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Abstract
Background: It has been almost 3.5 years since the first SARS-CoV-2 
virus was first reported in the city of Wuhan. While the FDA has approved 
a number of drugs for Covid-19, the presence of the disease and its 
symptoms underscores the continued demand for an improved treatment 
option to effectively address the existing challenges. In this study, our goal 
is to identify pivotal protein targets, strongly correlated across lung, blood, 
and peripheral blood mononuclear cell (PBMC) transcriptomics datasets, 
to suggest promising targets for comprehensive therapeutic development 
across multiple tissues.

Methods: Transcriptomics datasets were retrieved from Geo Omnibus 
(GEO). We use relevant datasets to identify the most significant and 
differentially expressed genes and integrated them into a Research 
graph called CovInt (a network of Covid-19) that includes all biological 
molecules associated in the network with their directionalities collected 
from publicly available and patient-derived multi-omics datasets from 
millions of unstructured and structured datasets such as publications, 
patents, grants, preclinical and clinical reports. CovInt utilizes powerful 
traversal, clustering and centrality algorithms to identify key connections 
in the pathophysiology of the disease and its treatments. 

Results: Leveraging 3M+ connections, important interactions among key 
42 drugs, 962 biological processes and molecular functions, 926 pathways, 
897 phenotypes, 7103 proteins, 61 tissues were identified. This narrowed 
interactome was explored further using PageRank, lovain detection 
& strongly connected components (SSC) algorithms. In our analysis, 
63 strongly connected communities were identified which gives us an 
understanding of hidden underlying mechanisms. We further explored this 
network to identify and triangulate the key proteins, metabolic pathways 
and associated risk factors that can regulate moderate to severe Covid-19 
infections. 

Conclusions: Our study suggests that CREB3L1, SOX2, UBR4, FLNC, 
ITPA, DLG3, ING4, TECR, NADH, SMAD, HUWE1, DDX17, CREBBP, 
RELA, HPSE, TRIM33, TNFSF13B are the key regulator proteins in 
PBMC, Blood and Lungs in Covid19 patients. These proteins are involved 
in ER-stress, cytokine signaling, T-Cell activation, Activation of NLRP3 
Inflammation by SARS-CoV-2, JAK-STAT, IL-4, IL-13 pathways, 
MAPK signaling pathways, Activation of NMDA receptor & postsynaptic 
events and TGF-β signaling pathways. This set of proteins needs to be 
further investigated in experimental studies for better therapeutic design 
of Covid-19.
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Introduction
The ongoing COVID-19 infection is still a major concern 

for most of the country and has made a serious impact on 
worldwide public health. The world has seen a number of 
mutational variants and as a consequence huge mortality and 
cases of hospitalization. The virus mostly affects the human 
breathing and immune system which ultimately leads to 
respiratory distress syndrome (ARDS), cardiac issues [1], 
multi-organ failure and eventually death [2]. The SARS-
CoV-2 belongs to the Betacoronavirus group and in the past 
few years, we have seen how frequently this virus is constantly 
changing through multiple mutations and emerging as a new 
therapeutic challenge to the world by showing resistance to 
the available therapeutics and prevention vaccines [3 – 5]. 
We believe there are high chances that in future as well these 
viruses will get mutated and may cause serious health causes. 
Since December 2019, the virus has mutated significantly 
and transmitted rapidly all over the world. A number of 
mutations have been reported to date for SARS-CoV-2 
which is classified by WHO and CDC in four different types 
(1) Variant Being Monitored (VBM) (2) Variant of Interest
(VOI) (3) Variant of Concern (VOC) and (4) Variant of High
Consequence (VOHC). As per European Centre for Disease
Prevention and Control (ECDC), as of 17th March’2022,
1,145,785, alpha and 40,534 Beta, 4,226,252 Delta and
2,277,587 Omicron variants of concerned genomes have
been isolated and processed [6]. The Variant of Concern
is a class of variants that are spreading fast and making a
severe impact on public health. Currently, the Beta (B.1.351),
Gamma (P.1), Delta (B.1.617.2) and Omicron (B.1.1.529)7

variants are the only variants that fall in this group.

To date, a total of 5,401 interventional clinical studies are 
reported on clinicaltrial.gov and out of which 364 studies from 
Phase3 and 100 clinical studies from Phase-4 are completed. 
However, only limited therapeutics are approved so far to 
treat mild to moderate SARS-CoV-2 infection with huge 
unmet needs [7, 8] and treatment benefits with the frequent 
mutation are still a matter of concern. Due to the heterogeneity 
among various populations and diversification of SARS-
CoV-2 mutations, it is an alarming situation to understand 
the crucial target engagement of the disease and uncover 
various underlying disease pathophysiology based on disease 
severity, stage, tissues, ages and patient populations. Several 
researchers have reported the importance of transcriptomic 
signature in response to infection [9]. Therefore, the 
transcriptome signature of SAR-CoV-2 infection could 
be one of the important parameters to identify the most 
crucial panel of targets engaged in the pathophysiology and 
severity of the disease. In this current research work, 15 high 

throughput transcriptomics datasets were selected from the 
Gene Expression Omnibus (GEO) database. These datasets 
were further analyzed to predict the most significant DEGs 
that can differentiate between healthy and disease patients 
based on Blood, PBMC and Lung tissues datasets. Later, 
these genes were further evaluated through the in-house 
built Covid-19 interacting network (CovInt) to investigate 
their importance in SARS-CoV-2 pathophysiology. In order 
to identify these crucial regulatory genes, we leveraged 
various network scoring such as page rank algorithms and 
the popularity of molecules within the network. The present 
study aimed to identify the most significant panel of gene sets 
which can be used for better therapeutic development against 
Covid-19 infections. 

Materials and Methods
Transcriptomics data collection and validation

Gene Expression analysis was carried out starting from the 
raw FastQ sequencing data downloaded from Gene Expression 
Omnibus (GEO) database [10]. We searched using “Severe 
acute respiratory syndrome coronavirus 2 [Organism] OR 
Covid-19 [All Fields]) OR Severe acute respiratory syndrome 
coronavirus 2 [Organism] OR covid19 [All Fields] OR 
Severe acute respiratory syndrome coronavirus 2 [Organism] 
OR SARS-CoV-2 [All Fields]) AND "Homo sapiens"[porgn] 
AND "gse"[Filter]” on 3rd Jan 2022 in the GEO database for 
SARS-CoV-2 associated expression datasets which results 
in “311” hits. Later, we applied filters on study types using 
Expression profiling by array and Expression profiling by 
high throughput sequencing (HTS) which results in 300 
studies. These series were downloaded in .txt format from 
GEO omnibus data portal. The obtained file was converted 
into .csv format for further validation and classification in the 
Linux terminal using the below-mentioned syntax

sed 's/^$/@/' input_file.txt |tr "\n" "\t" | sed "s/@/\n/g -o 
output_file.csv

Later, we used our in-house developed AI-based tool to 
stratify and label samples based on their tissue types, study 
types and sub-indications. This in-house developed model 
also removes studies with less than 3 samples, samples with 
nonspecific disease names, studies with only healthy data, 
superseries and other studies such as snRNA-seq, single-
cell, and missing SRA id datasets and classified as irrelevant/
insignificant studies. The remaining relevant studies were 
further analyzed for differentially expressed genes. All 
relevant studies were carried forward for further analysis.

Transcriptomics data analysis
Relevant expression datasets were further processed for 

further quality control using Trim-galore [11] which trims 
off all low-quality bases from the 3’ end of the reads before 
adapter removal. In the next step, all adapters and short 

https://paperpile.com/c/gDoB94/1fZP6
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sequences (20 bp) from the 3’ end of reads were filtered. 
Estimating transcript abundance from RNA-seq reads is a 
fundamental and crucial step in transcriptomic analysis. We 
used Salmon [12] as a tool to quantify transcripts based on 
the reference transcriptome build GRCh38 downloaded from 
NCBI and indexed using Salmon. The number of reads per 
transcript obtained for each sample from previous steps 
was directly used as an input to calculate Differentially 
Expressed Genes (DEGs). DEG analysis was carried out by 
using the DESeq2 [13] Bioconductor package v1.34.0, which 
calculated Log2FC (log 2-fold change) values per gene 
including p-values, adjusted p-value and base mean values. 
We applied a cut-off p-value for < 0.005 and Log2FC value > 
1.5 for further analysis.

Enrichment of DEGs and development of CoVint 
network for molecular connections

Identified differentially expressed gene from the previous 
study was further used for the enrichment of associated 
pathways, molecular connections and disease-protein-
associated relevant articles through Ontosight® Discover 
[14, 15] and Ontosight® Explore (https://www.innoplexus.
com/blog/accelerate-your-research-and-discovery-in-life-
sciences/). The overall transcriptomics analysis process is 
shown in Figure 1.

Ontosight Explore® [16, 17] consist of 4.2 M+ chemicals 
and drug, 250 K+ disease, 560 K+ proteins, 6 K+ pathways 

and 39 K+ number of molecular connections extracted from 
various literature and publicly available curated database 
including Covid-19 pathways from WikiPathways [18] 
and build a comprehensive SARS-CoV-2 protein-protein 
interaction network called CoVint (Covid Interactome) by 
maintaining their types of relationships and directionality 
of reactions in a neo4j v4.3.3 graph database. The overall 
schema of CovInt has been shown in Figure 2a. In this current 
study, Ontosight Discover® and Explore® were used to 
identify the molecular connections of prioritized DEGs and 
their significance in Covid-19 pathophysiology.

Here, CoVint consists of 39 K+ molecular connections 
associated with SARS-CoV-2 (Figure 2b). These 
connections are then further traversed using the neo4j 
browser and visualized using neo4j’s bloom application. We 
superimposed expression values of each DEG in the CoVint 
biological network to determine the flow of expression and 
identify important perturbations in the network. This helped 
us in taking into account the effect of expression change from 
healthy to disease on other molecular pathways and entities.

To prioritize DEGs We used a Hyperlink-Induced Topic 
Search (HITS) algorithm to check the flow of expression 
from a DEG in the network which helped in identifying the 
authority DEGs that have a greater influence.  The developed 
network is presented in Figure 2b.

Figure 1: Flow diagram outlining COVID-19 RNA-seq data analysis process.

https://www.innoplexus.com/blog/accelerate-your-research-and-discovery-in-life-sciences/
https://www.innoplexus.com/blog/accelerate-your-research-and-discovery-in-life-sciences/
https://www.innoplexus.com/blog/accelerate-your-research-and-discovery-in-life-sciences/
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Single pathway network (SPN) analysis and GO en-
richment

We analyzed each covid19 pathway (P) by superimposing 
its protein associations (g1, g2...gn) with their interactions 
such that 

PI(g(k)) = [i(k)(1), i(k)(2)...i(k)(m)] where k<=n

Thus the imposed pathway network consisted of 1 
pathway node (P), L = union of (g, PI(g)) protein nodes and 
(P)-[:Associated with]->(L), (g)-[:Interacts]-(PI(g)) relations. 
This concluded the generation of our pathway network. Then 
we mapped the differentially expressed gene on this network 
to find the importance and influence of this pathway (W(p)) 
using a greedy influence maximization approach where a 
group of proteins that when expressed may induce an effect 
of the pathway.

In order to understand the biological functions of predicted 
DEGs, we performed Gene Ontology (GO) [19]. We first 
downloaded all GO datasets (http://geneontology.org/docs/
downloads/) with their associated genes, later we performed 
statistical analysis to enrich Gene ontology for the identified 
DEGs. Identified genes were classified into GO categories 
as a biological process (BP), molecular function (MF) and   
cellular component (CC). Top enriched GO was identified 
based on the p < 0.05 as the cut-off criterion and various 
graphs were generated to understand the overlapped genes 
and Gene ontologies involved in disease pathophysiology. We 
further used this information to triangulate this information 
with the CoVint network and evaluated the top marker using 
published scientific reports.

Results
Transcriptomics data collection and analysis

In order to perform transcriptomics analysis, we first 
queried the GEO Omnibus database to identify the most 
relevant datasets for our study. It results in 311 hits for our 
given query against COVID-19. The details of various types 
of datasets have been shown in Table 1.

However, upon validation and stratification of relevant 
samples, we remained with 16 studies which we were able to 
include in our further study. The remaining 295 studies were 
excluded from our further analysis (Supplementary Table 1). 
In total, we identified 12 high throughput sequencing studies 
and 4 Microarray studies. 2 out of the 4 Microarray studies 
were done on immune-specific probes, therefore due to 
missing data we discarded those studies (Table 1). Among the 
12 HTS studies, 5 studies were from Blood samples, 2 studies 
were from Peripheral Blood Mononuclear Cells (PBMCs), 2 
studies were from Lung Tissue with a significant number of 
studies which we carried forward for further analysis. In total, 
we identified 201 healthy volunteers and 575 disease samples 
where we had a significant amount of data to generate 
confident results. Single studies from other sample sources 
such as Nasal Swabs, Brain, and Platelets were discarded due 
to a limited number of experiments (Table 2).

Identification of DEGs
Based on the cut-off criteria of log2 FC > 1.5 for 

upregulated and < -1.5 for downregulated and adj P-value < 
0.05. We identified 925, 1336 and 50 upregulated genes and 

Figure 2: (a) Represents the schema of various molecular connections in the CoVint network built using Neo4J software. 
(b) A SARS-CoV-2 differentially expressed gene and its biological connection. Here, the yellow color demonstrates covid19 disease, while
related biological pathways are highlighted in blue color, clinical and biological function is shown in red colors, interacting partner proteins are 
shown in light brown color, tissues are in green and other entities are shown in grey color.

http://geneontology.org/docs/downloads/
http://geneontology.org/docs/downloads/
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of smell (GO:0050911), Positive regulation of gene expression 
(GO:0010628), Negative regulation of apoptotic process 
(GO:0043066), Response to nutrient (GO:0007584), Cellular 
response to glucose stimulus (GO:0071333) (Figure 4A.1), 
whereas, GO enrichment of top downregulation gene suggests 
that mRNA splicing, via spliceosome (GO:0000398), G 
protein-coupled receptor signaling pathway (GO:0007186), 
Defense response (GO:0006952), Positive regulation of 
I-kappaB kinase/NF-kappaB signaling (GO:0043123),
I-kappaB kinase/NF-kappaB signaling (GO:0007249) are the
major biological processes (Figure 4A.4).

Olfactory receptor activity (GO:0004984), Identical 
protein binding (GO:0042802), ATP binding (GO:0005524), 
Extracellular matrix structural constituent (GO:0005201), 
Protein homodimerization activity (GO:0042803) are the 
top five molecular functions of identified upregulated DEGs 
also demonstrated in Figure 4A.2. and Identical protein 
binding (GO:0042802), Protein binding (GO:0005515), ATP 
binding (GO:0005524), Aminoacyl-tRNA editing activity 
(GO:0002161), Peptide antigen binding (GO:0042605) 
are the top molecular functions which influenced due to 
downregulation of identified DEGs (Figure 4A.5).

Similarly, Extracellular exosome (GO:0070062), 
Membrane (GO:0016020), Cytosol (GO:0005829), Apical 
plasma membrane (GO:0016324), Cytoplasm (GO:0005737) 
are the top cellular components in blood tissue from 
upregulated DEGs (Figure 4A.3) and Cytosol (GO:0005829), 
Extracellular exosome (GO:0070062), Membrane 
(GO:0016020), Mitochondrial matrix (GO:0005759), 
Cytoplasm (GO:0005737) are the top cellular components 
influenced by downregulated DEGs (Figure 4A.6). 

# Study type Studies GSE series Healthy Disease Total Sample Considered for study?

1 PBMC 2
GSE166253 16 10

94
Yes

GSE152418 34 34 Yes

2 Blood 5

GSE185557 18 21 39 Yes

GSE166190 16 82 98 Yes

GSE169687 14 138 152 Yes

GSE161731 19 58 77 Yes

GSE161777 13 14 27 Yes

3 Lung 2
GSE151764 16 34 50 Yes

GSE150316 15 83 98 Yes

4 Nasal Swabs 1 GSE166530 5 36 41 No

5 Brain 1 GSE179923 6 1 7 No

6 Platelets 1 GSE176480 10 8 18 No

Table 2: Characteristics of High-throughput studies datasets considered in this study

Identified samples were further normalized using Limma-remove batch effect package [20] and visualization was done using PCA plot. Since we 
used DESeq2 for getting DEGs, where expression values are normalized using the median-ratios method, we used the Limma package to analyze 
the data batches in detail and how the data looks after removing the batch effect.

# Study type Studies

1 Expression profiling by array 12

2 Expression profiling by high throughput sequencing 300

3 Genome binding/occupancy profiling by array 0

4 Genome binding/occupancy profiling by high 
throughput sequencing 7

5 Methylation profiling by array 1

6 Methylation profiling by high throughput sequencing 1

7 Non-coding RNA profiling by array 0

8 Non-coding RNA profiling by high throughput 
sequencing 4

Table 1: SARS-CoV-2 associated different datasets

265, 938 and 2217 downregulated genes in Blood, PBMC 
and Lung respectively and a total of 139 overlapping DEGs 
were identified as shown in Figure 3a obtained from the Lung, 
Blood and PBMC samples. The DEGs identified for each of 
the tissues separately, are represented through volcano plots 
as shown in Figures 3b, 3c and 3d respectively. The list of 
identified DEGs can be found here as Supplementary File 2.

The expression level of each sample is shown in the 
Volcano plot in Figure-3b, 5c and 5d. Moreover, the heatmap 
of DEGs demonstrates that these DEGs could distinguish the 
control and other samples. 

Gene Functional Enrichment from Top Degs of 
Blood, PBMC and Lung Tissues
Blood tissues

GO enrichment of top upregulated gene suggests that 
Detection of chemical stimulus involved in sensory perception 
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Figure 3: (a) Venn diagram of identified DEGs, 139 overlapped DEGs from Blood, PBMC and Lung samples. (b) Volcano plot of identified 
DEGs from blood tissue samples (C) Volcano plot of PBMC samples (d) Volcano plot of Lung tissue samples. Here, the red color demonstrates 
downregulated genes, and the green color demonstrates upregulation of genes.

Peripheral blood mononuclear cell (PBMC)
Top biological processes enriched from upregulated 

DEGs are PBMC are Positive regulation of transcription 
by RNA polymerase II (GO:0045944), Detection of 
chemical stimulus involved in sensory perception of smell 
(GO:0050911), Negative regulation of apoptotic process 
(GO:0043066), Response to hypoxia (GO:0001666), 
Aging (GO:0007568) have been also shown in Figure 
4B.1 and downregulation of DEGs G-protein-coupled 
receptor signaling pathway (GO:0007186), Regulation 
of transcription by RNA polymerase II (GO:0006357), 
Biological process (GO:0008150), Positive regulation of B 
cell proliferation (GO:0030890) have been shown in Figure 
4B.4. Olfactory receptor activity (GO:0004984), Protein 
binding (GO:0005515), Chromatin binding (GO:0003682), 
Identical protein binding (GO:0042802), Protein kinase 
binding (GO:0019901) were top molecular functions from 
upregulated DEGs (Figure 4B.2) whereas G-protein-
coupled receptor activity (GO:0004930), Protein binding 
(GO:0005515), ATP binding (GO:0005524), Identical protein 
binding (GO:0042802), Metal ion binding (GO:0046872) are 
from Downregulated DEGs (Figure 4B.5)

Similarly, Cytosol (GO:0005829), Nucleoplasm 
(GO:0005654), Membrane (GO:0016020), Extracellular 

exosome (GO:0070062), Golgi apparatus (GO:0005794) are 
the top cellular component enriched from the upregulated 
PBMC genes (Figure 4B.3). Whereas Cytosol (GO:0005829), 
Membrane (GO:0016020), Extracellular exosome 
(GO:0070062), Mitochondrial matrix (GO:0005759), 
Mitochondrion (GO:0005739) are the top enriched CC 
(Figure 4B.6) from top downregulated DEGs. We observed 
in both types of DEGs cytosol, the Extracellular exosome and 
Membrane are the most important CC that was influenced 
(Figure 4B).

Lung tissues

GO enrichment from top downregulated DEGs from lung 
tissues revealed Positive regulation of interferon-gamma 
production (GO:0032729), Adaptive immune response 
(GO:0002250), Inflammatory response (GO:0006954), 
Positive regulation of T cell proliferation (GO:0042102), 
Positive regulation of NMDA glutamate receptor activity 
(GO:1904783) are the major biological processes (Figure 
4C.1) and Heart development (GO:0007507), G protein-
coupled receptor signaling pathway (GO:0007186), 
Osteoblast differentiation (GO:0001649), Positive regulation 
of gene expression (GO:0010628), Negative regulation of 
cell population proliferation (GO:0008285) are the top BP 
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from downregulated DEGs (Figure 4C.4). Similarly, the top 
cellular components (CC) from the upregulated genes are 
the External side of the plasma membrane (GO:0009897), 
MHC class II protein complex (GO:0042613), Cell surface 
(GO:0009986), Alpha-beta T cell receptor complex 
(GO:0042105), Extracellular region(GO:0005576) (Figure 
4C.2) and Extracellular matrix structural constituent 
(GO:0005201), ATP binding (GO:0005524), G protein-
coupled receptor activity (GO:0004930), Protein binding 
(GO:0005515), Identical protein binding (GO:0042802) for 
downregulated DEGs (Figure 4C.6). External side of the 
plasma membrane (GO:0009897), MHC class II protein 
complex (GO:0042613), Cell surface (GO:0009986), 
Alpha-beta T cell receptor complex (GO:0042105), 
Extracellular region (GO:0005576) (Figure 4C.3) 
are top CC from upregulated Genes and Extracellular 
exosome (GO:0070062), Collagen-containing extracellular 
matrix (GO:0062023), Membrane (GO:0016020), Cytosol 
(GO:0005829), Endoplasmic reticulum lumen (GO:0005788) 
are top CC from downregulated DEGs (Figure 4C.6). In 
order to understand the role and involvement of identified 
genes and enriched BP, MF and CC, we performed a pathway 
over-representation study (Figure 9). Our study revealed that 
the Jak-STAT signaling pathway [21], Cytokine-Cytokine 
receptor interactions [22], MAPK signaling pathway [23], 
Lung Fibrosis [24–26], Chemokine signaling pathway [24], 
Toll-like receptor signaling are the major pathways that were 

represented by identified DEGs and GO analysis. These 
pathways are well known and reported previously to play 
a crucial role in SARS-CoV-2-associated pathophysiology 
(Figure 5).

Network analysis
The identified DEGs were further explored in the CovInt 

network to understand their biological connections and 
their importance in the sub-network. Functional and CoVint 
network analysis revealed MAGED1, FBXO7, ATAD3A, 
TECR, CCDC8, CDC14A, TERF2IP, FBXW7, RNF123, 
CAND1, USP7, SMC4, HIF1A, TRIM63, CUL1 as the top 
15 hub genes from blood tissues (Figure 6A) and IKBKG, 
CTDP1, TNIK, BTRC, FBXW11, STUB1, NCOR2, LRRK2, 
HPSE, FHOD1, CCDC8, ARFGEF2, TRRAP, NDUFAF1, 
CBY1 (Figure 6B) from PBMC.

Whereas, PLEKHA4, CHCHD2, SUPT16H, LRRK2, 
PTRH2, STUB1, CCDC8, UBQLN1, SMC3, UBQLN2, 
MAP1LC3B, DOLK, AFG3L2, RBM8A, TBK1 are the top 
15 hub genes from lung tissues (Figure 6C). We identified 
multiple clusters and sub-networks of various SARS-CoV-
2-associated genes which were further prioritized based
on the LogFc value, Network Score, target overlap count
with covid-19 pathways and p-value score parameters. We
estimated the relative rank for each parameter using Microsoft 
excel as shown below -

Figure 4: The cluster of significant enriched GO terms for upregulated and downregulated DEGs from (A) Lung tissues (B) Blood tissues and 
(C) PBMC tissues
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Figure 5: Enriched molecular pathways from the top 15 GO of BP, MF and CC. Here, XX color represents Biological processes, YY represents 
Cellular components and ZZ color represents Molecular functions. The bar of these pathways was represented through the overlap of identified 
GO genes with molecular pathways.

Figure 6: Heatmap of DEGs in (A) Blood (B) PBMC and (C) Lung sample. Each row represents a single gene, and each column represents 
a sample. Disease-associated samples are highlighted in red boxes whereas healthy samples are demonstrated in green boxes. The color scale 
shows the relative gene expression in certain slides. Green represents high relative expression levels and red indicates low relative expression 
levels.
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Blood tissues

# Gene 
Symbol Gene Name Network 

Score
Gene 

Expression Direction p-value Relative 
ranking

1 SLC25A13 Solute carrier family 25 member 13 1.254 -4.706 down 2.60E-02 1

2 FBXW7 F-box and WD repeat domain containing 7 1.866 -3.325 down 4.30E-06 2

3 NOD2 Nucleotide binding oligomerization domain containing 2 0.969 -3.862 down 2.85E-08 3

4 CREB3L1 cAMP responsive element binding protein 3 like 1 1.091 6.338 up 3.93E-10 4

5 CDC14A cell division cycle 14A 2.063 5.07 up 9.42E-16 5

6 SMC4 Structural maintenance of chromosomes 4 1.487 5.147 up 5.35E-05 6

7 CFL2 Cofilin 2 1.276 -2.58 down 4.21E-04 7

8 MAGED1 MAGE family member D1 8.364 -2.206 down 5.36E-04 8

9 ITPA Inosine triphosphatase 0.758 -3.788 down 3.05E-08 9

10 DLG3 Discs large MAGUK scaffold protein 3 0.678 -4.79 down 7.53E-04 10

11 ING4 Inhibitor of growth family member 4 0.873 -2.853 down 1.10E-02 11

12 TECR Trans-2,3-enoyl-CoA reductase 2.586 -2.093 down 6.00E-07 12

13 RELA RELA proto-oncogene, NF-kB subunit 1.168 4.78 up 2.82E-06 13

14 CDH1 Cadherin 1 0.829 5.59 up 3.78E-06 14

15 ATAD3A ATPase family AAA domain containing 3A 2.651 -1.959 down 4.50E-03 15

16 FBXO7 F-box protein 7 8.101 4.215 up 2.20E-30 16

17 ACAD8 Acyl-CoA dehydrogenase family member 8 0.807 -2.499 down 5.51E-03 17

18 RASSF1 Ras association domain family member 1 0.605 -3.601 down 1.69E-31 18

19 SOX2 SRY-box transcription factor 2 0.783 5.018 up 9.94E-10 19

20 IGSF8 Immunoglobulin superfamily member 8 0.561 -4.588 down 3.06E-09 20

21 MID2 Midline 2 0.911 -2.177 down 1.53E-02 21

22 CUL1 Cullin 1 1.39 4.193 up 1.26E-06 22

23 SP110 SP110 nuclear body protein 0.493 -19.754 down 3.36E-29 23

24 EHMT1 Euchromatic histone lysine methyltransferase 1 0.66 -2.737 down 4.53E-07 24

25 NODAL Nodal growth differentiation factor 0.8 4.751 up 1.38E-07 25

26 PPAN Peter pan homolog 0.899 -2.07 down 2.08E-04 26

27 PRDM16 PR/SET domain 16 1.155 4.182 up 1.86E-09 27

28 FAM118B Family with sequence similarity 118 member B 0.466 -5.761 down 6.92E-35 28

Table 3: The DEGs of merged datasets from the blood sample with the applied criteria of p-value <0.05 and |log2FC| > 1.5, network score and 
directionality of regulations. The table is sorted based on the consolidated ranking score.
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29 IFT172 Intraflagellar transport 172 0.491 -3.891 down 4.08E-02 29

30 SYNC Syncoilin, intermediate filament protein 0.475 7.565 up 2.75E-90 30

31 UHRF1 Ubiquitin like with PHD and ring finger domains 1 0.614 5.168 up 2.17E-08 31

32 SH3GLB1 SH3 domain containing GRB2 like, endophilin B1 1.361 3.857 up 3.10E-16 32

33 GANAB Glucosidase II alpha subunit 0.465 -4.146 down 8.93E-09 33

34 TAF15 TATA-box binding protein associated factor 15 1.058 -1.779 down 1.74E-61 34

35 PTK2B Protein tyrosine kinase 2 beta 0.576 5.093 up 2.11E-32 35

36 HSPB8 Heat shock protein family B (small) member 8 1.148 3.86 up 8.53E-06 36

37 DIABLO Diablo IAP-binding mitochondrial protein 1.15 -1.59 down 7.20E-03 37

38 PARK7 Parkinsonism associated deglycase 0.715 -1.97 down 7.36E-23 38

39 BIRC7 Baculoviral IAP repeat containing 7 0.806 -1.829 down 2.62E-02 39

40 RUFY1 RUN and FYVE domain containing 1 0.422 -6.191 down 5.96E-06 40

41 CLUAP1 Clusterin associated protein 1 1.019 3.774 up 7.16E-06 41

42 PPIE Peptidylprolyl isomerase E 0.631 -2.022 down 1.15E-04 42

43 KCTD3 Potassium channel tetramerization domain containing 3 1.34 3.435 up 1.59E-02 43

44 PPT1 Palmitoyl-protein thioesterase 1 0.45 5.673 up 7.61E-242 44

45 BRD7 Bromodomain containing 7 0.513 4.73 up 3.79E-155 45

46 UBR4 Ubiquitin protein ligase E3 component n-recognin 4 0.443 -2.879 down 8.39E-13 46

47 FLNC Filamin C 0.605 4.328 up 4.34E-07 47

48 AGAP3 ArfGAP with GTPase domain, ankyrin repeat and PH 
domain 3 0.419 -3.2 down 3.07E-07 48

49 MYO5B Myosin VB 0.802 3.727 up 6.06E-13 49

50 EFEMP1 EGF containing fibulin extracellular matrix protein 1 0.395 7.234 up 2.34E-03 50

Relative ranking = RANK($A2,$A$2:$A$N)

Here, A represents the name of the column and “N” 
represents the number of rows

And named as “Relative gene expression ranking” 
for LogFC, “Covid-19-associated pathway” for covid-19 
pathways, “Relative network score” for Network Score and 
estimated a consolidated score using the below-mentioned 
formula where p-value was used as a qualifying parameter.

Consolidated Score = 

Here, G2 stands for CovInt network Rank; H2 stands 
for relative Expression Ranking and J2 stands for relative 
covid-19 associated Pathway ranking. Based on relative 
ranking the top 50 relevant DEGs from Blood have been 

shown in Table 3, PBMC in Table 4 and Lung tissues in 
Table 5.

Transcriptomics profile analysis of Whole Blood, PBMC 
and lung suggested dysregulation of CREB3L1, SOX2, 
UBR4 and FLNC transcription factor (Figure 7). Several 
investigators has reported dysregulation of CREB3L1 in ER 
stress during the Covid-19 infections [27, 28] whereas SOX2 
is known to be a bronchus progenitor marker gene [29–31] 
that is involved in cytokine-mediated signaling pathway [32] 
and play an important role in lung fibrosis [33, 34]. Another 
common transcription factor identified from this analysis is 
UBR4 which is an E3 ubiquitin ligase and was found to be 
involved in the membrane morphogenesis autophagy process 
during the cytokine storm [35]. In our study, we found UBR4 
as significantly dysregulated in Covid-19 infections and 
can be used as a potential therapeutic target for Covid-19. 
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UBR4 is previously reported as an important protein to be   
involved in the transportation of viral glycoproteins to the 
cell membrane and promotes replication of Influenza A virus 
[36]. Our study revealed a similar role of UBR4 in Covid-19 
infections.

From blood tissue transcriptomics analysis, we identified 
Inosine Triphosphatase (ITPA) as one of the top transcription 
factors associated that are downregulated by -3.788 FoldChain 
as compared to a healthy patient. Multiple mutations are 
already reported in these genes such as rs1161447593, 
rs12980275 and rs8099917 which leads to a certain reduction 
in the ITPA expression associated with Hepatitis C virus 
response [37]. The role of ITPA can be further explored in 
SARS-CoV-2 infections. The second genetic marker is DLG3 
which is found to be downregulated through our analysis with 
a Log2FC value of -4.790. DLG3 is recognized by SARS-
CoV-2, E protein, however, its role still needs to be explored 
further [38]. Inhibitor of growth family member 4 (ING4) is 

another interesting transcription factor that is downregulated 
(-2.853) in the disease samples. It interacts with the CXCL8 
gene and regulates cytokine during the cytokine storm 
inflammatory response.

The expression of Trans-2,3-Enoyl-CoA Reductase 
(TECR) is downregulated (-2.093) in disease conditions. 
Activator of the TECR gene could be an interesting therapeutic 
target against Covid-19.  RELA is another important key 
transcription factor that comes out from our analysis which 
is significantly upregulated (4.780) during the SARS-CoV-2 
infection. RELA initiates TLR4 mediated NF-κB signaling 
pathway to activate IL-8 expression and thus regulates the 
IFN response [39]. Interestingly, upon investigation, we 
identified that these molecules are highly connected to each 
other and involved in various covid-19 infection-associated 
pathways such as Activation of NLRP3 inflammation, Renin-
angiotensin Aldosterone system, Cytokine-cytokine receptor, 
MAPK signaling and Integrin signaling pathways (Figure 8).

Figure 7: Unique dysregulated gene from Blood, PBMC and Lung sample
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Transcriptomics analysis from PBMC samples revealed 
HPSE is generally upregulated during Covid-19 with Log2FC 
of 7.315, it is involved in pro-inflammatory glycocalyx 
generation that promotes chemokines, cytokines, and 
leukocytes binding to the endothelial cell surface. Inhibition 
of HPSE restricts HPSE activity and benefits Covid-19 
patients [40] and other lung-associated diseases [41].

Tripartite Motif Containing 33 (TRIM33) is another 
interesting transcription factor that is found to be 
overexpressed (6.609) in our study. It regulates the 
proinflammatory function of Th17 cells [42]. Th17 cells are 
known to play an important role in COVID-19 pathogenesis 
by triggering cytokine cascade and inducing Th2 responses 
during the infection which leads to Treg cell suppression43,44.

However, two important genes NADH and SMAD 
were identified as crucial hub genes from network analysis 
that can be activated for better therapeutic effects. Firstly, 
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex 
subunit 12 (NDUFA12) which is an accessory subunit 

of the mitochondrial membrane respiratory chain NADH 
dehydrogenase (Complex I) is found to be downregulated 
with a -6.035 FoldChain during the SARS-COV-2 viral 
infection sample from our study. Secondly, SMAD proteins 
are down-regulated in our study -8.572, which is known to 
be involved in TGF-β signaling pathways and pulmonary 
fibrosis45.

Negative regulations of SMAD2 lead to lung injury 
and upregulation of SMAD2 may trigger TGF-β signaling 
pathways that may lead to the downregulation of angiotensin-
converting enzyme 2(ACE2) receptor and limit the spike 
protein interaction with ACE2 in the early phase. Other 
interesting genes from PBMC sample analysis were come 
out from our analysis are FBXW7, SMC4, CFL2, ATAD3A, 
ACAD8, RASSF1, SOX2, IGSF8, SP110, EHMT1, 
NODAL, PPAN, FAM118B, IFT172, SYNC, SH3GLB1, 
PTK2B, BIRC7, RUFY1, CLUAP1, PPT1, and AGAP3 that 
need to be investigated further for their role in SARS-CoV-2 
infections.

Figure 8: Molecular connections of the top dysregulated gene from the Blood sample. Here,  upregulated proteins are shown in the green 
bubbles and down-regulated proteins are shown in red color and neutral genes are demonstrated in gray color. All biological pathways are 
highlighted in yellow color. Covid-19 associated pathways are labeled using blue text to differentiate the sub-clustered and associated genes.

https://paperpile.com/c/gDoB94/go29S+hR896
https://paperpile.com/c/gDoB94/wJsuj
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Lung tissues are the most important organ that gets affected 
during this disease. We identified TNF Superfamily Member 
13B (TNFSF13B) as the most important transcription factor 
that is significantly differentially expressed in liver tissues 
with   2.955 Log2FC as a defense response suggesting its 
potential role in disease pathophysiological relations in 
SARS-CoV-2 infections [46]. It is supposed to activate B-cell 
and secretes antibodies into the blood and lung tissues that 
protect against pathogens and viral infection [47]. Whereas, 
Inducible T Cell Costimulator (ICOS) plays an important role 
in Tfh cell activation and high-affinity antibodies generation. 
In our study, we found it is significantly upregulated in 
disease conditions by 2.314 Log2FC and has multiple direct 
connections in the CoVint network. Various investigators 
have previously reported that downregulation of ICOS 
transcription factor significantly reduces Tfh cells [48–50] 
may lead to B cell differentiation and effective promotion 
of humoral immune responses [51] and helps in clearing 
life-threatening viruses including SARS-CoV-2. Therefore, 
potential inhibitors can be further explored for these proposed 
targets (Figure 10).

Lung tissues have also shown several genes that are 
significantly downregulated in disease conditions and 
especially in lung tissues. E3 ubiquitin-protein ligase 

(HUWE1) is one of them. It mediates ubiquitination and 
subsequent proteasomal degradation of target proteins [52–
54]. Previously, the HUWE1 gene was reported to induce cell 
apoptosis in MERS-CoV ORF3 via ubiquitination. Activation 
of HUWE1 can play an antiviral role in host immunity 

[102] and can be further explored for potential therapeutic
candidature. We have also identified another important
transcriptional factor gene DDX17 that is significantly
downregulated in our studied sample with a -15.742 Log2
(fold change). It was also scored as an important protein
from our network analysis which represents this protein as
a potential biomarker for SARS-CoV-2. DEAD-box (DDX)
RNA helicases play a very crucial role in the stage of
Covid-19 infection and therefore can be used as positive or
negative regulators in different levels of DDX-mediated viral
replication steps.

We also identified Endothelial PAS domain-containing 
protein 1 (EPAS1) also known as HIF2A is an important 
transcription factor that is involved in the regulation of oxygen 
level during the disease condition. However, inhibition 
of EPAS1 may not benefit in the early stage Covid-19 
infection but may serve as a promising treatment target 
post-Covid-19 complication [56]. Another important protein 

Figure 9: (A) Molecular connections of the top dysregulated gene from PBMC sample. Here,  upregulated proteins are shown in the green 
bubbles and down-regulated proteins are shown in red color and neutral genes are demonstrated in grey color. All biological pathways are 
highlighted in yellow color. Covid-19 associated pathways are labeled using blue text to differentiate the sub-clustered and associated genes. 
(B) Dysregulated genes from PBMC samples compared to healthy volunteers.
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PBMC Tissues

# Gene 
Symbol Gene Name Network 

Score
Gene 

Expression Direction p-value Relative 
ranking

1 FHOD1 Formin homology 2 domain containing 1 4.261 -10.042 down 1.58E-75 1

2 HPSE Heparanase 4.538 7.315 up 3.11E-42 2

3 MAD2L2 Mitotic arrest deficient 2 like 2 3.446 -6.16 down 5.81E-184 3

4 DCPS Decapping enzyme, scavenger 2.341 -6.662 down 1.28E-119 4

5 SMAD2 SMAD family member 2 1.412 -8.572 down 1.16E-13 5

6 TRIM33 Tripartite motif containing 33 2.441 6.609 up 6.99E-09 6

7 CHCHD2 Coiled-coil-helix-coiled-coil-helix domain containing 2 2.181 -5.569 down 0.00E+00 7

8 NDUFA12 NADH:ubiquinone oxidoreductase subunit A12 1.766 -6.035 down 2.04E-239 8

9 ATXN10 Spinocerebellar ataxia type 10 protein 1.494 -6.501 down 0.00E+00 9

10 CENPJ Centromere protein J 1.681 7.13 up 5.83E-11 10

11 MALT1 MALT1 paracaspase 1.082 -9.366 down 5.14E-58 11

12 LRCH1 Leucine rich repeats and calponin homology domain 
containing 1 2.253 -4.978 down 4.06E-12 12

13 USP7 Ubiquitin specific peptidase 7 2.565 6.044 up 5.45E-25 13

14 TELO2 Telomere maintenance 2 2.333 -4.878 down 1.16E-79 14

15 NOTCH3 Notch receptor 3 1.825 6.635 up 4.52E-04 15

16 MYBBP1A MYB binding protein 1a 1.126 -7.007 down 2.66E-120 16

17 RBM28 RNA binding motif protein 28 0.912 -10.38 down 1.71E-85 17

18 TCTN3 Tectonic family member 3 1.113 -6.302 down 2.98E-136 18

19 LARS1 Leucyl-tRNA synthetase 1 2.282 -4.471 down 2.30E-08 19

20 TMEM216 Transmembrane protein 216 2.404 -4.387 down 1.57E-18 20

21 PRMT1 Protein arginine methyltransferase 1 1.405 -4.939 down 4.54E-30 21

22 TAB2 TGF-beta activated kinase 1 (MAP3K7) binding protein 2 0.867 8.956 up 9.37E-18 22

23 EPAS1 Endothelial PAS domain protein 1 1.154 6.638 up 3.94E-16 23

24 ZNF408 Zinc finger protein 408 1.149 -5.169 down 2.00E-56 24

25 STUB1 STIP1 homology and U-box containing protein 1 5.134 -3.738 down 0.00E+00 25

26 COG5 Component of oligomeric golgi complex 5 1.162 6.356 up 2.09E-17 26

27 RIF1 Replication timing regulatory factor 1 0.746 25.494 up 2.57E-42 27

28 IFT52 Intraflagellar transport 52 1.139 6.267 up 1.18E-13 28

29 HBS1L HBS1 like translational GTPase 0.796 -7.863 down 1.08E-43 29

30 AUP1 AUP1 lipid droplet regulating VLDL assembly factor 3.445 4.731 up 6.28E-112 30

31 CC2D2A Coiled-coil and C2 domain containing 2A 1.629 5.348 up 1.84E-03 31

Table 4: The DEGs of merged datasets from PBMC sample with the applied criteria of p-value <0.05 and |log2FC| > 1.5, network score and 
directionality of regulations
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32 NFS1 NFS1 cysteine desulfurase 1.362 -4.557 down 1.56E-11 32

33 GPATCH8 G-patch domain containing 8 0.76 9.194 up 2.04E-38 33

34 CLUAP1 Clusterin associated protein 1 1.358 5.496 up 1.52E-05 34

35 QKI QKI, KH domain containing RNA binding 0.912 6.989 up 2.23E-11 35

36 RELA RELA proto-oncogene, NF-kB subunit 1.465 -4.249 down 3.24E-55 36

37 GMPPB GDP-mannose pyrophosphorylase B 1.341 -4.415 down 4.22E-198 37

38 MFF Mitochondrial fission factor 0.872 -5.811 down 2.44E-19 38

39 DYNC1LI1 Dynein cytoplasmic 1 light intermediate chain 1 1.883 -3.872 down 1.30E-203 39

40 NDE1 nudE neurodevelopment protein 1 0.83 -6.026 down 6.30E-238 40

41 CD81 CD81 molecule 1.037 -4.857 down 8.65E-53 41

42 FBXW7 F-box and WD repeat domain containing 7 1.78 -3.848 down 7.36E-06 42

43 DYRK1A Dual specificity tyrosine phosphorylation regulated 
kinase 1A 0.859 6.837 up 2.02E-56 43

44 FANCD2 FA complementation group D2 0.995 6.104 up 9.67E-19 44

45 NT5C3A 5'-nucleotidase, cytosolic IIIA 0.774 7.563 up 1.28E-41 45

46 IKBKG Inhibitor of nuclear factor kappa B kinase regulatory 
subunit gamma 15.098 4.174 up 5.86E-08 46

47 SUFU SUFU negative regulator of hedgehog signaling 1.139 -4.435 down 2.73E-55 47

48 HSD17B10 Hydroxysteroid 17-beta dehydrogenase 10 1.404 -4.104 down 0.00E+00 48

49 LARP7 La ribonucleoprotein 7, transcriptional regulator 1.99 4.669 up 1.66E-06 49

50 CHMP4B Charged multivesicular body protein 4B 1.034 5.857 up 0.00E+00 50

Figure 10: Dysregulated gene from Lung sample, control and disease sample
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Lung tissues

# Gene Symbol Gene Name Network 
Score

Gene 
Expression Direction p-value Relative 

ranking
1 TNFSF13B TNF superfamily member 13b 2.902 2.955 up 1.63E-07 1

2 ICOS Inducible T cell costimulator 2.906 2.314 up 9.20E-03 2

3 HUWE1 HECT, UBA and WWE domain containing E3 
ubiquitin protein ligase 1 2.171 -15.978 down 0.00E+00 3

4 LRRK2 Leucine rich repeat kinase 2 7.025 -14.834 down 4.09E-141 4

5 CREBBP CREB binding protein 2.121 -15.198 down 7.35E-230 5

6 DDX17 DEAD-box helicase 17 1.414 -15.742 down 0.00E+00 6

7 BAZ1B Bromodomain adjacent to zinc finger domain 1B 2.709 -14.784 down 7.80E-269 7

8 PLEKHA4 Pleckstrin homology domain containing A4 22.555 -14.334 down 5.10E-125 8

9 EPAS1 E  ndothelial PAS domain protein 1 1.303 -15.763 down 2.18E-117 9

10 MACF1 Microtubule actin crosslinking factor 1 1.123 -18.03 down 3.37E-298 10

11 MDN1 Midasin AAA ATPase 1 1.387 -15.107 down 2.95E-182 11

12 EP300 E1A binding protein p300 1.657 -14.678 down 5.87E-306 12

13 UPF2 UPF2 regulator of nonsense mediated mRNA decay 2.932 -14.233 down 1.48E-220 13

14 UBQLN1 UBQLN1 3.81 -14.09 down 1.15E-177 14

15 TAF15 TATA-box binding protein associated factor 15 1.302 -14.761 down 1.02E-285 15

16 DOCK5 Dedicator of cytokinesis 5 2.375 -14.166 down 1.41E-220 16

17 SMC3 Structural maintenance of chromosomes 3 3.775 -13.927 down 1.40E-209 17

18 USP9X Ubiquitin specific peptidase 9 X-linked 1.494 -14.351 down 6.33E-282 18

19 WDR26 WD repeat domain 26 1.265 -14.726 down 5.68E-262 19

20 SORT1 Sortilin 1 0.953 -15.359 down 2.86E-278 20

21 HNRNPU Heterogeneous nuclear ribonucleoprotein U 1.041 -15.208 down 1.06E-285 21

22 AKAP9 A-kinase anchoring protein 9 0.861 -15.63 down 1.50E-234 22

23 PIK3R1 Phosphoinositide-3-kinase regulatory subunit 1 0.835 -15.638 down 5.33E-227 23

24 TRIM33 Tripartite motif containing 33 2.772 -13.791 down 3.62E-178 24

25 SMAD2 SMAD family member 2 1.315 -14.264 down 7.46E-90 25

26 SUPT16H SPT16 homolog, facilitates chromatin remodeling 
subunit 7.35 -13.645 down 2.29E-226 26

27 CHD7 Chromodomain helicase DNA binding protein 7 1.368 -14.129 down 1.61E-145 27

28 HNRNPD Heterogeneous nuclear ribonucleoprotein D 0.785 -15.452 down 9.61E-276 28

29 YWHAE Tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein epsilon 0.786 -15.188 down 1.73E-269 29

30 CDK12 Cyclin dependent kinase 12 0.889 -14.656 down 4.66E-177 30

31 MAP1LC3B Microtubule associated protein 1 light chain 3 beta 3.492 -13.499 down 1.12E-236 31

32 CD81 CD81 molecule 0.847 -14.656 down 1.37E-273 32

33 PLEC Plectin 0.638 -17.392 down 1.12E-246 33

34 SAMHD1 SAM and HD domain containing deoxynucleoside 
triphosphate triphosphohydrolase 1 2.623 -13.501 down 3.19E-92 34

35 RPL36 Ribosomal protein L36 1.392 -13.731 down 5.16E-168 35

36 GRB2 Growth factor receptor bound protein 2 2.649 -13.447 down 1.18E-197 36

37 ACTG1 Actin gamma 1 0.584 -17.213 down 2.15E-258 37

38 KDM5B Lysine demethylase 5B 1.643 -13.579 down 9.26E-177 38

39 PTPN11 Protein tyrosine phosphatase non-receptor type 11 1.076 -13.895 down 5.26E-303 39

40 UBC Ubiquitin C 1.506 -13.536 down 1.05E-94 40

Table 5: The DEGs of merged datasets from the Lung sample with the applied criteria of p-value <0.05 and |log2FC| > 1.5, network score and 
directionality of regulations
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Cyclic adenosine monophosphate response element-binding 
protein (CREBBP) found significantly downregulated in our 
study with a -15.198 Log 2-fold change value and serves as 
a potential biomarker for SARS-CoV-2. The functions of 
CREBBP are involved in cholesterol biosynthesis and Insulin 
regulation [57]. Dysregulation of cholesterol biosynthesis 
of Insulin could be an interesting MoA that several studies 
suggested its functional role that may lead to the reduction of 
SARS-CoV-2 infections [58] and regulating the entry of the 
SARS-CoV-2 virus into the host cell [58,59].

Conclusion
Our study has summarized the transcriptomics analysis of 

Covid-19 HTS data from Blood, PBMC and Lung tissues. We 
have identified 139 common DEGs from PBMC and blood, 
291 common DEGs from Lung and Blood and 326 common 
DEGs from Lung and Blood. Our functional and CoVint 
network analysis revealed that the most common DEG from 
blood, PBMC and Lung tissue is CREB3L1, SOX2, UBR4 
and FLNC. We also identified that ITPA, DLG3, ING4, 
TECR, NADH, SMAD, HUWE1, DDX17 and CREBBP are 
highly downregulated and activation of these genes may play 
an important role in disease reversal. Similarly, inhibition 
of RELA, HPSE, TRIM33, and TNFSF13B can be further 
explored experimentally for better therapeutic development 
and benefit of Covid-19 patients. In summary, these hub 
genes can be considered potential therapeutic biomarkers for 
the diagnosis of SARS-CoV-2.
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