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Introduction
For decades, fitting an equation to data has been done through minimizing 

the sum of the squared residuals.  Investigators have to propose a model (main 

Abstract
Background: Historically, fitting a regression equation has been done 
through minimizing sum of squared residuals.

Objective: We present an alternative approach that fits regression 
equations through searches for specific cases in the database.  Case-based 
reasoning predicts outcomes based on matching to training cases and 
without modeling the relationship between features and outcome. This 
study compares the accuracy of the two nearest means (2NM), a search and 
case-based reasoning approach, to regression, a feature-based reasoning.

Data Sources: The accuracy of the two methods was examined in 
predicting mortality of 296,051 residents in Veterans Health Affairs 
nursing homes. Data was collected from 1/1/2000 to 9/10/2012. Data was 
randomly divided into training (90%) and validation (10%) samples.

Study Design: Cohort observational study.

Data Collection/Extraction Methods: In the 2NM algorithm, first 
data were transformed so that all features are monotonely related to the 
outcome. Second, all means that violate monotone order were set aside; to 
be processed as exceptions to the general algorithm. Third, for predicting 
a new case, the means in the training set are divided into “excessive” and 
“partial” means, based on how they match a new case. Fourth, the outcome 
for the new case is predicted as the average of two means: the excessive 
mean with minimum outcome and the partial mean with maximum outcome. 
To evaluate, we predicted the accuracy of linear logistic regression and the 
proposed procedure in predicting mortality from age, gender, and 10 daily 
living disabilities.

Principal Findings: In cases set aside for validation, the 2NM had a 
McFadden Pseudo R-squared of 0.51. The linear logistic regression, trained 
on the same training sample and predicting to the same validation cases, 
had a McFadden Pseudo R-squared of 0.09.  The 2NM was significantly 
more accurate (alpha <0.001) than linear logistic regression. A procedure 
is described for how to construct a non-linear regression that accomplishes 
the same level of accuracy as the 2NM.

Conclusions : 2NM, a Case-Based reasoning method, captured nonlinear 
interactions in the data.
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effects and interaction terms) and see how it fits the data.  
Unfortunately, in high dimensional data, it is not practical 
to specify all possible interactions and investigators need a 
deliberate way of finding the possible interaction terms. In 
this paper we provide an alternative method of organizing a 
regression model. This alternative approach works through 
searching the data for special cases. Because it is case-based 
reasoning, the approach takes into account all interactions 
within the data.  Furthermore, the approach allows the 
examination of possible interaction terms prior to fitting a 
regression equation to data.     

This proposed algorithm for regression is built on case-
based reasoning. In case-based reasoning, one evaluates the 
entire case, including the interactions among the features in 
the case. The interactions among features are not explicitly 
modeled, although that can be done after the algorithm 
identifies the possible interactions. The outcome for the 
entire case is compared to outcomes of other cases.  Case 
comparisons always include the interactions among the 
features.  Since, by definition, a case is a collection of features, 
the process implicitly accounts for feature interactions. In 
contrast, feature-based reasoning, e.g., regression, uses the 
features in the case to evaluate the case, and interactions 
among the features are not modeled, unless the investigator 
specifies them. In high dimensional or massive data, case-
based reasoning is preferred to feature-based algorithms 
because it is often computationally impractical to assess 
parameters for interactions among all features. In this paper, 
we describe a new case-based reasoning method and show 
how it can capture non-linearities missing in feature-based 
algorithms.

Methods
Conditions under which Algorithm Works

The proposed algorithm works in broad set of environments 
but requires a number of data transformation before applying 
the algorithm. A case is a collection of features X1 , …, Xn. 
The purpose of the algorithm is to predict the outcome Y for 
case P, having features X1,p , …, Xn,p.  Thus,  refers 
to the outcome for the case where the feature set  has the 
values in . We assume that all features,  are either binary 
variables taking on values of 0 or 1 or are standardized to 
range between 0 and 1. To standardize , the minimum-
maximum transformation can be used:
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We assume that all features  are arranged so that they 
are monotonely and positively related to Y, the outcome of 
interest. Thus, if , then  If   variables 
are not monotonely increasing, then these variables are 
revised so that they are:

• Non-monotone  variables are split into two or more
monotone  variables. For example, if age sometimes
increases and other times decreases the outcome, then
various age ranges are used as separate variables, so that
within these ranges, the age variable always has the same
effect on the outcome.

• features that are negatively related to the outcome are
redefined to  so that they are positively related to the
outcome. For example, if the outcome of interest decreases 
among male gender (defined as male=1, female=0), then
the gender feature is redefined to be female (i.e., female=1,
male=0).

In our algorithm, the training data are classified into m 
Means. In our terminology, a Mean refers to the average 
outcome, Y, calculated over a set of cases with same features. 
It is important to have as many Means in the training data as 
possible, as the number of Means and the range of outcomes 
for the Means determines the accuracy of the predictions in 
our procedure. At the same time, too few cases per Mean 
reduces the precision of the estimated outcome for the Mean 
and therefore reduces the accuracy of predictions. The 
analyst needs to strike a balance between number of Means 
and number of cases per Mean. If all case features, including 
the outcome Y, are binary, then the outcome for Means is 
reported as the probability of Y. Usually, at least 30 repeated 
cases in the training data are used to identify the Mean and 
its probability. As the size of training data increases, using 
a minimum of 30 cases per Mean leads to identification of 
more Means. We selected 30 cases as a minimum number for 
a stable Mean because around 30, the Binomial distribution 
can be approximated by Normal distribution. If the data are 
not binary, the k-Means approach is used to identify as many 
Means as possible within the training data. Investigators 
often select the k-parameter in the k-Means by trial and error 
in the training set, to see what best fits the data [1-3]. Some 
authors have proposed that the k parameter should be chosen 
as a function of size of the data, with more Means chosen in 
bigger data [4]. Our approach is to use as large a K that fits 
the training data.

A Motivating Example
To help motivate the logic of the algorithm, we first 

present it in a simplified context of two variables: X1 and X2. 
Figure 1 shows that X1 and X2 are monotonely related to the 
outcome Y, i.e., going from a1 to e1 on X1 and going from e2 to 
a2 on X2, do not lead to decreases in Y. Figure 1 shows the 8 
Means in the data shown with alphabets A through H. These 
Means differ in values of X1 and X2 and have different levels 
of outcome Y associated with each mean. The prediction task 
is to predict the outcome for a new case, shown as P, with 
value p1 on X1 and value p2 on X2. The purely excessive set 
of Means are all the Means that have more of X1 or X2 than 
the case P. In Figure 1, these are F, G, and H. G, for example, 
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or partial types based on the relative severity of types with 
just cardiac and infectious diseases. Suppose, A is classified 
as excessive and E as partial. The algorithm calculates the 
probability of mortality for patient P from the maximum 
of partial patient types, in this case, E and the minimum of 
excessive patient types, in this case A. 

Note that in these comparisons, we never used feature-
based reasoning. We did not create a model, e.g., a regression 
equation, about how much features X1 or X2 contribute to the 
outcome Y. We also did not use Euclidian distance (squared 
root of sum of squared differences on each feature) between 
cases to judge the similarity of the cases.  The entire inference 
was based on outcomes in various cases; we examined Means 
where X1 or X2 had different levels. The outcome for case P 
was inferred from the outcome for Means in the training set 
of data, without calculating the contribution of each feature 
to the outcome.

Description of the Algorithm
This algorithm repeatedly uses a concept known in the 

literature as Preferential Independence to organize the data 
[5]. In preferential independence, shared features of a Mean 
do not affect the order of outcomes of the Means. If S is a 
set of shared features and N is a set of features not shared, 
then  is the outcome for the Mean with 
shared features “s” and unshared features “n”. Preferential 
independence assumes that the order of outcomes for any two 
Means stays the same, independent of the shared features. 
Changing shared features “s” to “t” does not change the order 
of outcomes of the two Means:

The monotone organization of features, discussed earlier, 
requires that a Mean with an added feature should not have 
a lower outcome. If  indicates the feature set of the starting 
Mean, then monotone relationship requires:

Preferential independence allows us to generalize the 
monotone relationship to a variety of pairwise comparisons 
of Means. Our experience to date has shown that in almost 
all databases, the monotone relationship does not hold for all 
pairwise comparisons.

Step 1: Remove Order Violations from the Training 
Set. The first step in the algorithm is to remove Means in 
which adding a new feature violates the assumed monotone 
relationship. Violation of the required order identifies Means 
that are exceptions to the general model developed here to 
organize the data. These Means are not following the general 
pattern in the data and should be treated separately. If a new 
case matches the exceptions, then the model is ignored, and 
the outcome of the exceptional Mean is used to predict the 

Figure 1: Partial and Excessive Sets in Matches to Patient P in Two 
Dimensions

has more of both X1 and X2. Partial sets are all the Means that 
have less values of either X1 or X2. In Figure 1 these are B, 
C, and D. For example, B has less of X1 than case P and same 
value on X2 as case P. 

A more complex situation arises when the Mean has some 
features less and other features more than the case P. The 
Mean A is a mixed Mean, it has level a2 on X2, which exceeds 
p2 for the case P. It has level a1 on X1 which is less than p1 
for case P. Similarly, Mean E is a mixed Mean, compared to 
P, it exceeds on X1 but is less on X2. These mixed Means can 
belong to either partial or excessive category, depending on 
the net impact of Means where just X1 and X2 are present. If 

, then Mean A is classified 
as excessive because the impact of excess on X2 is higher than 
the impact of loss on feature X1. Similarly, Mean E is assigned 
to excessive set if the net effect of having more of X1 and 
less of X2 is positive, i.e., 
. Once all Means are classified into partial and excessive sets, 
then the outcome for patient P is bounded by the maximum 
outcome in the partial set and the minimum outcome in the 
excessive set. The middle of the upper and lower bound is an 
estimate of the outcome for case P.

For a more clinical example, consider predicting mortality 
from two factors: severity of cardiac illnesses and severity of 
infectious diseases in the patient’s medical history. We agree 
that more severe illnesses lead to more mortality, thus the 
relationship is monotone. Suppose in a training set we have 8 
types of patients, as in Figure 1, each with differing levels of 
cardiac and infectious illnesses. Suppose that a patient shows 
moderate levels of severity for both cardiac and infectious 
diseases. Then, C, B, and D are partial types because they 
have at least one feature less severe than patient P and no 
feature worse than patient P. Furthermore, F, G, and H are 
excessive Means or types of patients as they have at least one 
feature that exceeds in severity than patient P and no feature 
that is less severe. The patient types A and E are mixed types, 
as one feature indicates more severe and another less severe 
illness. These two mixed types are reclassified into excessive 
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outcome for the new case. To identify the exceptions, these 
steps can be followed:

1. Using the training set of data, start with the Mean where
no feature is present. Call this the reference Mean

2. Add a feature to the reference Mean, creating a new Mean
with an added feature than the starting Mean. We refer to
these types of Means as “Excessive Mean.” Look up the
outcome for the constructed Excessive Mean in the data.

3. Test if the pair of Means have an order violation, where
the Mean with added feature has a lower outcome than the
Mean without it. Small variations in data can be ignored
as all data have random variations that violate order
requirements. The purpose of searching for exceptions is
to identify large and consistent order violations.

4. Repeat steps 2 and 3 until all pairs of Means have been
examined.
The Means with the highest number of order violations

are assigned to the Exception set. When an order violation is 
observed, it is not clear if the violation is due to the reference 
Mean having an unusually high outcome or the Excessive 
Mean having an unusually low outcome. We propose to focus 
on the Mean with the largest number of order violations.

Step 2: Assign Means in Training Set to Excessive, 
Partial, and Mixed Sets. To predict the outcome for a new 
case, the Means in the training data (excluding exceptions) 
are classified into three types: partial, excessive, or mixed. 
If there is a Mean that exactly matches every feature of the 
new case, then there is no need for the algorithm and the 
prediction can be made from the outcome of this exact match. 
Similarly, if the new case has an exact match to Means in 
the exception set, then the outcome for the exception is used 
as the predicted value for the new case. A partial set, shown 
as is a set of Means where some of the features present in 
the patient are not matched in the Mean. An excessive set, 
shown as is a set of Means, where all features present in the 
new case are matched and one or more additional features are 
present in the Mean but not in the new case. A Mean is mixed 
if some features in the new case are absent in the Mean; as 
well as some features in the Mean are absent in the new case. 
This set of Means is shown as . A Mean in this set is shown 
as having three sets of features:

It has features that are shared with the patients shown as 
having level “s”, a set of features that are in the new case but 
absent in the Mean, shown as “p”, and a set of features that 
are in the Mean but not in the new case, shown as “m.”

Step 3: Re-classify Mixed Means. One classifies 
Means in  to either  or  based on two methods. If the 
classification of the Mean to Excessive set creates an order 
violation, then the Mean is classified as Partial. This occurs 

if the re-classified Excessive has an outcome that is lower 
than the highest outcome for Means in the Partial set. Also, 
the reverse holds: if the classification of the Mean to partial 
creates a new order violation, then it is classified as Excessive. 
This occurs if the reclassified Partial has an outcome that is 
higher than the lowest outcome of the Means in the Excessive 
set.

 Not all re-classifications create order violations. If it is 
possible to reclassify the Mean to either Partial or Excessive 
without order violations, then one keeps the order of cases 
constructed from the mismatched features.

In these situations, the order of the mixed case is decided 
based on what is known as “Corner Means.” An Excessive 
Corner Mean is composed of just the additional features 
in the mixed Mean and no other feature being present. A 
Partial Corner Mean is composed of only missing features 
in the mixed Mean and no other features. By preferential 
independence, the comparison of Excessive and Partial 
Corner Means establishes the assignment of the mixed Mean. 
Corner Means occur often and the order among them can 
be observed in the data. If this is not the case, these corner 
Means must be estimated through data balancing. An SQL 
code for estimate the net impact of Corner Means is available 
through the first author [6].

Step 4: Estimate the Outcome for New Case. The 
outcome for the new case is predicted as the average of the 
partial Means with the highest outcome and Excessive mean 
with the lowest outcome:

There are situations in which no partial or no excessive 
matches exist. These situations occur at border points, where 
there are no lower or upper bounds. If the partial set  is 
null, then 0 is assumed. If excessive set  is null, then 1 is 
assumed.

Optimality of the Algorithm: A mathematical proof of 
optimality can be found in Keeney and Raiffa [7], where they 
use mutual preferential independence to create a mathematical 
model that preserves order of outcomes. In such a model, the 
maximum of partial and the minimum of excessive Means 
are the closest Means to the new case. The assumption of 
preferential independence and monotone positive relationship 
between features and the outcome, implies that Means in 
the excessive set have higher outcome than the new case. If 
the Mean in the partial set has an outcome that exceeds the 
minimum of the excessive set, then preferential independence 
is violated. Therefore, the lowest outcome among the Means 
in the excessive set is the upper bound for the new case. 



Alemi F, et al., Fortune J Health Sci 2024 
DOI:10.26502/fjhs.165

Citation: Farrokh Alemi, Madhukar Reddy Vongala, Sri Surya Krishna Rama Taraka Naren Durbha, Manaf Zargoush. Two Nearest Means Method: 
Regression through Searching in the Data. Fortune Journal of Health Sciences. 7 (2024): 60-67.

Volume 7 • Issue 1 64 

Similarly, the Mean with the maximum outcome in the partial 
set is closest to the outcome of the new case. Since these two 
Means have the outcomes closest to the new case, therefore 
the estimated average of maximum and minimum outcome 
for the new case is optimal. 

Identifying Interaction Terms
Some investigators assign meaning to feature weights 

in regression equations. These investigators may want to 
examine feature weights, even if 2NM algorithm is available. 
These investigators can use the procedures of the 2NM 
algorithm to identify which interaction terms might affect the 
outcome variable, then derive the regression model with the 
interaction term. To find out what interactions may exist in 
the data, the data is transformed as proposed for application 
of 2NM algorithm, then preferential independence plots are 
created. These plots are organized by examining. The effect of 
a variable (present or absent) on the outcome, as a function of 
different shared features. One line is plotted for cases with the 
shared features. Another line is plotted for cases without the 
features.  The X-axis is the shared features, plotted in order 
of increasing outcome. Two lines are plotted.  The first line 
is the outcome for the case with just shared features and the 
variable being examined.  The second line is the outcome for 
the case with shared features and the variable being examined. 
If there is no interaction term between the variable and the 
shared features, then the two lines must be parallel or nearly 
parallel throughout the range. Changing the shared features 
should not change the impact of the variable. If there is an 
interaction term in the data involving the variable, then the 
two lines could be diverging or converging. If the two lines 
cross each other then it indicates a violation of preferential 
independence. Preferential independence plots are reported in 
previous papers [8]. Preferential Independence plots show at 
what shared features there is a change in impact of a variable. 
Typically, a large number of interaction terms are identified 
and, for ease of use, the common denominator among the 
interaction terms is used. Once possible interaction terms 
have been identified, then a regression with the combination 
of main effects and interaction effects can capture the non-
linearity in the data.

Results
Simple Simulated Data

We show the accuracy of predictions using a simulated 
data set with a single standardized variable X. We focus on a 
single-variable simulation because it is easier to visualize the 
performance of 2NM in a single variable than in a multiple-
variable simulation. Let us assume that increases in X never 
decrease values of Y and X is positively and monotonely 
related to Y. Figure 2 shows such a simulated relationship. 
The observed data, shown in blue dots, shows that the values 
of Y either stay the same or increase as X increases. The 

black line shows the fit of a regression equation to the data. 
This fit is an optimal fit to the single feature in the simulation. 
The 2NM relies on case comparisons and in this simulation, 
the cases have only one variable. Thus, for any point in the 
data, the 2NM is calculated as the average of the point before 
and after it (the orange line). The R2 associated with the fit 
of the regression line to the data was 0.85; in contrast the 
R2 associated with the fit of 2NM was 0.88. The 2NM had 
a better fit, as it moved closer to the data points, when the 
relationship was not linear.

Application to Real Data
We tested the accuracy of predictions on a large database 

organized to guide what is likely to occur in a nursing home 
residents’ life. The outcome of interest was probability 
of death in the next 6 months. The sample included 
296,051 residents in Veterans Affairs nursing homes called 
Community Living Centers (CLCs). The period of study 
included 1/1/2000 through 9/10/2012. These data included 
a comprehensive assessment of residents’ disabilities. 
Independent variables were gender (M), and whether the 
resident had feeding (E), bathing (B), grooming (G), dressing 
(D), bowel continence (L), bladder continence (U), toilet use 
(T), transfers (S), and walking (W) disabilities. To simplify, 
we show a combination of features present and assume that 
all features not mentioned were absent. Thus, MUE shows 
a male patient with urine continence and feeding disability. 
WB shows a female resident with walking and bathing 
disabilities. By policy, assessments were done within 14 days 
of admission, at least quarterly, or sooner when there has 
been an event such as hospitalization, or when the nursing 
home staff identify change in the resident’s status. In our 
data, there were two peaks in the distribution of assessments; 
one for residents assessed every month (75,994 residents) 
and the other for residents assessed every 3 months (42,904 
residents). The average time between assessments was 115 
days (standard deviation of 235 days).
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Figure 2: Regression and 2NM Fit to Simple Simulated Data with 
1 Variable
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The assessments were grouped into 1,346 unique 
combinations of functions and gender. The rare combination 
with less than 10 cases were ignored, resulting in 758 unique 
combinations of gender and disabilities, what in 2NM 
terminology is referred to as reliable Means. Ten percent 
of the data (67 cases) were set aside to test the accuracy of 
predictions. The remaining 90% were used for training of 
2NM predictions and creating the reliable Means. The first 
step in the analysis is to check that the assumptions of 2NM 
are met, in particular we checked that for all Means in the 
training set adding another condition to the Mean does not 
reduce the probability of mortality. Table 1 lists situations 
where preferential independence was violated. Because of the 
large sample of data, we used both effect size (greater than 
0.10 drop in the mortality rate) and statistical significance 
(Z>1.98). For example, in the first row in the table we see 
that adding “Grooming (G)” disability to “Older, Male, 
OM” patients with no disability will lead to a -0.66 drop in 
the mortality rate. Obviously, adding a disability should not 
reduce mortality rates and, in fact, out of 202 times where 
grooming disability was added to another condition only on 
6 occasions the rate of mortality dropped. It almost always 
made the mortality rate worse. A quick analysis of Table 
1 shows that violations of preferential independence occur 
mostly in patients who have no disabilities (shown as “males 
older than 74 years OM”, “females older than 74 years OF”, 
“males less than 65 years YM”, “females less than 65 years 
YF”, “males 65-74 years M”, “females 65-74 years F”). 
In addition, violations of preferential independence also 
occurred in older male patients with all disabilities present 
but not urine incontinence or toileting disability (shown 
as OMERGBWDL). These situations cannot be modeled 
with 2NM. We set aside these situations as exceptions 
and focused on portions of the data where there was no 
violation of preferential independence. This reduced the 
Means available in the training set from 688 to 681 Means. 
In the Means remaining in the training set, there were no 
large and statistically significant violations of preferential 
independence.

Examples shown in Table 2 demonstrate the way the 
2NM prediction works. In a new case MGWD (a patient 
who is under 65 years, male, with grooming, walking, and 
dressing disabilities), we searched the database and found the 
closest partial and excessive Means. The 5 Means provided 
differ from MGWD by one feature. MGW, MWD, and MGD 
are partial matches. MGBWD and MGTWD are excessive 
matches. MGBWD is not possible as its mortality rate is 
less than MGD, even though it has more disabilities. Thus, 
it violates the assumption of preferential independence. We 
ignore this Mean. Now we have a set of partial matches and 
another set of excessive matches. The maximum mortality 
rate for partial matches is MGD. The minimum mortality rate 
for excessive matches is MGTWD. Therefore, we predict that 

patient MGWD has a mortality rate of 0.025. In reality, it had 
a mortality rate of 0.015.

For patient MSGWDL (a patient who is under 65, male, 
with transfer, grooming, walking, dressing disabilities, and 
bowel incontinence), we follow the same procedure. The six 
Means identified differ from the patient by one feature. First, 
we remove Means that violate preferential independence: 
MRGTBWDL and MGBWDL. These two Means have 
more disabilities than MRGBWL but have lower mortality 
rate, a violation of preferential independence. The two 
nearest Means are MSGBWL, the maximum of partial set, 
and MRGBWDLU, the minimum of excessive set. For this 
patient, we predict a mortality rate of 0.018. The observed 
rate was 0.030. For our final example in Table 2, we have 
a patient OMWL (between 65 and 74 years, male, with 
walking disability and bowel incontinence). Again, the Mean 
MRGTBWDL is not possible as it has more features but 
lower mortality rate than OML. After eliminating this Mean, 
the maximum mortality rate for the partial set is OML and 
the minimum mortality rate for the excessive set belongs 
to OMWLU. Therefore, we predict this patient will have a 
mortality rate of 0.016 and in fact it had a mortality rate of 
0.020.

In 130,428 set-aside validation cases, the 2NM had 
a McFadden Pseudo R-square of 0.51. A linear logistic 
regression was trained on the 1,174,218-training sample 
used by 2NM, using the linear combination of the same set 
of variables (age, gender, and disabilities). On the validation 
cases, the McFadden Pseudo R-squared for the linear logistic 
regression was 0.09.

Discussion
This paper shows that the optimal number of Means to use 

in k-Means methods is 2, if the data are transformed to fit a 
series of assumptions. These assumptions create a monotone 
positive relationship between the features and the outcome 
of interest. These assumptions also create a data set where 
the order of preferences among combination of features is the 
same in any subset of data. Data can be organized to meet 
these assumptions. Once the data are transformed to meet the 
assumptions of 2NM, then we divide Means into excessive 
and partial sets. Mixed Means (both partial and excessive) 
can be re-assigned based on the net impact of their partial and 
excessive feature sets. The maximum outcome of the partial 
and minimum outcome of the excessive Mean estimates the 
outcome for a new case. The procedure we used was accurate 
in a simple 1 variable simulation, showing how 2NM captures 
non-linear aspects of the data. We also compared 2NM and 
linear Logistic Regression in a large database of nursing 
home resident’s disabilities.  In predicting 6-month mortality 
in 10% set aside test cases, 2NM was more accurate than 
linear Logistic regression (Pseudo R-square of 0.51 versus 
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0.09). The 2NM procedure captured non-linearity among the 
variables in the model. The linear regression model did not. 

Traditionally, Nearest Neighbor and k-Means have relied 
on a distance metric to predict the outcome for a new case. 
In this approach, one typically defines closeness based on the 
Euclidean distance calculated over all the features. Euclidian 
distance is arbitrary; one could have specified non-Euclidean 
measures of distance. Furthermore, the distance measure is 
often used with no regard for interaction among the features, 
a procedure known to reduce accuracy [9, 10]. Some 
investigators have tried to consider the non-linearity of the 
features by creating separate models for sub-classes in the data 
or through Kernel methods [11-13]. These efforts continue 
to weigh various features, albeit in new and novel ways but 
produce limited improvements in accuracy [14]. In contrast, 
in 2NM, closeness is measured on a single dimension: the 
outcome. The outcome is the only dimension where closeness 
matters, closeness in all other multidimensional spaces is 
irrelevant. By using feature-based measures of distance, 
Nearest neighbor and K-means undermine a key advantage in 
case-based reasoning. The approach presented here requires 
no feature weighting. It predicts entirely through aggregate, 
case-based comparisons. The assignment of cases into 
exceptions, excessive, and partial is done entirely through 
contrasting outcomes in pairs of cases. Since cases reflect 
the interaction among the features, then 2NM considers the 
interaction among the features. It does not disaggregate the 
case into features and then uses a formula (typically only 
main effects) to re-combine the features into a distance 
measure. The 2NM procedure may be most relevant in high 
dimensional data, where it is often difficult to specify all 
interactions among the features. The proposed algorithm 
may improve accuracy because it relies on case comparisons 
without feature-by-feature comparisons. 

Limitations of the Algorithm
For the algorithm to be accurate, the Means in the training 

set must have values in the entire range of possible outcomes. 
Sufficient data should exist to have a variety of Means, 
ranging in probability of outcome from 0 to 1. For example, 
if we are examining probability of mortality, then we should 
have Means, or group of cases, where no one dies; where 
everyone dies, and different mixtures in between these two 
extremes. In predicting the outcome for a new case, a dense, 
uniform, distribution of Means and their probability of the 
outcome guarantees that the two Nearest Means for the new 
case are close to each other and thus a more precise prediction 
can be made.
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What Is Known on This Topic?
• Case-based reasoning, such as k-means or Nearest

Neighbor, take into account interactions among the
features of the case, except when measuring distance
among cases.

• Accuracy of case-based reasoning and feature-based
predictions are similar

What This study Adds?
• This study reports accuracy of a new case-based reasoning 

that does not rely on feature-based distance calculations.
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