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Abstract
Peripheral nerve injury results in severe loss of motor and sensory 

function in the affected limb. The gold standard for peripheral nerve repair 
is autologous nerve grafts, but their inherent drawbacks limit their use. 
Satisfactory clinical data are yet to be obtained using tissue engineered 
nerve grafts with neurotrophic factors introduced in these grafts for nerve 
repair. Therefore, peripheral nerve regeneration still remains a challenge 
for clinicians. Exosomes are secreted nanovesicles from the extracellular 
membrane. They are critical for communication within the cell and 
play a crucial role in the pathologic process of the peripheral nervous 
system. Recent research supports the role of exosomes in exhibiting 
neurotherapeutic effects through axonal growth, Schwann cell activation, 
and regulating inflammation. Indeed, the use of “smart” exosomes by 
reprogramming or manipulating the secretome contents and functions are 
rising as a therapeutic option for treating peripheral nerve defects. This 
review provides an overview on the promising role of exosomes in the 
process of peripheral nerve regeneration. 
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Introduction
Peripheral nerve injury result in lifelong disability that reduces the quality 

of life of more than one million people worldwide [1,2]. The peripheral 
nervous system is able to regenerate to a certain degree after peripheral nerve 
injury. The preferred method of peripheral nerve repair is through surgery 
using nerve grafts. Autologous nerve graft is the gold standard therapy for 
peripheral nerve injury [4,5]. The clinical use of autologous nerve grafts, 
however, has many drawbacks such as mismatch of length, neuroma 
formation, and availability of donor nerves [6]. Additionally, less than 50% 
of patients that undergone peripheral nerve graft surgery achieved sensory 
and motor recovery [7]. Natural synthetics and biomaterials have also been 
developed as potential substitutes for autologous nerve grafting, however, 
these substitutes fail to achieve satisfactory clinical results [8]. Although major 
advances have been made in the field of nerve regeneration, peripheral nerve 
repair still remains a challenge and exploring novel factors becomes critical to 
further improve the therapeutic effects of peripheral nerve injury. Exosomes 
are nano-sized vesicles that are secreted into the extracellular environment 
by neurons, osteocytes, and mesenchymal stem cells (MSCs) [9]. Exosomes 
regulate intercellular signaling and communication by delivering nucleic 
acids, proteins, and lipids to the recipient cell [10]. Exosomes are ubiquitous 
in body fluids such as urine, amniotic fluid, blood, and saliva. Their ability 
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to function as modulator of target cells makes it crucial for 
maintaining homeostasis in multicellular organisms [11,12]. 
Exosomes play a critical role in intercellular communication, 
maintaining homeostasis, and regeneration of the nervous 
system [13]. Axonal regrowth involves a highly intricate 
process involving the activation of Schwann Cell (SC) and 
regulation of inflammatory processes [14]. Recent research 
reveals exosomes participating in these regenerative 
processes while exerting neuroprotective effects [15]. 
Exosomes are under investigation as a promising therapy for 
treating peripheral nerve injury. In this review, we provide 
an overview of the current research about the function of 
exosomes as well as their emerging role in peripheral nerve 
repair. 

Exosomes
Extracellular vesicles (EVs) are secreted by many cell 

types including MSCs, epithelial cells, immunocytes, and 
SCs [16]. EVs are membrane contained vesicles that can 
be divided into microvesicles (MVs) and exosomes [17]. 
Exosomes are created by inward budding inside endosomes, 
which result in the formation of multivesicular bodies 
(MVBs) that are able to fuse with the plasma membrane 
and released outside the vesicle, while MVs are budding 
vesicles that shed directly from the plasma membrane [18]. 
Additionally, exosomes can be differentiated from others by 
size. Exosomes are nanosized membrane vesicles that range 
from 40-150 nm in diameter, whereas MVs are roughly 100 
to 1000 nm. The electron microscopic studies revealed the 
exosome morphology, which is described as “cup-shaped” 
[19]. Exosomes are endocytic vesicles derived from the 
membrane with a lipid structure consisting of phospholipids, 
cholesterol, ceramide, and saturated fatty-acyl chains [20,21]. 
The bilayer membrane enables protection and provides a 
controlled microenvironment allowing cargo to be moved 
across vast distances [22]. Secretion of these exosomes 
involves an intricate endocytic pathway. This begins with 
invagination from the plasma membrane into the cytoplasm. 
As the endosome buds inward to form intraluminal vesicles, 
they mature. At this stage in development, endosomes are 
called multivesicular bodies (MVBs). The MVBs then fuse 
with the cell membrane and released into the extracellular 
space. Some MVBs are transported to lysosomes where 
they are degraded [23]. The underlying mechanism of the 
biogenesis of MVB and intraluminal vesicle involves two 
unique molecular processes, namely the endosomal sorting 
complex needed for transport (ESCRT) and the ESCRT-
independent pathway [24]. As exosomes are released into the 
extracellular environment, they can interact with lipid ligand 
receptors and are subsequently internalized through fusion 
within the cell membrane (Figure 1) [23].

Furthermore, exosomes are abundant in a variety of 
specific proteins such as annexins, flotillin, and nucleotide 

guanosine triphosphatases (GTPases) that all play a critical 
role in membrane fusion and transport. Heat shock proteins 
(Hsp90 and Hsp70) also modulate intracellular trafficking. 
Tetraspanins (CD82, CD81, CD63, CD9) can regulate cell 
migration and signaling [25,26]. Exosomes also contain 
messenger RNA (mRNA), noncoding RNA (ncRNA), 
and micro-RNA (miRNA). These RNAs can be used and 
translated into recipient cells and can target genes in other 
cells [27]. Exosomes are emerging as a prominent form of 
cellular communication within the nervous system, mediating 
nerve remodeling, nerve protection, and synaptic plasticity 
[28]. Exosomes also have the potential as a therapeutic 
delivery system as they are able to pass the blood-brain 
barrier and deliver cargo to specific target cells [29]. Growing 
evidence also suggest the role of exosomes in promoting 
nerve regeneration in the peripheral nervous system [30]. The 
engineered exosomes, that are called “smart exosomes” by 
modifying the exosome-secreting cells or directly modifying 
isolated and/or purified vesicles, could effectively be used in 
the therapy following nerve injury [31]. This makes exosomal 
therapy a pivotal topic in the treatment of peripheral nerve 
injury.

Exosomes and Schwann Cells
Schwann cells (SCs) are the glial cells of the peripheral 

nervous system [32]. They provide structural and mechanical 
integrity through establishing myelin sheaths around axons 
while increasing signal transmission velocity [33]. Following 
peripheral nerve injury, SCs dedifferentiate into progenitor 
type cells that involve in repair and undergo a phenotypic 
transformation [34]. These cells along with macrophages 
terminate myelin debris and create a microenvironment that 
allows axon repair to take place [35]. Additionally, cytokines, 

 

Figure 1: The process and structure of exosome secretion. The in-
ward budding of the plasma membrane forms an early endosome. As 
the endosome matures, intraluminal vesicles are formed, and sub-
sequent invagination leads to the formation of multivesicular bod-
ies (MVBs). MVBs fuse with lysosomes and plasma membranes to 
release intraluminal vesicles into the surrounding environment as 
exosomes facilitating cell-cell and cell-extracellular matrix commu-
nication via its cargo delivery of protein, lipids, mRNA, and miRNA 
enclosed within their bilipid layer and induce therapeutic effects in 
peripheral nerve regeneration.
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neurotrophins, and growth factors are synthesized from SCs 
to increase the survival of neurons [36]. As newly created 
axons come into contact, SCs undergo redifferentiation 
and accomplish nerve repair [37]. Recent research reveals 
exosomes can promote peripheral nerve repair through 
upregulating SCs. One study showed adipose MSC-derived 
exosomes are able to enhance the myelination, migration, 
and proliferation of SCs after they were internalized by 
SCs. This was accomplished by increasing the expression 
of the corresponding genes in vitro. A similar in vivo 
experiment revealed that the group treated with exosomes 
optimized functionality of SCs and led to increased rates of 
remyelination, axonal regrowth, and muscle restoration as 
opposed to the control group [38]. Additionally, it has been 
studied that adipose MSC-derived exosomes can decrease 
the rate of autophagy of SCs through downregulating 
karyopherin subunit α2 (Kpna2) expression via miRNA-26b. 
This ultimately has shown to improve the repair process of 
peripheral nerve injury [39]. MSC-derived exosomes can 
also improve proliferation of SCs through upregulation of 
anti-apoptotic Bcl-2 mRNA levels while downregulating 
the pro-apoptotic Bax mRNA levels. This subsequently 
provides a neuroprotective function following peripheral 
nerve injury [40]. Furthermore, adipose MSC-derived 
EVs has a promotional effect on SCs and can improve SC 
proliferation in a dose-dependent manner. This was done via 
adipose MSC-derived EVs entering SCs through endocytosis 
as opposed to binding or fusing with the plasma membrane 
of SCs. The miRNAs contained within the EVs impact 
gene expression in SCs in response to nerve damage [41]. 
Additionally, adipose MSC-derived exosomes were also 
noted to demonstrate SC proliferation and remyelination in 10 
mm nerve defects in peripheral nerve injury murine models 
[42]. Collectively, these studies demonstrate exosomes 
exerting a neuroprotective effect by influencing SCs and can 
be a potential therapy for peripheral nerve injury. 

Exosomes and Axonal Regeneration
Axonal regrowth has been a subject of study as it is 

essential for functional recovery in damaged nerves. Axons 
must extend across damaged nerve sites and reconnect with 
distal nerves. Growth cones are distal tip expansions of 
regenerated axons that are able to guide and sense growth [43]. 
Filopodia are membranous protrusions that are extended by 
growth cones and lamellipodia interact with the surrounding 
environment [44]. The growth cone is able to sense the 
surrounding milieu through specialized structures like actin, 
neurofilament cytoskeleton proteins, and microtubules, all of 
which mediate axonal growth [45]. During peripheral nerve 
repair, adhesion molecules are expressed and can influence 
SC migration [46]. During earlier stages of this process, 
axons act as a guide for SC migration in the proximal nerves 
[47]. Axons are critical for SC repair and studies reveal 
when SCs lack axonal contact for long periods of time, their 

regenerative capacity diminishes [48]. Exosomes derived 
from SCs can modulate the regeneration process of axons. 
It has been established that exosomes from dedifferentiated 
SCs were internalized by axons which facilitated the survival 
of dorsal root ganglion neurons in vitro. Furthermore, 
regeneration of sciatic nerves has been researched and their 
ability to regenerate was further enhanced using SC derived 
exosomes. These exosomes contributed to a pro-regenerating 
phenotype of growth cones that inhibited the function of 
GTPase RhoA, a protein involved in growth cone collapse 
[49, 50]. It was also shown that the shift of SCs into a repair 
phenotype was accomplished by modifying the miRNA 
cargo of exosomes. Increased levels of miRNA-21 exhibited 
regenerative characteristics and are a key factor in repair SC 
exosomes. This regenerative capability was accomplished 
by downregulating PTEN and PI3-kinase activation in the 
nervous system [51]. Other than SC-derived exosomes, 
exosomes from MSCs have also shown promising data 
to regenerate nerves. For example, adipose MSC-derived 
exosomes increased rates of neuron outgrowth of dorsal root 
ganglion cells in vitro and enhanced repair of sciatic nerve 
injury [52]. Moreover, it has been studied that bone marrow 
MSC-derived exosomes increased axonal length and neurite 
growth through miRNA-mediated regulation of repair genes 
[53]. With these studies and their different results, it becomes 
imperative to explore the appropriate dosage of exosomes 
to achieve optimal repair in nerves. Another study revealed 
that fibroblast-derived exosomes modulated neurite growth 
and elongation of murine retinal ganglion cells by promoting 
Wnt10b and activating mTOR [54]. Gingival MSC-derived 
exosomes have also shown to increase dorsal root ganglion 
axon outgrowth [55]. Overall, these studies demonstrate 
the crucial role exosomes play in axonal regrowth and 
regenerative signaling. 

Exosomes and Regulating Inflammation
Nerve repair and regeneration involves a pathologic 

process of inflammation which influences the prognosis 
of peripheral nerve injury [56]. SCs secrete a variety of 
chemokines and inflammatory cytokines during Wallerian 
degeneration. Macrophages are then recruited to enhance the 
clearance of myelin debris while initiating an inflammatory 
cascade [57]. Macrophages play an imperative role in 
coordinating inflammation and the events involved for 
successful nerve regeneration [58]. Macrophages possess 
heterogenous phenotypes which include M1 activating cells 
and alternatively-activated M2 cells [59]. The M1 phenotype 
is able to secrete IL-1β, IL-6, TNF-α, and IFN-γ which results 
in further nerve damage. The M2 phenotype, however, is 
involved in the inhibition of the inflammatory response by 
secreting cytokines like IL-10 and IL-4 [60]. Their release 
of various growth factors also allows M2 macrophages to 
have a neuroprotective effect [61, 62]. During the earlier 
stages of inflammation, macrophages initially present as the 
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endothelial cells through exosomes generated from MSCs 
and subsequently can improve vascularity post peripheral 
nerve injury [75]. Exosomes have also been shown to 
induce angiogenesis. A study involving intravenous infusion 
of MSC-derived exosomes exhibited improved neurite 
remodeling, angiogenesis, and overall recovery [76]. Similar 
results were shown in another study where MSC-derived 
exosomes promoted neurogenesis and angiogenesis in the 
murine models of peripheral nerve injury [77]. Moreover, 
bone marrow MSC generated exosomes have been shown to 
decrease ischemic brain injury by increasing revascularization 
of endothelial cells and decreased rates of neuron apoptosis 
through delivering miRNA-29b-3p. This might subsequently 
activate PTEN-mediated Akt pathway to carry out its 
protective and angiogenic promoting effects [78]. Endothelial 
progenitor cell generated exosomes have also reduced rates 
of neuron apoptosis and improved revascularization through 
the miR-126/PI3k pathway [79]. In summary, these studies 
portray exosomes derived from MSC origin as mediators 
of vascular endothelial cells which improve blood supply 
to peripheral nerves. Exosomes from MSC can provide 
new avenues of therapy for peripheral nerve injury repair 
through enhancing angiogenesis. However, further studies 
are needed to elucidate the full effects exosomes may have on 
angiogenesis in the setting of peripheral nerve injury. 

Challenges using Exosomes
Recent research revealed exosomes being a top contender 

for promoting peripheral nerve regeneration after peripheral 
nerve injury. Exosome therapy is expected to be a feasible 
therapeutic option; however, challenges remain that need to be 
addressed. The methods of obtaining and purifying exosomes 
are a major setback that hampers the application of exosomes 
in a clinical setting. Several kits for isolating exosomes have 
been created to combat this setback which have been proven to 
be effective and reliable [80]. Additionally, the heterogeneity 
of the cargo exosomes poses a challenge due to the variety 
of functions that various proteins and RNA molecules 
possess. Thus, regulation of exosomes to the desired target is 
a challenging process. Administration routes have also been 
a point of concern for exosome therapy. The effectiveness 
of administration in a clinical setting needs to be further 
studied. Research has shown nerve regeneration increased 
when exosomes were integrated into tissue engineered nerve 
grafts [81]. Exosomes also have the potential to replicate and 
propagate transmissible diseases and its mass production 
should not be ignored to ensure the safety of patients. Much 
work has yet to be done to overcome the various limitations in 
the therapeutic application of exosomes in a clinical setting. 

Conclusion
Exosomes have been widely studied as main modulators 

of tissue regeneration [82]. Exosomes exert their therapeutic 
effect by mediating intercellular communication. Their 

M1 phenotype and later transform into M2 which decreases 
inflammation [63]. The inflammatory cascade aids in 
peripheral nerve repair, however, excess inflammation can 
lead to insufficient regeneration (64). With an appropriate 
regulation of the inflammation that follows peripheral nerve 
injury, neuron apoptosis and axon demyelination can decrease 
[65]. Therefore, targeting the inflammatory response for 
peripheral nerve injury has become a therapeutic intervention 
that has been studied. Exosomes can modulate the immune 
reaction to peripheral nerve injury [66]. For example, MSC-
derived exosomes have been shown to harness similar 
anti-inflammatory effects as parent cells, which provides 
a favorable environment for nerve regeneration [67]. One 
study demonstrated umbilical cord MSC-derived exosomes 
to promote healing of spinal cord injury through modulating 
the inflammatory response in the region of damage. Their 
findings illustrated that exosomes can influence macrophage 
polarization from M1 phenotype to M2 phenotype [68]. 
It has been shown that exosome therapy can also improve 
recovery by down regulating inflammatory cytokines like 
IFN-γ, IL-6, and TNF-α. Furthermore, bone marrow MSC-
derived exosomes demonstrated neuroprotective effects by 
decreasing inflammation in murine models with traumatic 
brain injury through influence macrophage polarization 
[69]. Additionally, these exosomes have also been shown to 
modulate neurovascular remodeling and increased recovery 
in the diabetic murine model with peripheral neuropathy 
[70]. In a study using a sciatic nerve injury murine model, 
umbilical cord MSC-derived EVs were researched on 
peripheral nerve regeneration. This study concluded that 
EVs can decrease levels of IL-6, IL-1β, and increase anti-
inflammatory cytokines such as IL-10 at distal nerve stumps 
[71]. SC-derived exosomes have also shown promising data 
and played a crucial role in modulating the inflammatory 
phase of nerve regeneration through the presence of 
-Crystallin B and galectin-1 [72]. Overall, research on 
exosomes in peripheral nerve repair has demonstrated that 
control of neuroinflammation can lead to increased recovery 
in peripheral nerve injury. 

Exosomes and Vascular Regeneration in 
Peripheral Nerve Repair 

The vascular network is imperative for nerve regeneration 
as it facilitates axonal growth during nerve repair [73]. 
Maintaining vascular integrity becomes integral following 
peripheral nerve injury and is another major target for therapy. 
MSC-derived exosomes have gained attention as paracrine 
promoters for angiogenesis and have been studied as a 
possible therapy option for peripheral nerve repair. Exosomes 
from pluripotent stem cell-derived mesenchymal stem cells 
influence angiogenesis by initiating the PI3K/AKT pathway 
in cells of endothelial origin [74]. Research has shown that 
miRNAs that are proangiogenic can be transported within 
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ability to transfer genetic material, proteins, and neurotrophic 
factors to axons allows restoration of homeostasis in the 
microenvironment of peripheral nerve injury. This allows 
axonal regrowth, hence promoting recovery after peripheral 
nerve injury. The regenerative effect of exosomes reinforces 
the paradigm that promoting nerve repair by MSCs is 
mediated by a paracrine pathway and provides new avenues 
for therapies [83]. The use of MSC exosomes can reduce the 
issues of stem cell transplant and in the future MSC exosome 
therapy represents a promising therapy for peripheral nerve 
injury repair. Although many studies show the use of MSC 
exosomes for peripheral nerve regeneration is effective, 
it would be best to reprogram or manipulate the secretome 
contents and functions by modifying the exosome-secreting 
cells or directly modifying the isolated and purified vesicles 
to develop the engineered exosomes for peripheral nerve 
regeneration. Obviously, further research is yet to be 
conducted to fully elucidate the potential of exosome therapy 
in a clinical setting. 
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