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Abstract

Background: It has been almost 3.5 years since the first SARS-CoV-2
virus was first reported in the city of Wuhan. While the FDA has approved
a number of drugs for Covid-19, the presence of the disease and its
symptoms underscores the continued demand for an improved treatment
option to effectively address the existing challenges. In this study, our goal
is to identify pivotal protein targets, strongly correlated across lung, blood,
and peripheral blood mononuclear cell (PBMC) transcriptomics datasets,
to suggest promising targets for comprehensive therapeutic development
across multiple tissues.

Methods: Transcriptomics datasets were retrieved from Geo Omnibus
(GEO). We use relevant datasets to identify the most significant and
differentially expressed genes and integrated them into a Research
graph called CovInt (a network of Covid-19) that includes all biological
molecules associated in the network with their directionalities collected
from publicly available and patient-derived multi-omics datasets from
millions of unstructured and structured datasets such as publications,
patents, grants, preclinical and clinical reports. CovInt utilizes powerful
traversal, clustering and centrality algorithms to identify key connections
in the pathophysiology of the disease and its treatments.

Results: Leveraging 3M+ connections, important interactions among key
42 drugs, 962 biological processes and molecular functions, 926 pathways,
897 phenotypes, 7103 proteins, 61 tissues were identified. This narrowed
interactome was explored further using PageRank, lovain detection
& strongly connected components (SSC) algorithms. In our analysis,
63 strongly connected communities were identified which gives us an
understanding of hidden underlying mechanisms. We further explored this
network to identify and triangulate the key proteins, metabolic pathways
and associated risk factors that can regulate moderate to severe Covid-19
infections.

Conclusions: Our study suggests that CREB3L1, SOX2, UBR4, FLNC,
ITPA, DLG3, ING4, TECR, NADH, SMAD, HUWE1, DDX17, CREBBP,
RELA, HPSE, TRIM33, TNFSFI13B are the key regulator proteins in
PBMC, Blood and Lungs in Covid19 patients. These proteins are involved
in ER-stress, cytokine signaling, T-Cell activation, Activation of NLRP3
Inflammation by SARS-CoV-2, JAK-STAT, IL-4, IL-13 pathways,
MAPK signaling pathways, Activation of NMDA receptor & postsynaptic
events and TGF-p signaling pathways. This set of proteins needs to be
further investigated in experimental studies for better therapeutic design
of Covid-19.
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Introduction

The ongoing COVID-19 infection is still a major concern
for most of the country and has made a serious impact on
worldwide public health. The world has seen a number of
mutational variants and as a consequence huge mortality and
cases of hospitalization. The virus mostly affects the human
breathing and immune system which ultimately leads to
respiratory distress syndrome (ARDS), cardiac issues [1],
multi-organ failure and eventually death [2]. The SARS-
CoV-2 belongs to the Betacoronavirus group and in the past
few years, we have seen how frequently this virus is constantly
changing through multiple mutations and emerging as a new
therapeutic challenge to the world by showing resistance to
the available therapeutics and prevention vaccines [3 — 5].
We believe there are high chances that in future as well these
viruses will get mutated and may cause serious health causes.
Since December 2019, the virus has mutated significantly
and transmitted rapidly all over the world. A number of
mutations have been reported to date for SARS-CoV-2
which is classified by WHO and CDC in four different types
(1) Variant Being Monitored (VBM) (2) Variant of Interest
(VOI) (3) Variant of Concern (VOC) and (4) Variant of High
Consequence (VOHC). As per European Centre for Disease
Prevention and Control (ECDC), as of 17th March’2022,
1,145,785, alpha and 40,534 Beta, 4,226,252 Delta and
2,277,587 Omicron variants of concerned genomes have
been isolated and processed [6]. The Variant of Concern
is a class of variants that are spreading fast and making a
severe impact on public health. Currently, the Beta (B.1.351),
Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.1.529)’
variants are the only variants that fall in this group.

To date, a total of 5,401 interventional clinical studies are
reported on clinicaltrial.gov and out of which 364 studies from
Phase3 and 100 clinical studies from Phase-4 are completed.
However, only limited therapeutics are approved so far to
treat mild to moderate SARS-CoV-2 infection with huge
unmet needs [7, 8] and treatment benefits with the frequent
mutation are still a matter of concern. Due to the heterogeneity
among various populations and diversification of SARS-
CoV-2 mutations, it is an alarming situation to understand
the crucial target engagement of the disease and uncover
various underlying disease pathophysiology based on disease
severity, stage, tissues, ages and patient populations. Several
researchers have reported the importance of transcriptomic
signature in response to infection [9]. Therefore, the
transcriptome signature of SAR-CoV-2 infection could
be one of the important parameters to identify the most
crucial panel of targets engaged in the pathophysiology and
severity of the disease. In this current research work, 15 high

Volume 6 « Issue 4 404

throughput transcriptomics datasets were selected from the
Gene Expression Omnibus (GEO) database. These datasets
were further analyzed to predict the most significant DEGs
that can differentiate between healthy and disease patients
based on Blood, PBMC and Lung tissues datasets. Later,
these genes were further evaluated through the in-house
built Covid-19 interacting network (CovInt) to investigate
their importance in SARS-CoV-2 pathophysiology. In order
to identify these crucial regulatory genes, we leveraged
various network scoring such as page rank algorithms and
the popularity of molecules within the network. The present
study aimed to identify the most significant panel of gene sets
which can be used for better therapeutic development against
Covid-19 infections.

Materials and Methods
Transcriptomics data collection and validation

Gene Expression analysis was carried out starting from the
raw FastQ sequencing data downloaded from Gene Expression
Omnibus (GEO) database [10]. We searched using “Severe
acute respiratory syndrome coronavirus 2 [Organism] OR
Covid-19 [All Fields]) OR Severe acute respiratory syndrome
coronavirus 2 [Organism] OR covidl9 [All Fields] OR
Severe acute respiratory syndrome coronavirus 2 [Organism]
OR SARS-CoV-2 [All Fields]) AND "Homo sapiens"[porgn]
AND "gse"[Filter]” on 3rd Jan 2022 in the GEO database for
SARS-CoV-2 associated expression datasets which results
in “311” hits. Later, we applied filters on study types using
Expression profiling by array and Expression profiling by
high throughput sequencing (HTS) which results in 300
studies. These series were downloaded in .txt format from
GEO omnibus data portal. The obtained file was converted
into .csv format for further validation and classification in the
Linux terminal using the below-mentioned syntax

sed 's/$/@/" input_file.txt [tr "\n" "\t" | sed "s/@/\n/g -0
output_file.csv

Later, we used our in-house developed Al-based tool to
stratify and label samples based on their tissue types, study
types and sub-indications. This in-house developed model
also removes studies with less than 3 samples, samples with
nonspecific disease names, studies with only healthy data,
superseries and other studies such as snRNA-seq, single-
cell, and missing SRA id datasets and classified as irrelevant/
insignificant studies. The remaining relevant studies were
further analyzed for differentially expressed genes. All
relevant studies were carried forward for further analysis.

Transcriptomics data analysis

Relevant expression datasets were further processed for
further quality control using Trim-galore [11] which trims
off all low-quality bases from the 3° end of the reads before
adapter removal. In the next step, all adapters and short
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sequences (20 bp) from the 3’ end of reads were filtered.
Estimating transcript abundance from RNA-seq reads is a
fundamental and crucial step in transcriptomic analysis. We
used Salmon [12] as a tool to quantify transcripts based on
the reference transcriptome build GRCh38 downloaded from
NCBI and indexed using Salmon. The number of reads per
transcript obtained for each sample from previous steps
was directly used as an input to calculate Differentially
Expressed Genes (DEGs). DEG analysis was carried out by
using the DESeq2 [13] Bioconductor package v1.34.0, which
calculated Log2FC (log 2-fold change) values per gene
including p-values, adjusted p-value and base mean values.
We applied a cut-off p-value for < 0.005 and Log2FC value >
1.5 for further analysis.

Enrichment of DEGs and development of CoVint
network for molecular connections

Identified differentially expressed gene from the previous
study was further used for the enrichment of associated
pathways, molecular connections and disease-protein-
associated relevant articles through Ontosight® Discover
[14, 15] and Ontosight® Explore (https://www.innoplexus.
com/blog/accelerate-your-research-and-discovery-in-life-
sciences/). The overall transcriptomics analysis process is
shown in Figure 1.

Ontosight Explore® [16, 17] consist of 4.2 M+ chemicals
and drug, 250 K+ disease, 560 K+ proteins, 6 K+ pathways
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and 39 K+ number of molecular connections extracted from
various literature and publicly available curated database
including Covid-19 pathways from WikiPathways [18]
and build a comprehensive SARS-CoV-2 protein-protein
interaction network called CoVint (Covid Interactome) by
maintaining their types of relationships and directionality
of reactions in a neo4j v4.3.3 graph database. The overall
schema of CovInt has been shown in Figure 2a. In this current
study, Ontosight Discover® and Explore® were used to
identify the molecular connections of prioritized DEGs and
their significance in Covid-19 pathophysiology.

Here, CoVint consists of 39 K+ molecular connections
associated with SARS-CoV-2 (Figure 2b). These
connections are then further traversed using the neo4j
browser and visualized using neo4j’s bloom application. We
superimposed expression values of each DEG in the CoVint
biological network to determine the flow of expression and
identify important perturbations in the network. This helped
us in taking into account the effect of expression change from
healthy to disease on other molecular pathways and entities.

To prioritize DEGs We used a Hyperlink-Induced Topic
Search (HITS) algorithm to check the flow of expression
from a DEG in the network which helped in identifying the
authority DEGs that have a greater influence. The developed
network is presented in Figure 2b.

SARS-CoV-2 Ontology
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Figure 1: Flow diagram outlining COVID-19 RNA-seq data analysis process.
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Figure 2: (a) Represents the schema of various molecular connections in the CoVint network built using Neo4J software.
(b) A SARS-CoV-2 differentially expressed gene and its biological connection. Here, the yellow color demonstrates covid19 disease, while
related biological pathways are highlighted in blue color, clinical and biological function is shown in red colors, interacting partner proteins are
shown in light brown color, tissues are in green and other entities are shown in grey color.

Single pathway network (SPN) analysis and GO en-
richment

We analyzed each covid19 pathway (P) by superimposing
its protein associations (gl, g2...gn) with their interactions
such that

PI(g(k)) = [i(k)(1), i(k)(2)...i(k)(m)] where k<=n

Thus the imposed pathway network consisted of 1
pathway node (P), L = union of (g, PI(g)) protein nodes and
(P)-[:Associated with]->(L), (g)-[:Interacts]-(PI(g)) relations.
This concluded the generation of our pathway network. Then
we mapped the differentially expressed gene on this network
to find the importance and influence of this pathway (W(p))
using a greedy influence maximization approach where a
group of proteins that when expressed may induce an effect
of the pathway.

In order to understand the biological functions of predicted
DEGs, we performed Gene Ontology (GO) [19]. We first
downloaded all GO datasets (http:/geneontology.org/docs/
downloads/) with their associated genes, later we performed
statistical analysis to enrich Gene ontology for the identified
DEGs. Identified genes were classified into GO categories
as a biological process (BP), molecular function (MF) and
cellular component (CC). Top enriched GO was identified
based on the p < 0.05 as the cut-off criterion and various
graphs were generated to understand the overlapped genes
and Gene ontologies involved in disease pathophysiology. We
further used this information to triangulate this information
with the CoVint network and evaluated the top marker using
published scientific reports.

Results
Transcriptomics data collection and analysis

In order to perform transcriptomics analysis, we first
queried the GEO Omnibus database to identify the most
relevant datasets for our study. It results in 311 hits for our
given query against COVID-19. The details of various types
of datasets have been shown in Table 1.

However, upon validation and stratification of relevant
samples, we remained with 16 studies which we were able to
include in our further study. The remaining 295 studies were
excluded from our further analysis (Supplementary Table 1).
In total, we identified 12 high throughput sequencing studies
and 4 Microarray studies. 2 out of the 4 Microarray studies
were done on immune-specific probes, therefore due to
missing data we discarded those studies (Table 1). Among the
12 HTS studies, 5 studies were from Blood samples, 2 studies
were from Peripheral Blood Mononuclear Cells (PBMCs), 2
studies were from Lung Tissue with a significant number of
studies which we carried forward for further analysis. In total,
we identified 201 healthy volunteers and 575 disease samples
where we had a significant amount of data to generate
confident results. Single studies from other sample sources
such as Nasal Swabs, Brain, and Platelets were discarded due
to a limited number of experiments (Table 2).

Identification of DEGs

Based on the cut-off criteria of log2 FC > 1.5 for
upregulated and < -1.5 for downregulated and adj P-value <
0.05. We identified 925, 1336 and 50 upregulated genes and
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265, 938 and 2217 downregulated genes in Blood, PBMC of'smell (GO:0050911), Positive regulation of gene expression
and Lung respectively and a total of 139 overlapping DEGs (GO:0010628), Negative regulation of apoptotic process
were identified as shown in Figure 3a obtained from the Lung, (GO:0043066), Response to nutrient (GO:0007584), Cellular
Blood and PBMC samples. The DEGs identified for each of response to glucose stimulus (GO:0071333) (Figure 4A.1),

the tissues separately, are represented through volcano plots whereas, GO enrichment of top downregulation gene suggests
as shown in Figures 3b, 3c and 3d respectively. The list of that mRNA splicing, via spliceosome (GO:0000398), G
identified DEGs can be found here as Supplementary File 2. protein-coupled receptor signaling pathway (GO:0007186),

Defense response (GO:0006952), Positive regulation of
I-kappaB  kinase/NF-kappaB signaling (GO:0043123),
I-kappaB kinase/NF-kappaB signaling (GO:0007249) are the
major biological processes (Figure 4A.4).

The expression level of each sample is shown in the
Volcano plot in Figure-3b, Sc and 5d. Moreover, the heatmap
of DEGs demonstrates that these DEGs could distinguish the
control and other samples.

Gene Functional Enrichment from Top Degs of O.l fac.tor}.’ receptor  activity (GQ:OQO4984)’ Identical
Blood, PBMC and Lung Tissues protein binding (GQ:0042802), ATP b}ndlng (GO:0005524),
Extracellular matrix structural constituent (GO:0005201),
Blood tissues Protein homodimerization activity (GO:0042803) are the
top five molecular functions of identified upregulated DEGs
also demonstrated in Figure 4A.2. and Identical protein
binding (GO:0042802), Protein binding (GO:0005515), ATP
Table 1: SARS-CoV-2 associated different datasets binding (GO:0005524), Aminoacyl-tRNA editing activity
(GO:0002161), Peptide antigen binding (GO:0042605)
are the top molecular functions which influenced due to
downregulation of identified DEGs (Figure 4A.5).

GO enrichment of top upregulated gene suggests that
Detection of chemical stimulus involved in sensory perception

# ‘Study type ‘ Studies
1 | Expression profiling by array 12

2 | Expression profiling by high throughput sequencing 300 o
Similarly, Extracellular exosome (GO:0070062),

3 | Genome bindingfoccupancy profiling by array 0 Membrane (GO:0016020), Cytosol (GO:0005829), Apical
4 | Genome binding/occupancy profiling by high 7 plasma membrane (GO:0016324), Cytoplasm (GO:0005737)
throughput sequencing . .
: » are the top cellular components in blood tissue from
5  Methylation profiling by array ! upregulated DEGs (Figure 4A.3) and Cytosol (GO:0005829),
6 | Methylation profiling by high throughput sequencing 1 Extracellular exosome (G0:0070062), Membrane
7 | Non-coding RNA profiling by array 0 (GO:0016020), Mitochondrial matrix (GO:0005759),
g | Non-coding RNA profiling by high throughput 4 Cytoplasm (GO:0005737) are the top cellular components
sequencing influenced by downregulated DEGs (Figure 4A.6).

Table 2: Characteristics of High-throughput studies datasets considered in this study

# ‘ Study type ‘ Studies GSE series ‘ Healthy Disease Total Sample Considered for study?
GSE 166253 16 10 Yes
1 PBMC 2 94
GSE152418 34 34 Yes
GSE185557 18 21 39 Yes
GSE166190 16 82 98 Yes
2 Blood 5 GSE169687 14 138 152 Yes
GSE161731 19 58 77 Yes
GSE161777 13 14 27 Yes
GSE151764 16 34 50 Yes
3 Lung 2
GSE150316 15 83 98 Yes
4 Nasal Swabs 1 GSE166530 5 36 41 No
5 Brain 1 GSE179923 6 1 7 No
6 Platelets 1 GSE176480 10 8 18 No

Identified samples were further normalized using Limma-remove batch effect package [20] and visualization was done using PCA plot. Since we
used DESeq? for getting DEGs, where expression values are normalized using the median-ratios method, we used the Limma package to analyze
the data batches in detail and how the data looks after removing the batch effect.
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Figure 3: (a) Venn diagram of identified DEGs, 139 overlapped DEGs from Blood, PBMC and Lung samples. (b) Volcano plot of identified
DEGs from blood tissue samples (C) Volcano plot of PBMC samples (d) Volcano plot of Lung tissue samples. Here, the red color demonstrates
downregulated genes, and the green color demonstrates upregulation of genes.

Peripheral blood mononuclear cell (PBMC)

Top biological processes enriched from upregulated
DEGs are PBMC are Positive regulation of transcription
by RNA polymerase II (GO:0045944), Detection of
chemical stimulus involved in sensory perception of smell
(GO:0050911), Negative regulation of apoptotic process
(GO:0043066), Response to hypoxia (GO:0001666),
Aging (GO:0007568) have been also shown in Figure
4B.1 and downregulation of DEGs G-protein-coupled
receptor signaling pathway (GO:0007186), Regulation
of transcription by RNA polymerase II (GO:0006357),
Biological process (GO:0008150), Positive regulation of B
cell proliferation (GO:0030890) have been shown in Figure
4B.4. Olfactory receptor activity (G0O:0004984), Protein
binding (GO:0005515), Chromatin binding (GO:0003682),
Identical protein binding (GO:0042802), Protein kinase
binding (GO:0019901) were top molecular functions from
upregulated DEGs (Figure 4B.2) whereas G-protein-
coupled receptor activity (GO:0004930), Protein binding
(GO:0005515), ATP binding (GO:0005524), Identical protein
binding (GO:0042802), Metal ion binding (GO:0046872) are
from Downregulated DEGs (Figure 4B.5)

Similarly, Cytosol (G0O:0005829), Nucleoplasm
(GO:0005654), Membrane (GO:0016020), Extracellular

exosome (GO:0070062), Golgi apparatus (GO:0005794) are
the top cellular component enriched from the upregulated
PBMC genes (Figure 4B.3). Whereas Cytosol (GO:0005829),
Membrane  (GO:0016020),  Extracellular  exosome
(GO:0070062), Mitochondrial matrix (GO:0005759),
Mitochondrion (GO:0005739) are the top enriched CC
(Figure 4B.6) from top downregulated DEGs. We observed
in both types of DEGs cytosol, the Extracellular exosome and
Membrane are the most important CC that was influenced
(Figure 4B).

Lung tissues

GO enrichment from top downregulated DEGs from lung
tissues revealed Positive regulation of interferon-gamma
production (GO:0032729), Adaptive immune response
(GO:0002250), Inflammatory response (GO:0006954),
Positive regulation of T cell proliferation (GO:0042102),
Positive regulation of NMDA glutamate receptor activity
(GO:1904783) are the major biological processes (Figure
4C.1) and Heart development (GO:0007507), G protein-
coupled receptor signaling pathway (GO:0007186),
Osteoblast differentiation (GO:0001649), Positive regulation
of gene expression (GO:0010628), Negative regulation of
cell population proliferation (GO:0008285) are the top BP
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Figure 4: The cluster of significant enriched GO terms for upregulated and downregulated DEGs from (A) Lung tissues (B) Blood tissues and

(C) PBMC tissues

from downregulated DEGs (Figure 4C.4). Similarly, the top
cellular components (CC) from the upregulated genes are
the External side of the plasma membrane (GO:0009897),
MHC class II protein complex (GO:0042613), Cell surface
(GO:0009986), Alpha-beta T cell receptor complex
(GO:0042105), Extracellular region(GO:0005576) (Figure
4C.2) and Extracellular matrix structural constituent
(GO:0005201), ATP binding (GO:0005524), G protein-
coupled receptor activity (GO:0004930), Protein binding
(GO:0005515), Identical protein binding (GO:0042802) for
downregulated DEGs (Figure 4C.6). External side of the
plasma membrane (GO:0009897), MHC class II protein
complex (GO:0042613), Cell surface (GO:0009986),
Alpha-beta T cell receptor complex (GO:0042105),
Extracellular region (GO:0005576) (Figure 4C.3)
are top CC from upregulated Genes and Extracellular
exosome (GO:0070062), Collagen-containing extracellular
matrix (GO:0062023), Membrane (GO:0016020), Cytosol
(GO:0005829), Endoplasmic reticulum lumen (GO:0005788)
are top CC from downregulated DEGs (Figure 4C.6). In
order to understand the role and involvement of identified
genes and enriched BP, MF and CC, we performed a pathway
over-representation study (Figure 9). Our study revealed that
the Jak-STAT signaling pathway [21], Cytokine-Cytokine
receptor interactions [22], MAPK signaling pathway [23],
Lung Fibrosis [24-26], Chemokine signaling pathway [24],
Toll-like receptor signaling are the major pathways that were

represented by identified DEGs and GO analysis. These
pathways are well known and reported previously to play
a crucial role in SARS-CoV-2-associated pathophysiology
(Figure 5).

Network analysis

The identified DEGs were further explored in the CovInt
network to understand their biological connections and
their importance in the sub-network. Functional and CoVint
network analysis revealed MAGEDI1, FBXO7, ATAD3A,
TECR, CCDCS8, CDC14A, TERF2IP, FBXW7, RNF123,
CANDI, USP7, SMC4, HIF1A, TRIM63, CULL1 as the top
15 hub genes from blood tissues (Figure 6A) and IKBKG,
CTDPI1, TNIK, BTRC, FBXW11, STUB1,NCOR2, LRRK?2,
HPSE, FHOD1, CCDCS8, ARFGEF2, TRRAP, NDUFAF]I,
CBY1 (Figure 6B) from PBMC.

Whereas, PLEKHA4, CHCHD2, SUPT16H, LRRK2,
PTRH2, STUB1, CCDCS8, UBQLNI, SMC3, UBQLN2,
MAPILC3B, DOLK, AFG3L2, RBMS8A, TBKI1 are the top
15 hub genes from lung tissues (Figure 6C). We identified
multiple clusters and sub-networks of various SARS-CoV-
2-associated genes which were further prioritized based
on the LogFc value, Network Score, target overlap count
with covid-19 pathways and p-value score parameters. We
estimated the relative rank for each parameter using Microsoft
excel as shown below -
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Table 3: The DEGs of merged datasets from the blood sample with the applied criteria of p-value <0.05 and [log2FC| > 1.5, network score and
directionality of regulations. The table is sorted based on the consolidated ranking score.

‘ Blood tissues ‘ ‘

# LI Gene Name Al Ll Gene_ Direction | p-value Relat.ive
Symbol Score Expression ranking

1 SLC25A13 Solute carrier family 25 member 13 1.254 -4.706 down 2.60E-02 1
2 FBXW7 F-box and WD repeat domain containing 7 1.866 -3.325 down 4.30E-06 2
3 NOD2 Nucleotide binding oligomerization domain containing 2 0.969 -3.862 down 2.85E-08 3
4 CREB3LA1 cAMP responsive element binding protein 3 like 1 1.091 6.338 up 3.93E-10 4
5 CDC14A cell division cycle 14A 2.063 5.07 up 9.42E-16 5
6 SMC4 Structural maintenance of chromosomes 4 1.487 5.147 up 5.35E-05 6
7 CFL2 Cofilin 2 1.276 -2.58 down 4.21E-04 7
8 MAGED1 MAGE family member D1 8.364 -2.206 down 5.36E-04 8
9 ITPA Inosine triphosphatase 0.758 -3.788 down 3.05E-08 9
10 DLG3 Discs large MAGUK scaffold protein 3 0.678 -4.79 down 7.53E-04 10
11 ING4 Inhibitor of growth family member 4 0.873 -2.853 down 1.10E-02 11
12 TECR Trans-2,3-enoyl-CoA reductase 2.586 -2.093 down 6.00E-07 12
13 RELA RELA proto-oncogene, NF-kB subunit 1.168 4.78 up 2.82E-06 13
14 CDHA1 Cadherin 1 0.829 5.59 up 3.78E-06 14
15 ATAD3A ATPase family AAA domain containing 3A 2.651 -1.959 down 4.50E-03 15
16 FBXO7 F-box protein 7 8.101 4.215 up 2.20E-30 16
17 ACAD8 Acyl-CoA dehydrogenase family member 8 0.807 -2.499 down 5.51E-03 17
18 RASSF1 Ras association domain family member 1 0.605 -3.601 down 1.69E-31 18
19 SOX2 SRY-box transcription factor 2 0.783 5.018 up 9.94E-10 19
20 IGSF8 Immunoglobulin superfamily member 8 0.561 -4.588 down 3.06E-09 20
21 MID2 Midline 2 0.911 -2.177 down 1.53E-02 21
22 cuL1 Cullin 1 1.39 4.193 up 1.26E-06 22
23 SP110 SP110 nuclear body protein 0.493 -19.754 down 3.36E-29 23
24 EHMT1 Euchromatic histone lysine methyltransferase 1 0.66 -2.737 down 4.53E-07 24
25 NODAL Nodal growth differentiation factor 0.8 4.751 up 1.38E-07 25
26 PPAN Peter pan homolog 0.899 -2.07 down 2.08E-04 26
27 PRDM16 PR/SET domain 16 1.155 4.182 up 1.86E-09 27
28 FAM118B Family with sequence similarity 118 member B 0.466 -5.761 down 6.92E-35 28
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29 IFT172 Intraflagellar transport 172 0.491 -3.891 down 4.08E-02 29
30 SYNC Syncaoilin, intermediate filament protein 0.475 7.565 up 2.75E-90 30
31 UHRF1 Ubiquitin like with PHD and ring finger domains 1 0.614 5.168 up 2.17E-08 31
32 | SH3GLB1 SH3 domain containing GRB2 like, endophilin B1 1.361 3.857 up 3.10E-16 32
33 GANAB Glucosidase Il alpha subunit 0.465 -4.146 down 8.93E-09 33
34 TAF15 TATA-box binding protein associated factor 15 1.058 -1.779 down 1.74E-61 34
35 PTK2B Protein tyrosine kinase 2 beta 0.576 5.093 up 2.11E-32 35
36 HSPB8 Heat shock protein family B (small) member 8 1.148 3.86 up 8.53E-06 36
37 DIABLO Diablo IAP-binding mitochondrial protein 1.15 -1.59 down 7.20E-03 37
38 PARK7 Parkinsonism associated deglycase 0.715 -1.97 down 7.36E-23 38
39 BIRC7 Baculoviral IAP repeat containing 7 0.806 -1.829 down 2.62E-02 39
40 RUFY1 RUN and FYVE domain containing 1 0.422 -6.191 down 5.96E-06 40
41 CLUAP1 Clusterin associated protein 1 1.019 3.774 up 7.16E-06 41
42 PPIE Peptidylprolyl isomerase E 0.631 -2.022 down 1.15E-04 42
43 KCTD3 Potassium channel tetramerization domain containing 3 1.34 3.435 up 1.59E-02 43
44 PPT1 Palmitoyl-protein thioesterase 1 0.45 5.673 up 7.61E-242 44
45 BRD7 Bromodomain containing 7 0.513 4.73 up 3.79E-155 45
46 UBR4 Ubiquitin protein ligase E3 component n-recognin 4 0.443 -2.879 down 8.39E-13 46
47 FLNC Filamin C 0.605 4.328 up 4.34E-07 47
48 AGAP3 ArfGAP with GTPase domain, ankyrin repeat and PH 0419 3.2 down 3.07E-07 48
domain 3
49 MYO5B Myosin VB 0.802 3.727 up 6.06E-13 49
50 EFEMP1 EGF containing fibulin extracellular matrix protein 1 0.395 7.234 up 2.34E-03 50

Relative ranking = RANK($A2,3A$2:$ASN)

Here, A represents the name of the column and “N”
represents the number of rows

And named as “Relative gene expression ranking”
for LogFC, “Covid-19-associated pathway” for covid-19
pathways, “Relative network score” for Network Score and
estimated a consolidated score using the below-mentioned
formula where p-value was used as a qualifying parameter.

Consolidated Score =
(G2 x 60 +100) + (H2 x 30 +100) + (J2 x 10 + 100)

Here, G2 stands for CovInt network Rank; H2 stands
for relative Expression Ranking and J2 stands for relative
covid-19 associated Pathway ranking. Based on relative
ranking the top 50 relevant DEGs from Blood have been

shown in Table 3, PBMC in Table 4 and Lung tissues in
Table 5.

Transcriptomics profile analysis of Whole Blood, PBMC
and lung suggested dysregulation of CREB3L1, SOX2,
UBR4 and FLNC transcription factor (Figure 7). Several
investigators has reported dysregulation of CREB3L1 in ER
stress during the Covid-19 infections [27, 28] whereas SOX2
is known to be a bronchus progenitor marker gene [29-31]
that is involved in cytokine-mediated signaling pathway [32]
and play an important role in lung fibrosis [33, 34]. Another
common transcription factor identified from this analysis is
UBR4 which is an E3 ubiquitin ligase and was found to be
involved in the membrane morphogenesis autophagy process
during the cytokine storm [35]. In our study, we found UBR4
as significantly dysregulated in Covid-19 infections and
can be used as a potential therapeutic target for Covid-19.
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UBR4 is previously reported as an important protein to be
involved in the transportation of viral glycoproteins to the
cell membrane and promotes replication of Influenza A virus
[36]. Our study revealed a similar role of UBR4 in Covid-19
infections.

From blood tissue transcriptomics analysis, we identified
Inosine Triphosphatase (ITPA) as one of the top transcription
factors associated that are downregulated by -3.788 FoldChain
as compared to a healthy patient. Multiple mutations are
already reported in these genes such as rs1161447593,
rs12980275 and rs8099917 which leads to a certain reduction
in the ITPA expression associated with Hepatitis C virus
response [37]. The role of ITPA can be further explored in
SARS-CoV-2 infections. The second genetic marker is DLG3
which is found to be downregulated through our analysis with
a Log2FC value of -4.790. DLG3 is recognized by SARS-
CoV-2, E protein, however, its role still needs to be explored
further [38]. Inhibitor of growth family member 4 (ING4) is
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another interesting transcription factor that is downregulated
(-2.853) in the disease samples. It interacts with the CXCL8
gene and regulates cytokine during the cytokine storm
inflammatory response.

The expression of Trans-2,3-Enoyl-CoA Reductase
(TECR) is downregulated (-2.093) in disease conditions.
Activator of the TECR gene could be an interesting therapeutic
target against Covid-19. RELA is another important key
transcription factor that comes out from our analysis which
is significantly upregulated (4.780) during the SARS-CoV-2
infection. RELA initiates TLR4 mediated NF-xB signaling
pathway to activate IL-8 expression and thus regulates the
IFN response [39]. Interestingly, upon investigation, we
identified that these molecules are highly connected to each
other and involved in various covid-19 infection-associated
pathways such as Activation of NLRP3 inflammation, Renin-
angiotensin Aldosterone system, Cytokine-cytokine receptor,
MAPK signaling and Integrin signaling pathways (Figure 8).

Control Gene Expression
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-
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Figure 7: Unique dysregulated gene from Blood, PBMC and Lung sample
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Transcriptomics analysis from PBMC samples revealed
HPSE is generally upregulated during Covid-19 with Log2FC
of 7.315, it is involved in pro-inflammatory glycocalyx
generation that promotes chemokines, cytokines, and
leukocytes binding to the endothelial cell surface. Inhibition
of HPSE restricts HPSE activity and benefits Covid-19
patients [40] and other lung-associated diseases [41].

Tripartite Motif Containing 33 (TRIM33) is another
interesting transcription factor that is found to be
overexpressed (6.609) in our study. It regulates the
proinflammatory function of Th17 cells [42]. Th17 cells are
known to play an important role in COVID-19 pathogenesis
by triggering cytokine cascade and inducing Th2 responses
during the infection which leads to Treg cell suppression®3#4,

However, two important genes NADH and SMAD
were identified as crucial hub genes from network analysis
that can be activated for better therapeutic effects. Firstly,
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex
subunit 12 (NDUFA12) which is an accessory subunit
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OVID-19_WP4961_118842

Activation of NLRP3
Inflammasome by SARS-CoV-2
pathway

RELA '
Hs_T-cell_activation_SARS- o
CoV-2_WP5098_119538

HIF1A
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of the mitochondrial membrane respiratory chain NADH
dehydrogenase (Complex I) is found to be downregulated
with a -6.035 FoldChain during the SARS-COV-2 viral
infection sample from our study. Secondly, SMAD proteins
are down-regulated in our study -8.572, which is known to
be involved in TGF-B signaling pathways and pulmonary
fibrosis®.

Negative regulations of SMAD2 lead to lung injury
and upregulation of SMAD2 may trigger TGF-p signaling
pathways that may lead to the downregulation of angiotensin-
converting enzyme 2(ACE2) receptor and limit the spike
protein interaction with ACE2 in the early phase. Other
interesting genes from PBMC sample analysis were come
out from our analysis are FBXW7, SMC4, CFL2, ATAD3A,
ACAD8, RASSF1, SOX2, IGSF8, SP110, EHMTI,
NODAL, PPAN, FAM118B, IFT172, SYNC, SH3GLBI,
PTK2B, BIRC7, RUFY1, CLUAPI, PPT1, and AGAP3 that
need to be investigated further for their role in SARS-CoV-2
infections.
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Figure 8: Molecular connections of the top dysregulated gene from the Blood sample. Here, upregulated proteins are shown in the green
bubbles and down-regulated proteins are shown in red color and neutral genes are demonstrated in gray color. All biological pathways are
highlighted in yellow color. Covid-19 associated pathways are labeled using blue text to differentiate the sub-clustered and associated genes.
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(B) Dysregulated genes from PBMC samples compared to healthy volunteers.

Lung tissues are the most important organ that gets affected
during this disease. We identified TNF Superfamily Member
13B (TNFSF13B) as the most important transcription factor
that is significantly differentially expressed in liver tissues
with 2.955 Log2FC as a defense response suggesting its
potential role in disease pathophysiological relations in
SARS-CoV-2 infections [46]. It is supposed to activate B-cell
and secretes antibodies into the blood and lung tissues that
protect against pathogens and viral infection [47]. Whereas,
Inducible T Cell Costimulator (ICOS) plays an important role
in Tth cell activation and high-affinity antibodies generation.
In our study, we found it is significantly upregulated in
disease conditions by 2.314 Log2FC and has multiple direct
connections in the CoVint network. Various investigators
have previously reported that downregulation of ICOS
transcription factor significantly reduces Tth cells [48-50]
may lead to B cell differentiation and effective promotion
of humoral immune responses [51] and helps in clearing
life-threatening viruses including SARS-CoV-2. Therefore,
potential inhibitors can be further explored for these proposed
targets (Figure 10).

Lung tissues have also shown several genes that are
significantly downregulated in disease conditions and
especially in lung tissues. E3 ubiquitin-protein ligase

(HUWET1) is one of them. It mediates ubiquitination and
subsequent proteasomal degradation of target proteins [52—
54]. Previously, the HUWEI gene was reported to induce cell
apoptosis in MERS-CoV ORF3 via ubiquitination. Activation
of HUWEI1 can play an antiviral role in host immunity
[102] and can be further explored for potential therapeutic
candidature. We have also identified another important
transcriptional factor gene DDX17 that is significantly
downregulated in our studied sample with a -15.742 Log2
(fold change). It was also scored as an important protein
from our network analysis which represents this protein as
a potential biomarker for SARS-CoV-2. DEAD-box (DDX)
RNA helicases play a very crucial role in the stage of
Covid-19 infection and therefore can be used as positive or
negative regulators in different levels of DDX-mediated viral
replication steps.

We also identified Endothelial PAS domain-containing
protein 1 (EPASI1) also known as HIF2A is an important
transcription factor that is involved in the regulation of oxygen
level during the disease condition. However, inhibition
of EPAS1 may not benefit in the early stage Covid-19
infection but may serve as a promising treatment target
post-Covid-19 complication [56]. Another important protein
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Table 4: The DEGs of merged datasets from PBMC sample with the applied criteria of p-value <0.05 and [log2FC| > 1.5, network score and
directionality of regulations
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‘ PBMC Tissues

Gene
Symbol

FHOD1
HPSE
MAD2L2
DCPS
SMAD2
TRIM33
CHCHD2
NDUFA12
ATXN10
CENPJ

MALT1
LRCH1

USP7
TELO2
NOTCH3
MYBBP1A
RBM28
TCTN3
LARS1
TMEM216
PRMT1
TAB2
EPAS1
ZNF408
STUB1
COG5
RIF1
IFT52
HBS1L
AUP1

CC2D2A

Gene Name

Formin homology 2 domain containing 1
Heparanase
Mitotic arrest deficient 2 like 2
Decapping enzyme, scavenger
SMAD family member 2
Tripartite motif containing 33
Coiled-coil-helix-coiled-coil-helix domain containing 2
NADH:ubiquinone oxidoreductase subunit A12
Spinocerebellar ataxia type 10 protein
Centromere protein J

MALT1 paracaspase

Leucine rich repeats and calponin homology domain
containing 1

Ubiquitin specific peptidase 7
Telomere maintenance 2
Notch receptor 3
MYB binding protein 1a
RNA binding motif protein 28
Tectonic family member 3
Leucyl-tRNA synthetase 1
Transmembrane protein 216
Protein arginine methyltransferase 1
TGF-beta activated kinase 1 (MAP3K?7) binding protein 2
Endothelial PAS domain protein 1
Zinc finger protein 408
STIP1 homology and U-box containing protein 1
Component of oligomeric golgi complex 5
Replication timing regulatory factor 1
Intraflagellar transport 52
HBS1 like translational GTPase
AUP1 lipid droplet regulating VLDL assembly factor

Coiled-coil and C2 domain containing 2A

Network
Score

4.261

4.538

3.446

2.341

1.412

2.441

2.181

1.766

1.494

1.681

1.082

2.253

2.565

2.333

1.825

1.126

0.912

1.113

2.282

2.404

1.405

0.867

1.154

1.149

5.134

1.162

0.746

1.139

0.796

3.445

1.629

Gene
Expression

-10.042
7.315
-6.16
-6.662
-8.572
6.609
-5.569
-6.035
-6.501
7.13

-9.366
-4.978

6.044
-4.878
6.635
-7.007
-10.38
-6.302
-4.471
-4.387
-4.939
8.956
6.638
-5.169
-3.738
6.356
25.494
6.267
-7.863
4.731

5.348

Direction

down

up

down

down

down

up

down

down

down

up

down

down

up

down

up

down

down

down

down

down

down

up

up

down

down

up

up

up

down

up

up

p-value

1.58E-75
3.11E-42
5.81E-184
1.28E-119
1.16E-13
6.99E-09
0.00E+00
2.04E-239
0.00E+00
5.83E-11

5.14E-58
4.06E-12

5.45E-25
1.16E-79
4.52E-04
2.66E-120
1.71E-85
2.98E-136
2.30E-08
1.57E-18
4.54E-30
9.37E-18
3.94E-16
2.00E-56
0.00E+00
2.09E-17
2.57E-42
1.18E-13
1.08E-43
6.28E-112

1.84E-03

Relative
ranking

10

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
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32 NFS1 NFS1 cysteine desulfurase 1.362 -4.557 down 1.56E-11 32
33 | GPATCHS8 G-patch domain containing 8 0.76 9.194 up 2.04E-38 33
34 CLUAP1 Clusterin associated protein 1 1.358 5.496 up 1.52E-05 34
35 QKI QKI, KH domain containing RNA binding 0.912 6.989 up 2.23E-11 35
36 RELA RELA proto-oncogene, NF-kB subunit 1.465 -4.249 down 3.24E-55 36
37 GMPPB GDP-mannose pyrophosphorylase B 1.341 -4.415 down 4.22E-198 37
38 MFF Mitochondrial fission factor 0.872 -5.811 down 2.44E-19 38
39 | DYNC1LN Dynein cytoplasmic 1 light intermediate chain 1 1.883 -3.872 down 1.30E-203 39
40 NDE1 nudE neurodevelopment protein 1 0.83 -6.026 down 6.30E-238 40
41 CD81 CD81 molecule 1.037 -4.857 down 8.65E-53 41
42 FBXW7 F-box and WD repeat domain containing 7 1.78 -3.848 down 7.36E-06 42
43 DYRKIA Dual specificity tyrosipe phosphorylation regulated 0.859 6.837 up 2 02E-56 43
kinase 1A
44 FANCD2 FA complementation group D2 0.995 6.104 up 9.67E-19 44
45 NT5C3A 5'-nucleotidase, cytosolic IlIA 0.774 7.563 up 1.28E-41 45
46 IKBKG Inhibitor of nUCIearsLa;l:ﬂ;tZaaprﬁfnS kinase regulatory 15.098 4174 up 5.86E-08 46
47 SUFU SUFU negative regulator of hedgehog signaling 1.139 -4.435 down 2.73E-55 47
48 | HSD17B10 Hydroxysteroid 17-beta dehydrogenase 10 1.404 -4.104 down 0.00E+00 48
49 LARP7 La ribonucleoprotein 7, transcriptional regulator 1.99 4.669 up 1.66E-06 49
50 | CHMP4B Charged multivesicular body protein 4B 1.034 5.857 up 0.00E+00 50
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Figure 10: Dysregulated gene from Lung sample, control and disease sample
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Table 5: The DEGs of merged datasets from the Lung sample with the applied criteria of p-value <0.05 and |log2FC| > 1.5, network score and
directionality of regulations

#

1

N

© 0| N O o b

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28

29

30
31
32
33

34

35
36
37
38
39
40

‘ Lung tissues
Gene Symbol

TNFSF13B
ICOS

HUWE1

LRRK2
CREBBP
DDX17
BAZ1B
PLEKHA4
EPAS1
MACF1
MDN?1
EP300
UPF2
UBQLN1
TAF15
DOCK5
SMC3
USPOX
WDR26
SORT1
HNRNPU
AKAP9
PIK3R1
TRIM33
SMAD2

SUPT16H

CHD7
HNRNPD

YWHAE

CDK12
MAP1LC3B
CD81
PLEC

SAMHD1

RPL36
GRB2
ACTG1
KDM5B
PTPN11
UBC

Gene Name

TNF superfamily member 13b
Inducible T cell costimulator

HECT, UBA and WWE domain containing E3
ubiquitin protein ligase 1

Leucine rich repeat kinase 2
CREB binding protein
DEAD-box helicase 17
Bromodomain adjacent to zinc finger domain 1B
Pleckstrin homology domain containing A4
Endothelial PAS domain protein 1
Microtubule actin crosslinking factor 1
Midasin AAA ATPase 1
E1A binding protein p300
UPF2 regulator of nonsense mediated mRNA decay
UBQLN1
TATA-box binding protein associated factor 15
Dedicator of cytokinesis 5
Structural maintenance of chromosomes 3
Ubiquitin specific peptidase 9 X-linked
WD repeat domain 26
Sortilin 1
Heterogeneous nuclear ribonucleoprotein U
A-kinase anchoring protein 9
Phosphoinositide-3-kinase regulatory subunit 1
Tripartite motif containing 33
SMAD family member 2

SPT16 homolog, facilitates chromatin remodeling
subunit

Chromodomain helicase DNA binding protein 7
Heterogeneous nuclear ribonucleoprotein D

Tyrosine 3-monooxygenase/tryptophan
5-monooxygenase activation protein epsilon

Cyclin dependent kinase 12
Microtubule associated protein 1 light chain 3 beta
CD81 molecule
Plectin

SAM and HD domain containing deoxynucleoside
triphosphate triphosphohydrolase 1

Ribosomal protein L36
Growth factor receptor bound protein 2
Actin gamma 1
Lysine demethylase 5B
Protein tyrosine phosphatase non-receptor type 11
Ubiquitin C

Network
Score

2.902
2.906

2171

7.025
2121
1.414
2.709
22.555
1.303
1.123
1.387
1.657
2.932
3.81
1.302
2.375
3.775
1.494
1.265
0.953
1.041
0.861
0.835
2772
1.315

7.35

1.368
0.785

0.786

0.889
3.492
0.847
0.638

2.623

1.392
2.649
0.584
1.643
1.076
1.506

Gene
Expression

2.955
2.314

-15.978

-14.834
-15.198
-15.742
-14.784
-14.334
-15.763
-18.03
-15.107
-14.678
-14.233
-14.09
-14.761
-14.166
-13.927
-14.351
-14.726
-15.359
-15.208
-15.63
-15.638
-13.791
-14.264

-13.645

-14.129
-15.452

-15.188

-14.656
-13.499
-14.656
-17.392

-13.501

-13.731
-13.447
-17.213
-13.579
-13.895
-13.536

Direction

up
up
down

down
down
down
down
down
down
down
down
down
down
down
down
down
down
down
down
down
down
down
down
down

down
down

down

down
down

down
down
down

down
down

down
down
down
down
down

down

p-value

1.63E-07
9.20E-03

0.00E+00

4.09E-141
7.35E-230
0.00E+00
7.80E-269
5.10E-125
2.18E-117
3.37E-298
2.95E-182
5.87E-306
1.48E-220
1.15E-177
1.02E-285
1.41E-220
1.40E-209
6.33E-282
5.68E-262
2.86E-278
1.06E-285
1.50E-234
5.33E-227
3.62E-178
7.46E-90

2.29E-226

1.61E-145
9.61E-276

1.73E-269

4.66E-177
1.12E-236
1.37E-273
1.12E-246

3.19E-92

5.16E-168
1.18E-197
2.15E-258
9.26E-177
5.26E-303
1.05E-94

Relative
ranking

1

26

27
28

29

30
31
32
33

34

35
36
37
38
39
40
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41 AFG3L2 AFG3 like matrix AAA peptidase subunit 2
42 ACTB Actin beta

43 SRPK1 SRSF protein kinase 1

44 PRKDC Protein kinase, DNA-activated, catalytic subunit
45 BICD2 BICD cargo adaptor 2

46 RAC1 Rac family small GTPase 1

47 IQGAP1 1Q motif containing GTPase activating protein 1
48 SBDS SBDS ribosome maturation factor

49 MYBBP1A MYB binding protein 1a

50 SUGT1
assembly cochaperone

Cyclic adenosine monophosphate response element-binding
protein (CREBBP) found significantly downregulated in our
study with a -15.198 Log 2-fold change value and serves as
a potential biomarker for SARS-CoV-2. The functions of
CREBBP are involved in cholesterol biosynthesis and Insulin
regulation [57]. Dysregulation of cholesterol biosynthesis
of Insulin could be an interesting MoA that several studies
suggested its functional role that may lead to the reduction of
SARS-CoV-2 infections [58] and regulating the entry of the
SARS-CoV-2 virus into the host cell [58,59].

Conclusion

Our study has summarized the transcriptomics analysis of
Covid-19 HTS data from Blood, PBMC and Lung tissues. We
have identified 139 common DEGs from PBMC and blood,
291 common DEGs from Lung and Blood and 326 common
DEGs from Lung and Blood. Our functional and CoVint
network analysis revealed that the most common DEG from
blood, PBMC and Lung tissue is CREB3L1, SOX2, UBR4
and FLNC. We also identified that ITPA, DLG3, ING4,
TECR, NADH, SMAD, HUWEI1, DDX17 and CREBBP are
highly downregulated and activation of these genes may play
an important role in disease reversal. Similarly, inhibition
of RELA, HPSE, TRIM33, and TNFSF13B can be further
explored experimentally for better therapeutic development
and benefit of Covid-19 patients. In summary, these hub
genes can be considered potential therapeutic biomarkers for
the diagnosis of SARS-CoV-2.
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