 
our subsequent analyses. Figure 5D shows the output data as 
a bar chart. This chart displays the number of mice detections 
categorized by their behavior and unique ID numbers. It 
was generated after analyzing a short video comprising 210 
frames. It displays the individual behaviours of the three mice 
hosted in the cage and can differentiate that mice ID1 and two 
were not drinking while the mouse with ID3 was drinking. 
Figure 5E showcases visual confirmation of mice detection. 
The AI algorithm generates predictions once the confidence 
level reaches a certain threshold (in this case, 49%). Each 
detection is visually demarcated by a bounding box, with 
the confidence level displayed in the top-left corner of the 
box. Figure 5F illustrates the visual confirmation of object 
detection and tracking. Each tracked object is represented by 
a red dot positioned at the center of its respective bounding 
box and a unique ID number adjacent to the center point. The 
tracking of mice relies on their previous and current positions. 
Finally, Figure 5G combines object detection, tracking, and 
behavior classification components. The unique I number of 
each mouse is displayed in the top-left corner of the frame, 
accompanied by the predicted behavior for that mouse.
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Figure 6: Comparative detection for drinking events during post-operation using a systems- based report system and trained ML 
algorithms.

Time-depended duration of detected and recorded drinking events, spanning from the recovery phase till one week after transplantation of 
three mice in their Home-cage. Results are plotted in duration in seconds per recorded event against the hour. The human-based "by-hand 
observation" has proceeded as described in the animal experiment approval (N056/2020). (A) Detection for the drinking zone, extracted from 
the iMouseHub platform. (B) ML algorithms pre-analyzed data set. (C) ML pre-analyzed data set of 36h after transplantation, extracted from 
(B). (D) Represents the plotted data of the first 36h after transplantation reviewed in the sense of “false” and “real” event by the user.
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Implementing the trained Machine Learning 
Algorithms enables the behavior- specific analysis of 
automatically recorded data sets.

To acquire data for a specific activity from a series of zone 
detection experiments, we utilized machine learning (ML) 
algorithms. In Figure 6, we initially filtered the recorded 
events from the same experiment based on the "Motion: 
Drinking" category, and the resulting data is presented in 
Figure 6A. The peak observed on the 19th of Dec. (Monday) 
can be attributed to the weekly cage-changing activity. Since 
this particular analysis aimed to evaluate the accuracy of our 
method, we opted for a manual evaluation of drinking events. 
To streamline the review process, we reduced the number of 
events assessed from 7 to 2 days.

Figure 6D d splays the results after human experts 
reviewed the events. We then implemented the ML algorithms 
based on the events extracted from the iMouseHub platform 
and evaluated the results. Figure 6B d splays the performance 
of the ML algorithms over the period of 7 days. Then, we 
decided to reduce the analyzed period to compare it with the 
period reviewed by the human experts. Figure 6C d splays 
the performance of the ML methods on the period of selected 
two days based on the overall data extracted from Figure 
6B. Then it became possible to compare the performance of 
the ML algorithms (6C) with the results obtained after the 
human experts (6D) reviewed the events. During seven days, 
the AI system recognized mice drinking behavior in 12.46% 
of the video frames that had been previously filtered using 
the system's "motion: Drinking" behavior filter. Additionally, 
the system detected mice drinking during 6.94% of the 
instances in which they were detected overall. The AI system 
confirms the peak of mice drinking activity on the 19th of 
Dec. Generally, mice were observed to drink most frequently 
during evening hours, with significantly reduced drinking 
activity during the day. Utilizing AI algorithms enables us to 
enhance the accuracy and efficiency of the analysis.

Discussion
In general, the scientific community is facing increasing 

challenges regarding animal- based experiments; thereby, 
the reproducibility crisis is a primary driver. Thus, society is 
adjudging, in general, the employment of laboratory animals 
in pre-clinical and clinical research studies [14, 18, 19]. In 
fact, the complex interplay of metabolic pathways and organs 
in a living animal is crucial for valid drug testing studies. 
Therefore, animal-based studies can only be replaced partially 
[2, 20]. However, study results accomplished by conducting 
animal experiments have revealed fundamental issues by 
partially displaying a low reliability, low reproducibility, 
unsatisfying transparency, and a low translation rate to 
the findings in the human being. One reason for the given 
challenges is the standard way of data acquisition and 

interpretation [21, 22]. In pre-clinical research studies and in 
the pharmacological industry, monitoring and data collection 
are mainly performed manually by humans during the 
daytime, which results in non-comprehensible and subjective 
data sets, obtained in the non-active phase of the animals. 
Therefore, it is unsurprising that this kind of methodology 
leads to false results [23]. Here, we see a clear need for 
digitalization to improve and optimize the way of data 
acquisition, which is the fundament for data interpretation. 
In this regard, the defining and implementing objective and 
quantifiable data points (digital biomarkers) is essential [24]. 
A digital monitoring of experiments can fulfil the acquiring 
of digital biomarkers and exclude human bias's influence. 
Besides subjective data interpretation, a prominent aspect of 
the induced human bias is the continuous induction of stress 
by manual observation, which affects the experimental results 
and changes the overall outcome of a study [9].

There are camera-based systems available which can 
fulfil the digital monitoring as described above, but these 
is highly specialized solutions which are not affordable for 
research projects in pre-clinical approaches or appear to 
be self-made solutions [11, 14, 25, 26]. Due to the missing 
standardization of hardware and software, including the 
data collecting and the storage processes, it cannot be used 
as a fundament for an overall and scalable digitalization 
approach. Here, we present an affordable retrofit system for 
remote IVC digital home-cage observation, which can be 
used as a fundament to digitalize animal-based pre-clinical 
studies. This system provides standardized generated digital 
biomarkers for objective, quantifiable data, enhancing 
the precision and efficiency of testing experiments. Our 
study listed the technical details and showed the developed 
handling interface. This was followed by an investigation of 
the feasibility of the monitoring system regarding the remote 
live view and recording function to observe animals within 
an ongoing pre-clinical study. The recorded data was used to 
display this method's advantages and limitations and, finally, 
to train machine learning algorithms aiming to identify 
individual mice and their drinking activities during the 
recording. Finally, we employed the algorithms to analyze 
the obtained data set for drinking behaviour. As an overall 
result, we could show in this study that the iMouse solution 
can be integrated into the research environment, which has 
been identified as a general challenge by the community [24]. 
We showed that using the system by scientific staff within the 
institute and remotely is possible by implementing a VPN- 
connection. The data handling and analysis process, including 
associated metadata information, like the time stamps, had 
been generated for traceability and assignability of raw data, 
assignment by name, date, and time.

The digital observation platform was adapted for the 
study and the presented system and allows the user to set 
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up, view and review single experiments. Various monitoring 
methods and use cases are conductive with the system, from 
manual but digital observation of the single cage via live 
view to recording a specific time frame. In the underlying use 
case, the frequency and duration of drinking events were used 
as digital biomarkers. To access this biomarker, we found a 
feasible solution by using the system's zone-based recording 
function. Video recording was started automatically from 
the system when the change of the image composition was 
detected in the marked zone. However, if changes in their 
image composition were detectable within one observation 
event (recording) in several zones, the system could ensure a 
multi-zone recording but not a single behaviour classification. 
Here, the advantage of Machine Learning was elucidated to 
achieve a single behavior classification out of a multi-zone-
based recording. We showed the training and evaluation of 
the developed algorithms and reached an accuracy level of 
94.36%, a sensitivity level of 88.1%, and a specificity of 
96.08% for the use case parameter drinking. The developed 
object detection processing is valuable for the identification of 
the single mouse since we reached a precision score of 0.819 
after training and validation. Through this, we could achieve 
a significant increase in the precision and quality of the data 
by ML implementation. By combining both algorithms, we 
could ensure the identification during a recorded event. 

Further training and optimization must be done to identify 
mouse ID longitudinal since the algorithm must recognize a 
mouse with ID-specific characteristics. Therefore, we see 
the actual limitation of the system, which will be tackled in 
the following study. Nevertheless, the system's recording 
option and downstream analysis by ML algorithm is visible 
to distinguish the specific parameter out of the whole activity 
set and is, therefore, a valuable advantage for the underlying 
study since the mice can recover without the influence of 
the inspector, but the inspector can follow their well-being. 
For the first time, we showed a complete and standardized 
digitalization approach, which can be used as a blueprint for 
achieving unbiased data within the common mouse home- 
cage as retrofit installation. The need to collect unbiased 
data sets is increasingly important, especially when it 
comes to the approval of new drugs. Here, the failure rates 
of individual substances are very high, especially regarding 
efficacy and safety [27]. Using an unbiased pre-clinical 
measurement of effectiveness and safety can reduce these 
failure rates, as these are the foundation for initiating a 
clinical phase II and, ultimately, phase III trial. In refining 
these results, the interpretation of the results will be more 
precise by accumulating more valuable information, e.g., 
behavioural aspects and activity parameters of experimental 
animals during a crucial phase of the experiments. At this 
point, we generate large data sets, therefore seeking the next 
challenge, handling, and interpreting those big data sets [28]. 
Implementing Machine Learning and Deep Learning will 

give rise to the collected data set. The advantages of ML 
were already used in the fields of translational and medical 
research for screening and analyzing patient-derived data sets 
[29]. In genomics and neuroscience research, as well as in the 
prediction of zoonotic animal movement [30], ML processes 
are used to accomplish research hypotheses and as recently 
shown, to predict and classify animal motions without human 
interaction [31]. We believe that in pre-clinical studies, 
reducing human bias will improve the reliability and quality 
of results and increase animal welfare since the severity 
level of the animal's wounds is increased by the continuous 
induction of stress during the inspection.

Outlook
Our upcoming efforts will concentrate on three main 

parts. Firstly, the iMouseHub platform improvements 
regarding user management and functionality. The overall 
system optimization regarding the further development of 
standardized hardware (camera, night lights) and steering 
software focuses on scalability, data usage (processes, 
usage of codecs etc.), and system handling and service. 
Furthermore, thirdly, the increase of AI and Machine 
Learning accuracy, efficiency, and numbers of automatically 
recognized behaviors, meaning higher prediction levels using 
fewer data sets. On top of that, the differentiation of several 
animals is a criterion we are facing, especially with a focus 
on 3R by banning implants and sensors within the animals. 
Our overarching objective is to train ML algorithms using 
a community-based, incremental learning approach that 
interconnects participating laboratories and speeds up the 
quality of AI development. This approach aims to elevate data 
generation and utilization quality, accuracy, and reliability. 

Study approval
Primary human cancer cells were isolated from resection 

patients suffering from HCC using protocols approved by 
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and were approved by the City of Hamburg, Germany 
(N056/2020).
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SUPPLEMENTARY FILES

S1 Descriptive presentation of a recorded event.

Displays a single frame of a recorded event (video file) in the Home-cage showing experiment-specific zones for, e.g., drinking, climbing, 
nesting, and eating, marked by white arrows. Also shown i the meta-data implementation (Name of the Observation unit, date, and time of 
the recording) at the top, and on the left are the properties listed bellowing to the event. The meta-data shown in the video file does allow 
unambiguous assignments. In the lower part, the timeline for the video is displayed. Within the t meline, the activity peaks are shown in red 
columns. The properties of the video, e.g., the storage path, the time, name, and duration, are uniquely assigned to the video and are shown in 
higher magnification in the lower left. The recorded videos can be played at different speeds to watch specific alerts. The system records the 
events in single frames. Therefore, the user can watch and analyze the event from frame to frame.
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S2: Training of Machine learning algorithms.

In (A), data labeling and annotation were displayed with CVAT and Roboflow. Most of the labeling process is based on the Roboflow 
framework that facilitates open-source functionalities. Roboflow itself is a developer framework focusing on Computer Vision. It enables 
quick and practical steps covering data collection, preprocessing, and model training techniques. (B-D) Shows the export data generated in 
“YOLOv7Pytorch” format—the output in the analytical form represented by the three charts. (B) The graph represents the number of frames 
each mouse detected on the video. (C) represents the general drinking statistics. It represents the sum of frames that all the mice were spotted 
drinking or not drinking. It amounts to the combination of frames representing several mice. (D) presents detailed drinking statistics. It 
represents the number of frames that each mouse was spotted drinking by the unique ID number of each of them. (E) represents output data for 
the single frame shown in (A), including the mouse ID and the probability of the behavior.
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