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Abstract  

Gallbladder carcinoma (GBC) is a malignant tumor in gastrointestinal system. In this review, we mainly focus on 

three molecular levels to illuminate the potential molecular mechanisms in gallbladder carcinoma. First, we review 

genes with mutation and methylation associated with occurrence and development of GBC. Second, we review non-

coding RNA and key differential genes at the transcript level, especially for their interactions. Third, we review 

crucial proteins in GBC. Moreover, we also discuss the challenges of these molecular signatures in clinical 

applications. Finally, we discuss potential application of these crucial genes in prevention, diagnosis and treatment 

of GBC. 
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1. Introduction 

Gallbladder carcinoma (GBC) is the most common biliary tract malignancy and has a poor prognosis, frequently 

presenting at an advanced stage. Prevalence rates of up to 7.5 per 100,000 for men and 23 per 100,000 for women 

have been reported from Andean-area populations, North-American Indians, Mexican Americans and inhabitants of 

Northern India [1]. Fewer than 10% of GBC patients survive more than 5 years after treatment [2]. GBC is hard to 

detect in the early stage, and most patients cannot be cured by surgery after detection because of the invasion of 

cancerous cells. For dozens of years of clinical practice, surgery was the only effective way to treat GBC. However, 

surgery usually cannot cure patients because the pathogeny of GBC has not been completely disclosed and the 

invasive cancerous cells cannot be eliminated surgically. Therefore, novel methods may be important ways to cure 

GBC, such as targeted therapy, which has broad application [3]. 

In this review, we focus on the detection and treatment signatures of GBC with the goal of illustrating the crosstalk 

among DNA, RNA and protein levels (Figure 1), and we expect that this review will provide useful information for 

the clinical diagnosis and treatment of GBC. 

Figure 1: The three molecular signature levels are reviewed.  

2. Genomic Signatures of GBC 

Here, the molecular signatures at DNA level mainly include mutation and methylation. The mutation of coding 

genes provides great advantages in the diagnosis and guidance of treatment. Research in Chile showed that allele-

specific mutations could affect the incidence of GBC [4]. Inherited rare germline mutations had been proved to be 

related to GBC [5] and epidermal growth factor receptor mutations may have advantages for the treatment of 

gallbladder cancer [6]. Furthermore, some key genes, like P53, K-ras, Keap1, PIK3CA, EGFR, P16 and B-raf, have 
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been explored. For example, P53 mutation in exons 5-8 were found in GBC patients and K-ras in codon 12 was 

important in the early stage [7, 8]. Mutation of Keap1 was found in C249Y and S338L led to the loss of Nrf2 

repression activity [9]. Moreover, PIK3CA mutation in exons 9 was found specifically and may be effective in 

targeted therapies [10]. EGFR mutation in exons 19-21 could sustain survival and proliferation of GBC cells [11] 

and high percentage of B-raf mutations in exon 15 was found [12]. Therefore, gene mutation in GBC is meaningful 

for the understanding and treatment of GBC (Table 1). 

The methylation of DNA also greatly contributes to diagnosis and therapy. A recent study showed that the patterns 

of gene promoter methylation allowed them to be considered biomarkers for the early detection, diagnosis, 

prognosis and therapeutic selection [13]. Furthermore, gene-specific DNA methylation (such as APC, CDKN2A, 

ESR1, PGP9.5 and SSBP2) had the same function [14]. Another study in north-central India proved D4Z4 and 

DNF92 subtelomeric sequences to be hypermethylated and hypomethylated, respectively [15]. Aberrant 

hypermethylation of promoter regions was an early, progressive and cumulative event in GBC [16]. One study on 

the methylation profile of GBC showed that the methylation profile was different from that in a healthy individual, 

which proved that methylation was an early event [17]. MYC hypomethylation was only detected in tumoral 

samples and was associated with its protein expression (p=0.029) and MYC mutations were detected in 80% of 

GBC samples [18]. 

Genes Mutation position Ref. 

p53 exons 5,6,7,8 [7] 

k-ras codon 12 (GGT change to GAT) [8] 

Keap1 C249Y/S338L [9] 

PIK3CA exons 9 [10] 

EGFR exons19,20,21 [11] 

P16 exons 1, 2 [8] 

B-raf exon 15 [12] 

Table 1: The study of some key mutation genes in GBC. 

3. Crucial mRNAs and ncRNAs in GBC 

The most effective way to cure GBC is to diagnose the cancer in the early stage, but the disappointing reality is that 

GBC remains difficult to diagnose preoperatively. Furthermore, extension of the disease beyond the mucosa predicts 

a poor chance of long-term survival [19]. Increasing studies have shown that miRNAs, mRNAs and long non-coding 

RNAs are very effective in the diagnosis of GBC. mRNAs in GBC greatly affect physiological and 

pathophysiological conditions. Among these, human telomerase reverse transcriptase (hTERT) mRNA, a catalytic 

subunit of telomerase, had been determined to be effective for diagnosing the nature of the polypoid lesion in the 

gallbladder [20], which can help to diagnose GBC. Survivin, an inhibitor of apoptosis, played a possible role and 
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was associated with poor prognosis [21]. SUMO-1 mRNA may be an interesting target in the diagnosis and 

treatment of GBC based on the differences expression in carcinoma of gallbladder, gallbladder tissues surrounding 

GBC, adenomatous polyp of gallbladder [22]. In addition, research on the positive expression of CD-146 [23], 

VEGF, Flt-1 and KDR [24] were also related to the incidence of GBC.  

miRNA is involved in the initiation and progression of GBC (Table 2), and miRNA expression profiling can be used 

to identify signatures associated with diagnosis, staging, progression, prognosis and response to treatment [25]. 

miRNAs participate in a variety of regulatory pathways, and the expression level of miRNAs is closely connected to 

survival of patients with GBC. For example, patients with a high miRNA-155 expression level had distinctly shorter 

overall survival than patients with a low miRNA-155 expression level [26]. In addition, high miR-155 expression 

was related to aggressive GBC, and it may be a potential prognostic marker and therapeutic target [27]. miR-146b-

5p inhibited growth of GBC by targeting epidermal growth factor receptor [28]. miR-335 may be associated with 

aggressive tumor behaviors and reduced expression of miR-335 may be a useful indicator for clinical outcome and 

could be a therapeutic target for primary GBC [29]. miR-29c-5p, a tumor-suppressive miRNA that may serve as a 

potential prognostic biomarker or therapeutic target for GBC, suppressed GBC progression by directly targeting 

CPEB4 and inhibiting the MAPK pathway [30]. Moreover, miR-133a-3p acted as a tumor suppressor by directly 

targeting the recombination signal-binding protein Jk (RBPJ) in GBC [31]. Another miRNA, miR-26a, may 

contribute to GBC proliferation by directly targeting HMGA2 and might be a prognostic factor and therapeutic 

target for GBC patients [32].  

miRNA Expression(miRNA) mRNA Expression(mRNA) Ref. 

miR-146b-5p down EGFR up [28] 

miR-20a up Smad7 down [44] 

miR-29c-5p down CPEB4 up [30] 

miR-133a-3p down RBPJ up [31] 

miR-26a down HMGA2 up [32] 

miR-122 down PKM2 up [45] 

miR-143-3p down ITGA6  up [46] 

miR-101 down ZFX up [47] 

miR-30d-5p down LDHA up [48] 

miR-182 up CADM1 down [49] 

miR-30b down NT5E up [50] 

miR-340 down NT5E up [50] 

miR-125b-5p down Bcl2 up [51] 

miR-143-5p down HIF-1α up [52] 

miR-33a down IL-6 up [53] 
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miR-223 down STMN1 up [54] 

miR-218-5p down PRKCE up [55] 

Table 2: Some abnormal miRNAs in GBC and their target mRNAs. 

Through recent research, long non-coding RNAs also have been determined to play important roles in GBC 

pathogenesis [33]. Long non-coding RNA SPRY4-IT1 promoted GBC progression and may serve as a candidate 

target for new therapies in human GBC [34]. In addition, CRNDE was found an important contributor to GBC 

development as a scaffold to recruit the DMBT1 and c-IAP1 and affect PI3K-AKT pathway [35]. Furthermore, 

upregulation of HOXA-AS2 promoted proliferation and induced epithelial-mesenchymal transition in GBC, and it 

could be as a potential therapeutic target to inhibit GBC metastasis [36]. Another study showed that UCA1 

promoted GBC cell proliferation and metastasis in vitro and suppressed the transcription of p21 and E-cadherin by 

recruiting an enhancer of the zeste homolog [37]. Moreover, lncRNA-H19 was a novel prognostic factor for GBC 

and might play important regulatory roles in the epithelial-mesenchymal transition (EMT) process [38]. 

Overexpression of lncRNA-LET conferred a proliferative advantage to tumor cells under hypoxic conditions. The 

ectopic expression of lncRNA-LET led to promotion of cell cycle arrest at G0/G1 phase and induction of apoptosis 

under hypoxic conditions. Abnormal expression of lncRNA-LET also suppressed gallbladder tumor growth, and 

lncRNA-LET was determined to a potential prognostic marker and therapeutic target for GBC [39].  

Indeed, long non-coding RNAs have important interactions with mRNAs and miRNAs (Table 3 and Figure 2). For 

example, H19 regulated FOXM1 expression by competitively binding endogenous miR-342-3p [40] and GCASPC 

and miR-17-3p interaction regulated cells proliferation [41]. LINC00152 negatively regulated Bag-1 as a molecular 

sponge for miR-138 [42] and CCAT1 negatively regulated Bmil by spongeing miR-218-5p [43]. 

LncRNA Expression 

(LncRNA) 

miRNA Expression 

(miRNA) 

mRNA Expression 

(mRNA) 

Ref. 

LINC00152 up miR-138 down HIF-1a up [42] 

CCAT1 up miR-218-5p down Bmi1 up [43] 

HOTAIR up miR-130a down c-Myc up [56] 

H19 up miR-194-5p down AKT2 up [57] 

H19 up miR-342-3p down FOXM1 up [40] 

MALAT1 up miR-363-3p down MCL-1 up [58] 

MALAT1 up miR-206 down KRAS up [59] 

MALAT1 up miR-206 down ANXA2 up [59] 

PAGBC up miR-511 down PIK3R3 up [60] 

PAGBC up miR-133b down SOX4 up [60] 
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TUG1 up miR-300 down TGF-β1 up [61] 

MINCR up miR-26a-5p down EZH2 up [62] 

GCASPC down miR-17-3p up 
pyruvate 

carboxylase 
up [41] 

Table 3: Some examples of the relationship between lncRNAs and micRNAs/mRNAs in GBC. 

           

                                                           mRNA                lncRNA         miRNA 

Figure 2: Regulation network of some lncRNAs, mRNAs and miRNAs in GBC. 
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4. Crucial proteins in GBC 

Compared with molecules above mentioned, crucial proteins also contribute to diagnosis and treatment of GBC [65, 

72]. The modification of proteins, mainly including protein phosphorylation and acetylation, may contribute to 

abnormal expression and/or function. Many proteins impacting on GBC have been reported (Table 4).  

Protein Expression Tissue Ref. 

Bcl-2 up gallbladder tissue [63] 

c-erb-B2 up gallbladder tissue [64] 

MMP-2 up gallbladder tissue [65] 

TIMP-2 down gallbladder tissue [65] 

VEGF up gallbladder tissue specimens (formalin-fixed and 

paraffin-embedded) 

[66] 

FHIT down gallbladder tissue [67] 

MLH1 down gallbladder tissue [67] 

retinoblastoma up gallbladder tissue [68] 

p16INK4 down gallbladder tissue [68] 

S100A4 up gallbladder tissue [69] 

P53 up gallbladder tissue [69] 

p27 down gallbladder tissue [69] 

P16 down gallbladder tissue [69] 

RB down gallbladder tissue [69] 

Smad4 down gallbladder tissue [69] 

FHIT down gallbladder tissue [69] 

E-cadherin down gallbladder tissue [69] 

promyelocytic leukemia 

(PML) 

down gallbladder tissue [69] 

CDX2 up GBC cell lines [70] 

cyclin D1 up gallbladder tissue specimens (formalin-fixed and 

paraffin-embedded) 

[71] 

p16 down gallbladder tissue specimens (formalin-fixed and 

paraffin-embedded) 

[71] 

retinoblastoma up gallbladder tissue specimens (formalin-fixed and 

paraffin-embedded 

[71] 

MUC1 mucins up gallbladder tissue [72] 

MUC4 up gallbladder tissue [73] 
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CD133 up gallbladder tissue [74] 

transcription factor specificity 

protein 1 (SP1) 

up gallbladder tissue/GBC-SD cell lines [75] 

Table 4: Some key proteins in GBC. 

For example, the overexpression of Bcl-2 could promote tumor cell differentiation [63]. The overexpression of c-

erb-B2 was related to the worse prognosis of GBC [64] and the ratio of MMP-2/TIMP-2 may be a new significant 

marker in early diagnosis [65]. Reduced Fhit expression might be involved in the development of GBC and be 

correlated with Mlh1 expression [67]. The high expression of retinoblastoma protein inhibited P16INK4 protein and 

related to the decreased survival in GBCs [68]. Furthermore, the overexpression of S100A4, P53 and the loss of p27, 

p16, RB, Smad4, FHIT, E-cadherin and PML expression led to poor survival. PML and P53 were found effective 

therapeutic targets for the disease [69]. The research on GBC cell lines showed that the overexpression of SP1 [75] 

and CDX2 appeared in most GBC cell lines, and the expression of CDX2 showed a relationship with the expression 

of MUC2 [70]. A study in gallbladder tissue specimens (formalin-fixed and paraffin-embedded) showed that cyclin 

D1 had a negative-correlation with P16 and affected the early stage of GBCs [71]. As mentioned above, the 

expression of protein may correlate with each other and affect disease diagnosis. 

Phosphorylation also contributed to diagnosis and treatment of GBC [76]. For example, CD133 had a role in the 

migration of GBC cells through phosphorylation [74] and MUC4 interacted with ErbB2 to cause tumor growth, 

which was related to the hyperphosphorylation of ErbB2, MAPK and Akt [73]. Research on cirsimaritin showed that 

the pro-apoptotic effect of cirsimaritin could be reversed by down-regulating the phosphorylation of Akt [77] and 

affected the GBC-SD cell line. In addition, the protein phosphatase PHLPP was found to help treat GBC by 

inhibiting survivin phosphorylation [78]. Rise of CCK1 receptor expression is associated with the increase of protein 

lysine acetylation [79], showing that GBC can be treated by using histone deacetylase inhibitor [80]. 

5. Challenges and Conclusion 

Although many factors are related to GBC, but GBC still cannot be diagnosed accurately in clinical settings. A 

clinical experiment in the Queen Mary Hospital, University of Hong Kong showed that 61% of patients had an 

inaccurate diagnosis [81], which showed that diagnosis is difficult in the early stage. Operative resection is still the 

only way to cure GBC, but unfortunately, only 38% of patients have been eligible for resection during the last 20 

years. Furthermore, one report showed that none of the patients without surgery survived more than 5 years [82]. 

Therefore, the challenges of treating GBC are serious because only surgery in the early stage can cure GBC, but 

most patients are diagnosed at the intermediate or advanced stage. 

Because of the current challenges and problems in the diagnosis and treatment of GBC, new methods for treating 

GBC must be developed. To this end, targeted therapy may be an effective way to cure GBC. Targeted therapy has 
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been proved to affect GBC in clinical trials in the Clinical Center for Targeted Therapy at the MD Anderson Cancer 

Center [83]. GBC still cannot be readily cured by targeted therapy, especially in the advanced stage, and almost all 

patients who do not have surgery currently die within 1 year following clinical treatment [84]. Chemotherapy is 

another adjuvant therapy for GBC in clinical settings. During a randomized controlled study, patients who 

underwent chemotherapy after surgery had a higher 5-year survival rate than those with surgery alone. However, 

adverse drug reactions, such as anorexia and leukopenia, were usually associated with chemotherapy [85].  

Research on the pathogenesis and prognosis of GBC has made great progress, and genes have been determined to be 

possible markers for prognosis. Lupeol in the EGFR/MMP-9 pathway was proved to induce apoptotic cell death in 

GBC, which can be used as a potential treatment method [86]. Long non-coding RNAs of LINC00152 and CRNDE 

in the PI3K-AKT pathway contribute to process of GBC carcinogenesis, and PI3K/AKT may be a potential 

therapeutic target for GBC [75, 85]. 

Taken together, in this review, the multiple molecular signatures in GBC were concluded. We hope that these 

potential signatures can provide some references for diagnosis and therapeutic of GBC. 
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