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Abstract
Data obtained from clinical trials for a given disease often capture 

reliable empirical features of the highest quality which are limited to few 
studies/experiments. In contrast, knowledge data extracted from biomedical 
literature captures a wide range of clinical information relevant to a given 
disease that may not be as reliable as the experimental data. Therefore, we 
propose a novel method of training that co-optimizes two AI algorithms 
on experimental data and knowledge-based information from literature 
respectively to supplement the learning of one algorithm with that of the 
other and apply this method to prioritize/rank causal genes for Alzheimer’s 
Disease (AD). One algorithm generates unsupervised embeddings for gene 
nodes in a protein-protein interaction network associated with experimental 
data. The other algorithm generates embeddings for the nodes/entities in 
a knowledge graph constructed from biomedical literature. Both these 
algorithms are co-optimized to leverage information from each other’s 
domain. Therefore; a downstream inferencing task to rank causal genes for 
AD ensures the consideration of experimental and literature data available 
to implicate any given gene in the geneset. Rank-based evaluation metrics 
computed to validate the gene rankings prioritized by our algorithm 
showed that the top ranked positions were highly enriched with genes from 
a ground truth set that were experimentally verified to be causal for the 
progression of AD.
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Introduction
Enriching empirical data collected from clinical studies/experiments 

with prior knowledge extracted from biomedical literature and updating 
the prior knowledge iteratively based on the new knowledge learnt from 
the experimental data is a novel approach of training in deep learning. The 
core objective behind this novel approach is to supplement the learning of 
an AI algorithm trained on experimental data with the learning of another AI 
algorithm trained on biomedical literature and vice versa so that both these 
algorithms could symbiotically benefit from each other’s data. We apply this 
novel training strategy to prioritize causal genes for Alzheimer’s Disease 
where one domain of data is a knowledge graph constructed from biomedical 
literature that relates clinical entities such as genes, diseases, signaling 
pathways, biological processes, molecular function, adverse events etc. [1]
[2] and the other domain of data is a protein-protein interaction (PPI) network
[3-5] associated with experimental data that is derived from clinical studies
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such as common variant analysis [6-8], rare variant analysis 
[9-14], expression analysis [15-31] and gene knockouts from 
animal models [32-34] for Alzheimer’s Disease. In order to 
implement the same, we firstly enrich a graph neural network 
trained on the PPI network data with prior knowledge from 
a knowledge graph embedding (KGE) model trained on the 
biomedical knowledge graph. Thereafter, we update the prior 
knowledge in the KGE model using the node embeddings 
learnt by the graph neural network on the PPI network data 
for each epoch of training. This process is repeated iteratively 
to achieve co-optimization of the graph neural network and 
the KGE model. The node embeddings generated as a result 
of this co-optimization are used in a downstream inferencing 
task to rank all the causal genes relevant to Alzheimer’s 
Disease. Alzheimer’s Disease is a neurodegenerative disorder 
that slowly destroys the memory and cognitive function of 
the patients diagnosed with it. The drug targets that have 
been successful in controlling the progression of the disease 
so far have been limited [35]. One of the key challenges in 
discovering novel drug targets for Alzheimer’s Disease has 
been the identification and prioritization of causal genes 
relevant to the disease [36]. Causal genes are the genes whose 
level of expression is directly associated with an increased 
risk for developing the disease. Causal genes are determined 
based on experimental genetic evidence available to 
implicate the genes through clinical studies such as common 
variant analysis, rare variant analysis, expression analysis, 
gene knockouts from animal models etc. as well as factual 
evidence from biomedical literature available to implicate 
the genes such as signaling pathway activation, molecular 
function, biological processes etc. Therefore, it becomes 
crucial to rank all the genes by causality in order to further 
experimentally explore the effect of gene regulation on the 
progression of Alzheimer’s Disease [37].

This can be achieved by assigning a unique score to 
each gene in the geneset based on the experimental data and 
knowledge-based information from literature that is available 
to determine if a given gene is causal to the risk of developing 
Alzheimer’s Disease. This is known as gene scoring [38]. 
Gene scoring is a crucial step in the process of target 
qualification in order to identify and rank the causal genes 
relevant to Alzheimer’s Disease. Genes can be scored using 
a scoring function that accepts the experimental data and 
factual information from literature for each gene as the inputs 
to yield a unique score for each gene which can then be sorted 
to rank the genes based on their causality to Alzheimer’s 
Disease. The factual information relevant to each gene such 
as signaling pathway activation, biological processes and 
molecular functions is derived from a biomedical knowledge 
graph (Hetionet) [1][2]. The experimental data contains 
features derived from common variant analysis, rare variant 
analysis, expression analysis and gene knockouts from 
animal models for each gene in the geneset. Furthermore, 

the multiple genes participating in coding a single protein are 
closely associated and linked with each other in the protein-
protein interaction network. Therefore; the experimental 
data relevant to each gene can be diffused as node features 
in the protein-protein interaction network to help the graph 
neural network algorithm in associating the node features 
of all the connected genes. The scoring function used for 
assigning a unique score to every gene in the geneset is the 
objective function learnt by our co-optimization algorithm 
that leverages information from the knowledge graph to 
supplement the information learnt from the experimental 
data and vice versa. The ground truth that we used for testing 
and validating the gene rankings prioritized by our algorithm 
is a set of silver-standard genes that were collected from 
expert curated data sources such as Drugbank, ChEMBL, 
Opentargets, OMIM etc. and have verified causal evidence 
implicating them with Alzheimer’s Disease [39-42].

Rank based evaluation metrics [43] showed significant 
improvement for the silver standard genes in the geneset 
prioritized by co-optimizing the knowledge graph embedding 
model with the graph neural network model.

Literature Review
There have been previous approaches that have utilized 

graphs/networks along with experimental genetics data 
to prioritize causal genes so that they could be explored 
as potential drug targets for a given disease. The first such 
approach was adopted by the GWAB algorithm [44] that 
prioritized candidate genes by network-based boosting of 
GWAS (Genome wide association studies) data. It leveraged 
networks to analyze GWAS summary statistics [45] to 
prioritize top genetic variants associated with a disease and 
aimed to detect weakly implicated genes via disease-gene 
associations in a human gene functional interaction network 
called HumanNet [46] by their proximity to other strongly 
implicated genes in a molecular network using a Naive Bayes 
guilt-by-association algorithm [47]. Similar to the GWAB 
algorithm; we also use two types of graphs/networks in our 
proposed algorithm so as to associate the genetic evidence 
relevant to causal genes from a protein-protein interaction 
network that takes experimental data as node features with 
the functional evidence such as disease-gene associations 
from a biomedical knowledge graph. Although the GWAB 
algorithm picked weakly implicated genes from a human 
gene functional interaction network and used that information 
to measure their proximity to strongly implicated genes in a 
molecular network; it did not use any representation learning 
algorithm (such as a graph neural network or knowledge 
graph embedding model) to derive those insights and 
therefore could have easily missed out on selecting weakly 
implicated genes that did not have a direct disease-gene 
connection in the functional interaction network and also 
could have easily missed out on measuring the proximity 
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of the weakly implicated genes with several other strongly 
implicated genes that did not have a direct connection with 
the weakly implicated genes in the molecular network. This 
is precisely the problem that a graph neural network solves by 
generating embeddings/vectors to represent the underlying 
latent semantic structure of a graph/network that can be 
missed by a simpler algorithm that only considers the most 
apparent direct connections in the graph during inferencing 
[48]. Furthermore, GWAS summary statistics only implicates 
common genetic variants for a disease and misses out on 
considering other significant modalites of genetic evidence 
such as implication of rare genetic variants, differential 
gene expression and baseline expression as well as gene 
knockouts from animal models. Another algorithm that 
has been proposed in literature to prioritize the top genetic 
variants associated with a disease using GWAS summary 
statistics and network data is the NetWAS algorithm [49]. 
This algorithm combined genes with nominally significant 
GWAS P-values and tissue-specific networks [50] to identify 
disease-gene associations more accurately than GWAS alone. 
Each tissue network represented the tissue-specific posterior 
probability of a functional relationship between each pair 
of genes. NetWAS applied support vector machines [51] 
using nominally significant P-values as positive examples 
and randomly selected genes as negative examples to 
construct a classifier that identified tissue-specific network 
connectivity patterns associated with the hypertension 
phenotype. The features of the classifier were the edge 
weights of the labeled examples of all the genes in the 
network. Genes annotated to hypertension phenotype in the 
Online Mendelian Inheritance in Man (OMIM) database [42] 
were more highly ranked by this classifier than by the initial 
GWAS and also found antihypertensive drug targets from 
Drugbank [39], Therapeutic Target Database (TTD) [52] 
and Comparative Toxicogenomics Database (CTD) [53] that 
were more enriched by NetWAS than by GWAS. Although 
this approach was able to combine common variant statistics 
(nominally significant GWAS P-values) for candidate genes 
with tissue-specific networks in order to identity disease-
gene associations; it did not consider any other significant 
modalites of genetic evidence such as implication of rare 
genetic variants, differential gene expression and baseline 
expression as well as gene knockouts from animal models 
etc. Additionally, the connectivity in tissue-specific networks 
is often deficient and therefore fails to capture functional 
information relevant to other useful associations for a given 
phenotype.

Prioritizing target-disease associations with novel safety 
and efficacy scoring methods evaluates the efficacy and 
safety of potential drug targets by proposing efficacy scores 
that utilize existing gene expression data and tissue/disease 
specific networks to improve the inferencing on target-
disease associations [54]. Although this approach considered 

differential gene expression for implicating causal genes it 
did not consider other modalities of crucial genetic evidence 
such as implication of causal genes by common genetic 
variants, rare genetic variants etc. Differential expression 
data is not sufficient by itself to evaluate the efficacy and 
safety of potential drug targets. Furthermore, the safety of 
a druggable target depends on the adverse events associated 
with it. The approach that we have proposed in this paper 
obtains the adverse event data from the knowledge graph that 
relates several pieces of factual information such as genes, 
diseases, signaling pathways, biological processes, molecular 
functions, adverse events etc. It is therefore more informative 
and relevant in assessing the efficacy and safety of potential 
drug targets over a tissue/disease specific network. The PoPs 
algorithm leverages polygenic enrichments of gene features 
to predict genes underlying complex traits and diseases using 
a similarity based gene prioritization method [55]. The PoPs 
algorithm uses MAGMA eval (linear regression) of GWAS 
data [56] to train another linear regression model that uses 
functional annotations such as baseline gene expression 
from gTEX [15], biological pathways and predicted protein-
protein interaction data as the gene features. PoPs avoided 
benchmarking using curated silver standard genesets that 
may be biased towards well-studied genes or genes in well-
characterized pathways. Instead, PoPs used a slightly different 
approach for benchmarking by estimating the average 
contribution of SNPs in genes with high priority scores per 
SNP heritability [57]. Thereafter, assuming that the causal 
gene is often the closest gene to the lead variant in the locus, 
PoPs tested whether the prioritized genes were more often 
the closest gene to the lead variant in the locus than expected 
by chance. The PoPs algorithm was a promising approach to 
prioritize causal genes but the underlying linear regression 
algorithm utilized very few functional annotations / gene 
features to rank causal genes. Experimental data such as the 
evidence from common variant and rare variant studies were 
not considered when generating the gene features for the 
linear regression model. Moreover, we do not know if the 
relationship between the gene features and gene scores can 
be modeled using a linear function and the algorithm may 
underfit the training data leading to poorly prioritized causal 
genes. There have been previous studies that have integrated 
functional genomics and immune-related annotations, 
together with knowledge of network connectivity in order to 
maximize the informativeness of genetics for target validation 
[58]. This approach has adopted a priority index (PI) pipeline 
that takes genome-wide association study (GWAS) variants 
for specific immune traits as inputs and defines seed genes 
using genomic predictors such as distance to SNP [59], 
physical interaction, gene expression regulation, EQTL 
colocalization [60] etc. to identify and score the genes that are 
likely responsible for the GWAS signals. Additional scores 
for annotation predictors such as immune function (fGene), 
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immune phenotype (pGene) and rare genetic diseases related 
to immunity (dGene) are then only applied to the seed genes. 
Thereafter, random walk is performed on the STRING 
protein-protein interaction (PPI) network [3] in order to 
identify non-seed genes that lack genetic evidence but are 
highly ranked based on network connectivity alone and also 
to enhance the scoring for the seed genes with evidence of 
network connectivity. This study notably found that the 
interacting neighbors in a PPI network tend to be known drug 
targets rather than the GWAS reported genes. The priority 
index pipeline was evaluated by extracting existent drug 
therapeutics and target genes from the ChEMBL database 
[40] and comparing those against the ones prioritized by the
priority index pipeline.

Disease module identification based on representation 
learning of complex networks integrated with GWAS, 
eQTL Summaries and Human Interactome derived disease 
related modules from an integrated network with multi-layer 
information including human interactome (mainly protein-
protein interactions) and summaries of GWAS and eQTL 
studies [61]. This approach leverages a community detection 
algorithm called N2V-HC to learn node representations in a 
molecular network and unbiasedly detect gene communities 
enriched with potential disease genes. The idea behind this 
community detection algorithm is driven by the primary 
observation that disease-related proteins tend to interact 
closely in biological networks and that disease-related 
proteins tend to form many separate connected components 
which are scattered across the network [62]. Thereafter, 
a Fischer test [63] is used to test whether the causal genes 
for a disease are enriched in the candidate disease module. 
The N2V-HC algorithm is a promising approach that groups/
clusters a network based on causal gene communities for a 
given disease. We adopt a similar approach in our algorithm 
for grouping the genes into separate clusters using the cosine 
similarity between the node representation of a given gene 
𝐺1  and the node representation of a causal, silver standard 
gene and assign the cosine similarity score as the gene score 
for𝐺1 . Other than the evidence incorporated from common 
and rare variant studies it will also be useful to incorporate 
functional/factual data relevant to each gene in the geneset. 
The factual data could include relevant pathways, molecular 
functions, biological processes, cellular components etc. for 
a given gene 𝐺1 .

Rosalind is a gene prioritization method that combines 
heterogeneous knowledge graph construction with relational 
inference via tensor factorization to accurately predict 
disease-gene links in the graph [64]. It uses a subgraph 
consisting of Disease-GeneProtein links with the ‘Therapeutic 
Relationship’ relation type as a benchmark. The tensor 
factorization model is trained on the full knowledge graph 
and evaluated on the subgraph consisting of the Disease-
GeneProtein links and the ‘Therapeutic-relationship’ relation 

type [65]. Disease-Disease and Compound-Compound 
relationships are not included, as the former is not available 
across enough of diseases of interest while the latter is not 
available for measures of functional similarity at sufficient 
resolution. Knowledge graphs are generally enriched with 
functional/factual data and can therefore prioritize causal 
genes solely based on the factual information. However, 
experimental data from common variant analysis studies 
(GWAS), rare variant analysis studies (burden tests) and 
differential gene expression analysis studies are extremely 
crucial to prioritize casual genes and cannot be excluded 
when designing an algorithm for the same purpose. Both 
factual data and experimental data may be independently 
insufficient in prioritizing causal genes but aggregating them 
together gives the algorithm/model multiple feature attributes 
to score all the genes in the geneset.

Finding the targets of a drug by integration of gene 
expression data with a protein-protein interaction network 
proposes a network-based computational method for drug 
target prediction, applicable on a genome-wide scale [66]. 
This approach relies on the analysis of gene expression 
following drug treatment in the context of a functional 
protein association network. By diffusing differential 
expression signals to neighboring or correlated nodes in the 
network, genes are prioritized as potential targets based on 
the transcriptional response of functionally related genes. 
AUC values of up to 90% demonstrated the effectiveness 
of this approach and indicated the predictive power of 
integrating experimental gene expression data with prior 
knowledge from protein-protein interaction networks. The 
main idea behind our algorithm takes inspiration from this 
study as we also attempt to incorporate prior knowledge from 
a knowledge graph in the training procedure of a graph neural 
network on a protein-protein interaction network diffused 
with experimental data from common variant studies, 
rare variant studies, expression analysis studies and gene 
knockouts from animal models. The difference between these 
approaches is primarily in terms of the different modalities of 
data that have been used for training the models and the novel 
training procedure (co-optimization) that we have adopted to 
incorporate the prior knowledge. While this study integrates 
prior knowledge from a protein-protein interaction network 
with experimental gene expression data; our approach 
integrates prior knowledge from a knowledge graph into a 
protein-protein interaction network that is diffused with 
experimental data. This is a promising approach to rank 
causal genes which can be further improved by diffusing 
more experimental data features other than gene expression 
into the protein-protein interaction network . A combination 
of common variant analysis features, rare variant analysis 
features and gene expression analysis features is required 
in terms of the experimental data needed to prioritize causal 
genes.
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 Drug target prioritization by perturbed gene expression 
and network information also proposed a network-based 
computational method for drug target prediction, applicable 
on a genome-wide scale but showed that the gene expression 
of drug targets is usually not significantly affected by the 
drug perturbation and therefore expression changes after 
drug treatment on their own are not sufficient to identify 
drug targets [67]. However, ranking of candidate drug targets 
by network topological measures prioritizes the targets. 
In order to demonstrate the same, they introduce a novel 
method called local radiality that combines perturbed genes 
and functional interaction network information and this new 
method outperforms other methods in target prioritization 
including a random walk approach [68] and proposes cancer-
specific pathways from drugs to affected genes. Like the other 
network-based computation methods explored for drug target 
prediction this method also leverages limited experimental 
features and abundant functional interaction features from the 
networks. Therefore; this method also needs to incorporate 
features from common variant studies and rare variant studies 
to achieve reliable results for ranking causal genes that can be 
explained experimentally.

Dataset
The primary objective of our methodology is to 

incorporate learning from multiple domains of data and 
augment the learning from one domain with the learning from 
the other domain. Keeping this in mind we carefully selected 
the datasets accordingly. The datasets that we have leveraged 
for training our algorithm fall broadly into the following 
categories:

1. Experimental genetics data

2. Protein-Protein interaction network

3. Biomedical knowledge graph (Hetionet)

4. Silver standard genesets relevant to Alzheimer’s Disease
(Ground truth set)

5. Geneset to be prioritized

Experimental genetics data
We consolidated experimental genetics data for 

incorporating causal gene evidence relevant to Alzheimer’s 
Disease from four different experimental sources namely 
common variant analysis, rare variant analysis, expression 
analysis and gene knockouts from animal models. The 
features in the experimental genetics data are available for 
each individual gene present in the geneset that we try to rank 
using our algorithm.

Common variant analysis: A common variant by 
definition is a variant whose allele frequency is greater than 
one percent. Common variants are easy to measure and help 

us study complex traits via genome wide association studies 
(GWAS) [6-8]. GWAS typically reports only variant-level 
data and does not provide gene-level mapping for the variant-
level data. Therefore, we built a system to link variants to 
genes. Common variants are common in a population and 
are likely to either have been subjected to selective pressure 
or undergone neutral evolution over an extended period of 
time. GWAS helps us find regions of the genome associated 
with complex traits by testing individual variants across the 
genome.

We study common variants for the following reasons:

• Common variants lie in intergenic regions and are thought
to play regulatory roles in gene function.

• Common variants are easy to measure and help us study
complex traits.

The data obtained from common variant analysis includes
the following set of features for each individual gene in the 
geneset:

● Aggregated gene p-values from GWAS study variants
(calculated by PASCAL).

● Posterior probability for colocalization of eQTL and
GWAS signals for a gene (calculated using coloc).

● Presence/absence of a missense mutation in the gene’s
coding region of proteins.

Rare variant analysis: Rare variants are those whose
allele frequency is less than one percent, are exonic, and 
functionally relevant. These tend to be either novel mutations 
in a population that have not yet been subjected to significant 
selective pressure or older variants kept at lower frequencies 
due to their deleteriousness. [9-14]

We study rare variants for the following reasons:

• They can help identify genes that impact a disease or
phenotype

• For some common diseases, common variants do not
sufficiently explain the genetic basis of disease.

The data obtained from rare variant analysis includes the
following set of features:

• Rare variant p-values obtained from burden test.

• Burden test odds ratio

Expression analysis: We collect expression data for each
gene using expression analysis. Expression analysis falls into 
two categories:

● Baseline Expression from Genotype-Tissue Expression
(GTEx) [15]

● Differential Expression Analysis [16-31]
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o Bulk RNA Sequencing and

o Single-Cell RNA Sequencing (scRNA)

Gene knockouts from animal models: We also
incorporate gene knockout scores obtained from clinical trials 
in our experimental genetics data. Knockouts are collected by 
downregulating the expression of a particular gene or fully 
eliminating it in animal models such as mouse, zebrafish and 
fruit-fly [32-34]. Observing the progression of Alzheimer’s 
Disease by regulating the level of expression of the genes in 
animal models helps us identify if those genes are potentially 
causal in nature.

Protein-Protein interaction network
We consolidate three different networks to build a unified 

protein-protein interaction (PPI) network namely StringDB, 
Bioplex and Immunoglobulin Superfamily (IgSf) [3-5]. 
The consolidated protein-protein interaction network is a 
homogeneous graph that has 20,118 nodes and 1,211,771 
edges. Each node in this network is a unique gene and edges 
between two gene nodes exist if they are involved in coding 
the same protein. The features in the experimental data 
are passed as node features / attributes to the consolidated 
protein-protein interaction network. This is done so that our 
algorithm takes into consideration both the experimental 
data as well as graph connectivity from the protein-protein 
interaction network while generating vector representations / 
embeddings for our input data.

Biomedical knowledge graph
Biomedical knowledge graph is a heterogeneous 

knowledge graph that relates several diverse clinical entities 
such as genes, diseases, signaling pathways, biological 
processes, molecular functions, adverse effects etc. [69]. They 
are constructed by extracting information from literature 
and other expert curated datasets. One such biomedical 
knowledge graph is Hetionet [1, 2]. Hetionet contains 47,031 
nodes of 11 types and 2,250,197 edges of 24 types. We use 
hetionet to generate the gene scores based on the evidence 
available in literature relevant to Alzheimer’s Disease. 
Embeddings/vector representations can be generated for the 
nodes and edges in the knowledge graph using a knowledge 
graph embedding (KGE) model. These embeddings can in 
turn be used downstream to rank the relevant genes based on 
the likelihood of existence of a link between the gene nodes 
and the Alzheimer’s Disease node in the knowledge graph 
(Hetionet).

Silver standard genesets relevant to Alzheimer’s 
Disease:

Due to the absence of any ground truth sets; we curated 
a set of 400 genes relevant to Alzheimer’s Disease that have 
been previously explored as potential drug targets and they 
serve as the semi ground truths for our algorithm. We refer 

to it as the silver standard geneset. These were primarily 
created from four different expert-curated, open-sourced data 
repositories namely:

1. OpenTargets [41]

2. DrugBank [39]

3. ChEMBL [40]

4. Online Mendelian Inheritance in Man (OMIM) Database
[42]

Geneset to be prioritized
We collected a set of 20,000 genes to form a geneset. 

Each gene in this geneset possesses experimental data 
collected from clinical studies and knowledge-based factual 
data collected from biomedical literature. The objective of 
our algorithm is to prioritize/rank all the 20,000 genes in 
this geneset based on the evidence available to determine if 
their regulated expression is causal in nature to developing 
Alzheimer’s Disease.

Methodology
Our objective is to define a scoring function that assigns 

a score for each individual gene based on which we can rank 
all the genes in the geneset. One component of the scoring 
function consumes the features from experimental genetics 
data for each gene along with its relevant connectivity 
information from the consolidated PPI network to yield a 
score 𝑆1 . This score; 𝑆1 could be further utilized to rank all 
the genes in the geneset. The other component of the scoring 
function consumes the nodes and edges from the knowledge 
graph as input to yield a score 𝑆2 for each gene in the geneset. 
Thereafter, we aggregate both these components of the 
scoring function by averaging 𝑆1 and 𝑆2 to generate a single 
set of scores, 𝑆𝑎, for each gene in the geneset as shown in 
equations 1, 2 and 3.

As shown in Figure 1, we adopt a divide and conquer 
approach [70] to design both the components of the scoring 
function. We leverage two different modeling techniques for 
two different modalities of data. We use a graph neural network 
algorithm called Deep Graph Infomax [71] to generate scores 
for all the genes in the geneset using the experimental genetics 
dataset and the protein-protein interaction network and we 
use a knowledge graph embedding model to generate scores 
for the same set of genes in the geneset using the knowledge 
graph (Hetionet). Furthermore; we co-optimize both these 
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algorithms so that the learning outcome from the knowledge 
graph embedding model (Implication of causal genes based 
on evidence in literature) supplements the learning outcome 
from the deep graph infomax algorithm (Implication of 
causal genes based on experimental evidence) and vice 
versa. Therefore, the resultant scoring components S1 and S2 
generated by the deep graph infomax model and the KGE 
model respectively are mutually informative in nature as a 
result of this co-optimization.

Graph Neural Network : The Deep Graph Infomax 
algorithm

The deep graph infomax algorithm is a graph neural 
network algorithm used to generate unsupervised embeddings 
for the nodes in a graph [71]. It uses a graph neural network 
encoder to generate node embeddings for the actual graph and 
a corrupted graph generated from the actual graph. Thereafter 
it distinguishes between the node embeddings derived from 
the true graph and the node embeddings derived from the 
corrupted graph and in the process understands the sensible 
connections possible for a given node.
Generating unsupervised node embeddings for the 
protein-protein interaction network augmented 
with the experimental genetics data passed as node 
features to the network:

Figure 2 shows the architecture of the deep graph infomax 
algorithm that we leverage to produce unsupervised node 

embeddings for the protein-protein interaction (PPI) network 
shown in Figure 3 that is diffused with experimental genetics 
data as its node features.

The Deep Graph Infomax algorithm generates node 
embeddings in an unsupervised manner. We take the PPI 
network 𝐺 and corrupt it by randomly shuffling the node 
features among the gene nodes in the graph to create a 
mutated graph 𝐻. 𝐻 contains the same connections as 𝐺 but 
the node features associated with each individual gene node 
differ in comparison to the node features associated with each 
individual gene node in the true PPI network 𝐺.

We then use an encoder to create vector representations / 
embeddings for the nodes in both the true PPI network 𝐺 as 
well as the mutated PPI network 𝐻. The encoder 𝐸 is a graph 
neural network algorithm that represents latent information 
from the semantic structure / topology of the graph in the form 
of embeddings. We use a GNN Encoder (graph convolutional 
network (GCN) / graph attention network (GAT) / 
GraphSAGE / APPNP) [72-75] to encode the connectivity 
between the nodes along with their respective node features 
in both the true PPI network 𝐺 as well as the mutated PPI 
network 𝐻. We use a readout mechanism 𝑅 to summarize the 
node embeddings from the true PPI network. This is done by 
simply averaging the node embeddings from 𝐺 to create a 
graph embedding vector 𝑀 for 𝐺. A score 𝑆 is assigned to each 
node embedding vector using a discriminator 𝐷 that accepts 
a node embedding vector 𝑌i from either 𝐺 or 𝐻 as input along 
with the summarized graph embedding vector 𝑀. Thereafter, 
the scores are collected and combined in a loss function that 
tries to maximize 𝑆 if 𝑌i is a node embedding vector from 𝐺 
and minimize 𝑆 if 𝑌i is a node embedding vector from 𝐻. Post 
optimization; the discriminator yields scores closer to 1 for 
the node embeddings from the true PPI network 𝐺 and scores 
closer to 0 for the node embeddings from the mutated PPI 
network 𝐻. The loss function to be optimized for generating 
unsupervised node embeddings is shown in equation 4.

    (4)

Figure 1: Divide and conquer strategy to design a scoring function 
that ranks the genes relevant to Alzheimer’s Disease using two 
different domains of data - experimental genetics data incorporated 
into a PPI network and factual/literature data from a biomedical 
knowledge graph.

Figure 2: The architecture diagram of a deep graph infomax 
algorithm used to generate unsupervised embeddings/vector 
representations for the gene nodes and their respective experimental 
genetic features in the protein-protein interaction network.
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Figure 3: A protein-protein interaction network is a graph where each node is a gene and an edge exists between two or more genes if they are 
a part of the coding region of the same protein. The experimental genetics data associated with each gene is passed as the gene’s node feature 
in this protein-protein interaction network.

Figure 4: Hetionet is a knowledge graph that extracts heterogeneous facts from literature relevant to all the genes in the geneset such as 
signaling pathway, biological process, molecular function, cellular component, pharmacologic class etc. and links them together using nodes 
and edges. The knowledge graph thereby contains important prior knowledge that is absent in the experimental genetics data.
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Downstreaming strategy to generate gene scores: 
Once the deep graph infomax algorithm generates node 
embeddings for the gene nodes in the PPI network we obtain 
the node embeddings for both silver standard genes as well 
as non silver standard genes. Next, we want to group the non 
silver standard genes with silver standard genes. This is done 
to identify the closeness/proximity of the non-silver standard 
genes to the silver standard genes in terms of experimental 
evidence. To achieve this we take cosine similarity of the 
embeddings of a non silver standard gene with that of the 
embeddings of every silver standard gene. Then we assign the 
maximum cosine similarity score obtained with a particular 
silver standard gene as the gene score of the non silver 
standard gene [76]. Likewise, we assign a gene score (cosine 
similarity score) to all the genes in the geneset that lie in the 
interval (0,1). This number indicates the closeness between 
a non silver standard gene and a silver standard gene that 
has been historically explored as a potential drug target for 
Alzheimer’s Disease in terms of the experimental features in 
our dataset.

Knowledge graph embedding model
A knowledge graph embedding (KGE) generates 

embeddings / vector representations that capture latent 
properties of the nodes and edges in a graph [77]. These 
embeddings can then be used in downstream machine 
learning tasks such as link prediction [78]. In general, the 
likelihood of existence of a link between two nodes in the 
KG can be predicted by computing the proximity of a head 
node embedding and edge embedding with that of a tail 
node embedding by passing them as inputs to model-specific 
scoring functions as shown in Table 1 and computing a 
plausibility score for the existence of a link between the two 
nodes [79]. This can be repurposed to rank a set of candidate 
tail nodes for a given head node and edge. Therefore, we 
can rank a set of candidate gene nodes and generate gene 
scores for those gene nodes based on their proximity to the 
Alzheimer’s Disease node in the knowledge graph using the 
same link prediction strategy outlined above.

Generating vector representations/ embeddings for 
the entities and relations in Hetionet

A knowledge graph (KG) is a collection of known facts 
represented in the form of a directed labeled heterogeneous 
graph, wherein each node represents an entity and each 
edge represents a relation between the entities. Each fact is 
represented in the form of a triple (head node, relation, tail 
node). For example, the fact that Amyloid β is a signaling 
pathway of Alzheimer’s Disease can be stored in the form 
of a triple as (‘Amyloid β ’, ‘pathway_of’, ‘Alzheimer’s 
Disease’) where Amyloid β and Alzheimer's Disease are the 
nodes / entities and pathway_of is the edge / relation that 
connects them together. The categories or classes of entities 
and relations in the knowledge graph are standardized to 

a closed set. Hetionet is a knowledge graph constructed 
from biomedical literature that relates a diverse set of 
clinical entities that includes genes, diseases, signaling 
pathways, molecular functions, biological processes, cellular 
components, symptoms, adverse events / side effects, 
compounds / drugs etc. [1,2] as shown in Figure 4. It is open-
sourced and has about 2.2M triples. These clinical entities 
are extracted from literature as well as other expert-curated 
sources of structured data and are useful in ranking genes to 
explore them as potential novel drug targets for a particular 
disease.

The other component of our scoring function to rank the 
genes comes from the knowledge graph embedding model 
(KGE). A knowledge graph embedding (KGE) model is an 
algorithm that generates embeddings / vector representations 
of the nodes and edges to capture latent semantic properties 
of the entities and relations in the KG from its structure / 
topology. Knowledge graph embedding models generate 
a given number of negative triples (synthetic triples) for 
every positive triple (true triples) that exists in the KG 
using a negative sampler [80]. This is done to help the KGE 
model distinguish between the nodes that can be connected 
for yielding a plausible triple that can exist in the KG and 
the nodes that upon connection would yield a triple that is 
unlikely to exist in the knowledge graph using a suitable loss 
function. Knowledge graph embedding models are optimized 
using a margin ranking loss function [81, 82]. It is a linear-to-
rank loss that is used for maximum-margin classification in 
pairwise settings to distinguish between positive triples 
T+ and negative triples   T− with the goal being to maximize 
the difference between their respective plausibility scores 
by a good margin λ. The hinge loss is computed using  
equation 5.

       (5)

The node embeddings from a KGE model can be used 
for downstream applications such as node classification, link 
prediction etc.

Downstreaming strategy to generate gene scores: In 
order to rank the genes in the geneset; the goal is to find 
the likelihood of the existence of a link between the gene 
nodes and the Alzheimer’s Disease nodes in the knowledge 
graph using the embeddings generated to represent the nodes 
and edges in the KG. The likelihood is quantified using a 
score that is generated by a scoring function that is specific 
to the KGE model [79]. The scoring function consumes 
embeddings for the head node (Alzheimer’s Disease node) 
and edge (relation) as input and assigns plausibility scores to 
several candidate tail nodes (gene nodes) based on the spatial 
proximity of the candidate gene node (tail) embeddings to 
that of the Alzheimer’s Disease node (head) embedding and 
the edge embedding that connects them. These plausibility 
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scores are further normalized to bring them within the interval 
(0,1) and are used as gene scores from the knowledge graph. 
Scoring functions for various KGE models have been listed in  
Table 1.

For our use case; we leverage RotatE [83] to generate 
the node embeddings for Hetionet over other KGE models. 
The rationale for doing so has been explained in the results 
and discussion section of this paper. The node embeddings 
generated by RotatE on Hetionet are then used downstream 
to rank the gene nodes and assign a gene score for every gene 
in the geneset using the scoring function of RotatE by link 
prediction.

Defining a super epoch: In order to achieve the same 
we need to propagate gene node embeddings from the deep 
graph infomax algorithm and incorporate it in the KGE model 
(forward cycle) and then we need to propagate the gene node 
embeddings from the KGE and incorporate it in the deep 
graph infomax algorithm (backward cycle). The forward 
cycle and backward cycle together constitute a super-epoch.

Forward cycle: The gene node embeddings generated 
by the deep graph infomax algorithm are averaged with 
the gene node embeddings generated by the KGE model 
(RotatE) trained on hetionet. The dimensionality of the node 
embeddings from the deep graph infomax algorithm is much 
lesser than the dimensionality of the node embeddings from 
the KGE. Therefore we take a masked average of the two 
node embeddings and the dimension of the resultant node 
embedding vector is same as the dimension of the node 
embeddings of the RotatE model. Modifying the gene node 
embeddings of the KGE by augmenting it with the node 
embeddings of the deep graph infomax algorithm modifies the 
plausibility scores yielded by the scoring function of RotatE 
while generating link predictions. Therefore we get different 
sets of gene scores for the KGE model upon the completion 
of every forward cycle of a super epoch. The link predictions 
/ ranked geneset produced as a consequence of the same are 

Embedding Model KGE Score Function

Translational 
Distance Models

TransE 𝐹(ℎ, 𝑟, 𝑡) = − || ℎ + 𝑟 − 𝑡 ||

ComplEx 𝐹(ℎ, 𝑟, 𝑡) = 𝑅𝑒(< ℎ, 𝑟, 𝑡 >)

RotatE 𝐹(ℎ, 𝑟, 𝑡) = − || ℎ ◦ 𝑟 − 𝑡 ||

Semantic 
Matcℎing Models

RESCAL
𝑇

𝐹(ℎ, 𝑟, 𝑡) = ℎ 𝑊 𝑡
𝑟

DistMult 𝐹(ℎ, 𝑟, 𝑡) =< ℎ, 𝑟, 𝑡 >

Table 1: Scoring functions of standard knowledge graph embedding 
models given the head entity vector representation h, tail entity 
vector representation t and relation vector representation

Figure 5: Architecture diagram of our co-optimized learner. One super epoch of training for our co-optimized learner consists of one forward 
cycle and one backward cycle. The learning outcome achieved by the deep graph infomax algorithm on the experimental genetics data and 
protein-protein interaction network is transferred to the knowledge graph embedding model during the forward cycle and the learning outcome 
achieved by the knowledge graph embedding model supplements the deep graph infomax algorithm in the backward cycle. Here, encoder X 
can be a Graph convolutional network (GCN), Graph attention network (GAT), GraphSAGE network, Predict and Propagate network (APPNP) 
or any other such graph representation learning algorithm.
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influenced by the experimental genetics data used to generate 
the deep graph infomax gene node embeddings.

Backward cycle: The gene node embeddings generated 
by RotatE need to be incorporated into the deep graph infomax 
algorithm. The dimensionality of the node embeddings 
generated by the RotatE model on hetionet was pretty large 
(1000 dimensions). Therefore, we reduce the dimensionality 
by performing principal component analysis (PCA) [84] and 
select only the top 10% of the most informative dimensions 
in the node embedding vector. Thereafter, we concatenate 
these selected embedding dimensions alongside the 
experimental genetics data as node features in the protein-
protein interaction network and train the next super-epoch 
of our algorithm. The node embeddings generated by the 
deep graph infomax algorithm are now not only influenced 
by the experimental genetics data but also by the biomedical 
literature data contained in the knowledge graph (Hetionet) as 
a result of this co-optimization strategy.

Stopping criterion: A super epoch of co-optimization 
consists of one forward cycle and one backward cycle. We 
utilize an early stopping criterion and let our co-optimization 
algorithm run for a few number of super epochs until the 
unsupervised loss function given in equation 1 does not get 
minimized any further during the forward cycle of the co-
optimization phase. This indicates that the learning outcome 
from the knowledge graph embedding model (Implication 
of causal genes based on evidence in literature) used to 
supplement the deep graph infomax algorithm has reached 
saturation, leaving no room for any further co-optimization.

Mutually informative score: After we complete 
the training of our algorithm; we have two sets of node 
embeddings for every gene in the geneset. One of those two 
sets of node embeddings is generated by the deep graph 
infomax algorithm and the other set of node embeddings is 
generated by the knowledge graph embedding model. We use 
separate downstreaming strategies for the node embeddings 
from the deep graph infomax algorithm and the node 
embeddings from the knowledge graph embedding algorithm 
as described in sections 5.1.2 and 5.2.2 in order to generate 
two components of gene score for every gene in the geneset. 
After generating the two components of gene score for every 
gene, we take an average of those two components for each 
gene to come up with the mutually informative score for each 
gene based on which we sort all the genes in the geneset to 
rank them.

Interpretability of the top ranked genes using 
saliency maps

Apart from generating the ranked geneset for target 
prioritization, we also want to understand which features 
from the experimental genetics data have been implicated by 
the algorithm to come up with the current set of rankings. 

We do this by leveraging the concept of integrated gradients 
in a geometric learning setting. Let us consider a node 𝐺1 in 
a graph. The node embeddings for node 𝐺1 is influenced by 
the node features of the nodes that can be reached from 𝐺1   
within 2 edges. The subnetwork that contains the nodes whose 
features influence the 1 node embeddings of node 𝐺1   is called 
the ego-net of 𝐺1 . Firstly; we start with a baseline / zero graph 
and then progressively add node 𝐺 and other gene nodes 
connected to 𝐺1   along with their respective features and the 
links/edges that connects them together to the baseline graph 
in steps of alpha to create a sequence of graphs leading up to 
the full ego-net of the node 𝐺1 .Additionally, we also mask 
each node feature of 𝐺1 exactly once to observe the influence 
of a specific node feature on the predictions / gene scores. 
We compute the gradient for the graphs generated at each 
step as shown in Figure 6 to measure the relationship between 
changes to a feature and the corresponding changes in the 
model’s predictions / gene scores. Thereafter, a numerical 
approximation is computed by averaging the gradients.

The result of this yields three important metrics to explain 
the gene scores and thereby the ranking of genes in terms 
of the features from the experimental genetics dataset and 
linkage in the PPI network. The three important metrics are:

a) Node feature importance : Change in the predicted gene
score for a gene node when a particular node feature F of
node 𝐺1 is masked.

b) Integrated node importance : The summation of feature
importances for node 𝐺1 for all its node features.

c) Link importance : The change in gene score of 𝐺1 if a
particular link is removed from node 𝐺1 '𝑠 ego-net.

Once we identify the node feature importance, integrated
node importance and link importance for the gene 𝐺1 ; we 
can explain the score and ranking of 𝐺1 assigned by our 
co-optimized model in terms of those three metrics. Such 
a method of axiomatic attribution is known as Integrated 
Gradients [85,86].

Figure 6: Interpretability for the gene score/ranking of a given 
gene G1 is achieved using saliency maps and integrated gradients. 
The nodes and edges neighboring G1 are progressively added to G1. 
The node feature importance, integrated node importance and link 
importance metrics are computed at every step based on the gradient 
change observed at that step upon adding a few nodes and edges from 
G1’s ego-net. The nodes and edges added in the steps corresponding 
to high gradient change are designated more important over other 
nodes and edges in the G1’s ego-net.
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Thereafter, we visualize the ego-net of 𝐺1 using a saliency 
map [87] with appropriate color coding for the gene nodes and 
edges in 𝐺1 '𝑠 ego-net based on their importance in assigning 
the score/ranking for 𝐺 by the co-optimized learner.

Evaluating the performance of our algorithm

We evaluate the gene rankings generated from the 
embeddings of the individual algorithms that take part in 
co-optimization separately as well as collectively. We use 
rank based evaluation metrics to evaluate the gene rankings 
assigned by both the KGE as well as the deep graph infomax 
model.

Calculation of rank based evaluation metrics 
for the gene rankings generated by co-optimized 
embeddings from KGE model

We evaluate the gene rankings generated by the co-
optimized knowledge graph embeddings by computing two 
rank-based evaluation metrics namely Mean rank (MR) and 
Hits@k [43]. For a given triple (h,r,t) where h represents 
the Alzheimer’s Disease node, t represents the genes in the 
full geneset and r represents the relations connecting them 
together; we can generate mean rank and Hits@k for the 
silver standard genes to observe the rankings of the silver 
standard genes in the context of the full geneset. Since silver 
standard genes have been collected from expert curated 
data sources and causal evidence that has implicated their 
relevance to Alzheimer’s Disease, they should be ideally 
ranked higher than the other genes in the full geneset. The 
rank-based evaluation metrics ( Mean Rank and Hits@K ) 
generated for the genes in the silver standard geneset helps 
us to mathematically validate the same. The mean rank (MR) 
and Hits@K metrics can be computed using equations 6 and 
7 for the rankings yielded by a knowledge graph embedding 
model to the genes in the silver standard geneset.

 (6)

 (7)

Calculation of rank based evaluation metrics 
for the gene rankings generated by co-optimized 
embeddings from deep graph infomax model

The strategy that we have adopted for evaluating the gene 
rankings generated by the co-optimized embeddings from 
the deep graph infomax model is observing the mean rank 
of the silver standard genes (ranked purely using the gene 
scores from deep graph infomax algorithm) in the context of 
the fully ranked geneset. We computed the mean rank for the 

silver standard genes in the full geneset using equation 8.

      (8)

The silver standard genes should be ideally ranked higher 
than the remaining genes in the geneset since they have 
causal evidence associating them with Alzheimer’s Disease. 
The mean rank generated by doing this shows the capability 
of the deep graph infomax algorithm trained on experimental 
genetics data and protein-protein interaction network to rank 
the silver standard genes present in the full geneset.

Calculating rank based evaluation metrics for 
the gene ranking generated by averaging gene 
scores from KGE and deep graph infomax 
algorithm

Similar to our strategy for evaluating the gene rankings 
/ scores from individual models, we compute the mean rank 
for the silver standard genes in the fully ranked geneset that 
is sorted by the mutually informative scoring metric i.e. 
average of the gene scores obtained from the KGE model and 
the gene scores obtained from the deep graph infomax model 
for all the genes in the geneset using equations 9 and 10. The 
mean rank for the silver standard genes in the fully ranked 
geneset sorted by the mutually informative scoring metric 
helps us understand if supplementing the gene rankings from 
one domain with the gene rankings from another domain 
improves the mean rank of the silver standard genes in the 
fully ranked geneset.

     (9)

   (10)

Experiment Setup
The knowledge graph embedding models in the following 

experiments were trained on hetionet using Pykeen [88] and 
the Deep graph infomax models were trained on the protein-
protein interaction network using Stellargraph [89] on a high 
performance computing cluster that used a V100 Volta GPU 
with 32 GB of memory.

We conducted two different types of experiments where 
each experiment had three sub experiments within it as 
described below:

1. We evaluated the gene scores for the silver standard genes
in the geneset by averaging the gene score assigned to
a given silver standard gene by a KGE model (RotatE)
and the gene score assigned to the same silver standard
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gene by a deep graph infomax model (with various GNN 
encoders) and generated a mean rank for all the silver 
standard genes in the geneset that is sorted and ranked by 
this average gene score. This experiment merely combines 
the individual scores from two separate models and does 
not co-optimize the gene embeddings during training.

a. We ranked the full geneset using the gene scores
generated by the non co-optimized knowledge graph
embedding model and obtained the mean rank for the
silver standard genes in the context of the fully ranked
geneset.

b. We ranked the full geneset using the gene scores
generated by the non co-optimized deep graph
infomax model and obtained the mean rank for the
silver standard genes in the context of the fully ranked
geneset.

c. We ranked the full geneset using the rankings
generated by averaging the gene scores from the non
co-optimized knowledge graph embedding model and
the non co-optimized deep graph infomax model and
obtained the mean rank for the silver standard genes in
the context of the fully ranked geneset.

2. We evaluated the gene scores for the silver standard genes
in the geneset by averaging the gene score assigned to a
given silver standard gene by a co-optimized KGE model
(RotatE) and the gene score assigned to the same silver
standard gene by a co-optimized deep graph infomax
model (with various GNN encoders) and generated a mean 
rank for all the silver standard genes in the geneset that is
sorted and ranked by this average gene score (mutually
informative score). This experiment uses co-optimized
embeddings from KGE and deep graph infomax models to 
generate the averaged gene score / mutually informative
score.

a. We ranked the full geneset using the gene scores
generated by the co-optimized knowledge graph
embedding model and obtained the mean rank for the
silver standard genes in the context of the fully ranked
geneset.

b. We ranked the full geneset using the gene scores
generated by the co-optimized deep graph infomax
model and obtained the mean rank for the silver
standard genes in the context of the fully ranked
geneset.

c. We ranked the full geneset using the rankings
generated by averaging the gene scores from the co-
optimized knowledge graph embedding model and the
co-optimized deep graph infomax model and obtained
the mean rank for the silver standard genes in the
context of the fully ranked geneset.

Hyperparameter optimization:
Knowledge graph embedding model 
hyperparameters

• Embedding dimensions= [600, 800, 1000, 1200, 1400]

• Number of negative triples per positive triple = [1, 10,
100]

• Margin for margin ranking loss = [1, 4, 7, 10]

• Regularization coefficients = [0.02, 0.06, 0.10]

Deep graph infomax model hyperparameters

• GNN encoder layer sizes = [64, 128, 256]

• Number of GNN encoder layers = [1, 2, 3]

• Number of attention heads = [8, 10, 12] (Only if the GNN
encoder is a GAT)

• Learning rate = [0.001, 0.005, 0.01]

Co-optimization hyperparameters

Number of embedding dimensions from the KGE to be 
concatenated alongside the node features in the PPI network 
for the backward cycle of a super-epoch = [10%, 20%, 30%]

Early Stopping criterion

In order to prevent the overfitting of our co-optimized 
learner we use early stopping to stop the training if the 
unsupervised loss function from the deep graph infomax 
algorithm does not find an even lower minima than the current 
minima after every 20 super-epochs of training.

Patience = 20

Lowest value observed for the validation loss remains the 
same even after 10 super-epochs.

Results and Discussion
Once we generate the co-optimized embeddings for the 

gene nodes we evaluate the gene scores assigned by our 
algorithm using those embeddings on a set of experiments to 
validate the following :

1. Averaging the gene scores from the KGE model and the
gene scores from the deep graph infomax model yields a
new set of gene scores for every gene that helps us rank
the full geneset better.

2. Utilization of co-optimized embeddings during the
process of training our algorithm has performance benefits
over using non co-optimized embeddings from both the
models separately.

Moreover, we need to experimentally check if we are
indeed able to successfully induce a grouping around our 
silver standard genes as the gene scores assigned by our deep 
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graph infomax embeddings leverages the spatial proximity of 
the embeddings of the non silver standard genes with that of 
the silver standard genes in the full geneset.

Result of clustering the co-optimized embeddings 
from deep graph infomax algorithm

The gene scores are assigned to each gene by the deep 
graph infomax algorithm on the basis of the proximity of 
the non-silver standard genes to the silver standard genes. 
Therefore, the gene score that is assigned to each gene by 
the deep graph infomax algorithm is a measure of proximity 
of its experimental genetic feature profile to that of the 
experimental genetic feature profile of a silver-standard 
gene. This creates inherent groups/clusters in the genesets 
that can be visualized by projecting the co-optimized gene 
embeddings to lower order dimensions using T-SNE [90]. 
The T-SNE clusters for all the co-optimized algorithms have 

been shown in Figure 7. Even in as few as two dimensions 
we can observe a clear grouping among the feature profiles of 
the genes in the geneset. This indicates that the embeddings 
of the non-silver standard genes are closely oriented to the 
embeddings of one or more silver standard genes in the latent 
space as represented by our algorithm. The grouping seems 
more so prominent in the case of a RotatE model that is co-
optimized with a deep graph infomax model that uses a GCN 
encoder and a RotatE model that is co-optimized with a deep 
graph infomax model that uses a APPNP encoder as shown 
in Figure 7.

From the T-SNE grouping we can conclude that ranking 
all the genes based on their proximity to the silver standard 
genes helps us to induce an ordering based on the experimental 
similarity of a given gene with another gene that has known 
causal evidence implicating it with Alzheimer’s Disease.

Figure 7: T-SNE clusters for visualizing the gene embeddings generated by four co-optimized gene scoring algorithms 
that use different GNN encoders for the deep graph infomax algorithm (a) RotatE + DGI (GCN) (b) RotatE + DGI (GAT)  
(c) RotatE + DGI( GraphSAGE) (d) RotatE + DGI (APPNP)
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Ablation studies
In order to observe the effect of co-optimization we 
conducted two different experiments :
1. We evaluated the gene scores for the silver standard genes

in the geneset by averaging the gene score assigned to
a given silver standard gene by a KGE model (RotatE)
and the gene score assigned to the same silver standard
gene by a deep graph infomax model (with various GNN
encoders) and generated a mean rank for all the silver
standard genes in the geneset that is sorted and ranked by
this average gene score. This experiment merely combines 
the individual scores from two separate models and does
not co-optimize the gene embeddings during training.

2. We evaluated the gene scores for the silver standard genes
in the geneset by averaging the gene score assigned to a
given silver standard gene by a co-optimized KGE model
(RotatE) and the gene score assigned to the same silver
standard gene by a co-optimized deep graph infomax
model (with various GNN encoders) and generated a mean 
rank for all the silver standard genes in the geneset that is
sorted and ranked by this average gene score (mutually
informative score). This experiment uses co-optimized
embeddings from KGE and deep graph infomax models to 
generate the averaged gene score / mutually informative
score.

In order to verify the performance gain achieved by co-
optimization; the mean rank of the silver standard genes in 
the geneset ranked by the co-optimized models should be 
lower than the mean rank of the silver standard genes in the 
geneset ranked by the non co-optimized models.

Evaluating the gene scores averaged from KGE 
and deep graph infomax algorithm without co-
optimization of the gene embeddings

Firstly, we generated mean rank for the silver standard 
genes using various standard knowledge graph embedding 
models [65,83,91,92] trained on hetionet and selected the 
knowledge graph embedding model with the lowest mean 
rank for the silver standard genes. Then we generated mean 
rank for the silver standard genes using the deep graph 
infomax algorithm trained purely on the protein-protein 
interaction network and the experimental genetics data 
that is incorporated as node features in the protein-protein 
interaction network. We combined the separate sets of gene 
scores from both these models by taking an average of the 
gene scores corresponding to each gene and then computed 
the mean rank for the silver standard genes in the geneset 
that is ranked/sorted by these average gene scores. It is 
important to note that the two models here score the genes 
independently and their respective gene embeddings are not 
co-optimized. Figure 8 showcases the mean rank of silver 

Figure 8: Plots showing the mean rank of the silver standard genes in the fully ranked geneset by non co-optimized KGE and deep graph 
infomax algorithms (a) Mean rank for silver standard genes from different KGE models (b) Mean rank for silver standard genes from non 
co-optimized deep graph infomax algorithm using different GNN encoders (c) Mean rank for silver standard genes whose gene scores are 
generated by averaging gene scores from KGE and deep graph infomax algorithm. (d) Mean rank for silver standard genes from RotatE, mean 
rank for silver standard genes from non co-optimized deep graph infomax algorithm and mean rank for silver standard genes whose gene scores 
are generated by averaging gene scores from KGE and deep graph infomax algorithm.
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standard genes ranked by the KGE algorithm as well as the 
mean rank of silver standard genes ranked by the deep graph 
infomax algorithm in the absence of co-optimization.

Ablation studies
In order to observe the effect of co-optimization we 

conducted two different experiments :

1. We evaluated the gene scores for the silver standard genes
in the geneset by averaging the gene score assigned to
a given silver standard gene by a KGE model (RotatE)
and the gene score assigned to the same silver standard
gene by a deep graph infomax model (with various GNN
encoders) and generated a mean rank for all the silver
standard genes in the geneset that is sorted and ranked by
this average gene score. This experiment merely combines 
the individual scores from two separate models and does
not co-optimize the gene embeddings during training.

2. We evaluated the gene scores for the silver standard genes
in the geneset by averaging the gene score assigned to a
given silver standard gene by a co-optimized KGE model
(RotatE) and the gene score assigned to the same silver
standard gene by a co-optimized deep graph infomax
model (with various GNN encoders) and generated a mean 
rank for all the silver standard genes in the geneset that is
sorted and ranked by this average gene score (mutually
informative score). This experiment uses co-optimized
embeddings from KGE and deep graph infomax models to 
generate the averaged gene score / mutually informative
score.

In order to verify the performance gain achieved by co-
optimization; the mean rank of the silver standard genes in 
the geneset ranked by the co-optimized models should be 
lower than the mean rank of the silver standard genes in the 
geneset ranked by the non co-optimized models.

Evaluating the gene scores averaged from KGE 
and deep graph infomax algorithm without co-
optimization of the gene embeddings

Firstly, we generated mean rank for the silver standard 
genes using various standard knowledge graph embedding 
models [65,83,91,92] trained on hetionet and selected the 
knowledge graph embedding model with the lowest mean 
rank for the silver standard genes. Then we generated mean 
rank for the silver standard genes using the deep graph 
infomax algorithm trained purely on the protein-protein 
interaction network and the experimental genetics data 
that is incorporated as node features in the protein-protein 
interaction network. We combined the separate sets of gene 
scores from both these models by taking an average of the 
gene scores corresponding to each gene and then computed 
the mean rank for the silver standard genes in the geneset 

that is ranked/sorted by these average gene scores. It is 
important to note that the two models here score the genes 
independently and their respective gene embeddings are not 
co-optimized. Figure 8 showcases the mean rank of silver 
standard genes ranked by the KGE algorithm as well as the 
mean rank of silver standard genes ranked by the deep graph 
infomax algorithm in the absence of co-optimization.

From Table 2, we observe that RotatE has the lowest mean 
rank and highest Hits@k for the silver standard genes in the 
fully ranked geneset among other standard KGE models. 
Therefore, we consider the gene scores derived from RotatE 
over the other KGE models. Likewise, using a GraphSAGE 
encoder for the deep graph infomax algorithm yields the 
lowest mean rank for the silver standard genes in the fully 
ranked geneset as shown in Table 3.

Ranking the silver standard genes using the average of the 
gene scores from RotatE and deep graph infomax algorithm 
boosts the mean rank of the silver standard genes in the 
context of the fully ranked geneset as shown in Table 4. 
The aggregated gene score generated by averaging the gene 
scores from RotatE and GraphSAGE yielded the lowest mean 
rank for the silver standard genes amongst the other models 
shown in Table 4.

MR Hits@1 Hits@10

TransE 668.2 0.033 0.26

RotatE 416.2 0.062 0.33
ComplEx 4208.6 0.010 0.11

DistMult 5094.7 0.012 0.092

Table 2: Rank-based evaluation metrics were computed for silver 
standard genes in the geneset that were ranked using standard 
knowledge graph embedding models.

Non co-optimized Deep Graph Infomax MR
GCN 455.24

GAT 436.62

GraphSAGE 380.52
APPNP 406.44

Table 3: Mean rank for the silver standard genes were computed 
using different encoders in the deep graph infomax algorithm

Averaging gene scores without co-optimization MR
RotatE 416.2

RotatE + GCN 440.34

RotatE + GAT 422.4

RotatE + GraphSAGE 368.12
RotatE + APPNP 392.32

Table 4: Mean rank for silver standard genes whose gene scores 
were generated by averaging the gene scores from KGE and deep 
graph infomax algorithms.
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Evaluating the gene scores averaged from KGE 
and deep graph infomax algorithm with co-
optimization of the gene embeddings

We ranked the full geneset using the rankings generated by 
averaging the gene scores from the co-optimized knowledge 
graph embedding model and the co-optimized deep graph 
infomax model and obtained the mean rank for the silver 
standard genes in the context of the fully ranked geneset. The 
purpose of conducting this experiment was to observe the 
impact on rank based evaluation metrics in the presence and 
absence of co-optimization. Figure 9 showcases the effect on 
the mean rank of silver standard genes for both KGE as well 
as the deep graph infomax algorithm prior to co-optimization 
and post co-optimization.

We generated mean rank for the silver standard genes 
using RotatE after supplementing it with node embeddings 
from the deep graph infomax algorithm through co-
optimization. The rank based evaluation metrics (Mean rank 
and Hits@k) showed significant improvement for RotatE post 
co-optimization when compared to the rank based evaluation 
metrics observed in the absence of co-optimization as shown 

in Table 2 and Table 5. Likewise, the mean rank of silver 
standard genes in the geneset ranked by the co-optimized 
deep graph infomax algorithm shown in Table 6 reduced in 
comparison to the mean rank of silver standard genes in the 
geneset ranked by the deep graph infomax algorithm in the 
absence of co-optimization as shown in Table 3. This indicated 
that both the KGE algorithm and the deep graph infomax 
algorithm benefitted from the co-optimization procedure as 
validated by the improvement observed in the mean rank of the 
silver standard genes in the fully ranked geneset.

Similar to the boost in mean rank observed when ranking 
the silver standard genes using the average of the gene scores 
from non co-optimized RotatE and deep graph infomax 
algorithms in Table 4, ranking the silver standard genes using 
the average of the gene scores from co-optimized RotatE and 
deep graph infomax algorithms also boosts the mean rank of 
the silver standard genes in the context of the fully ranked 
geneset as shown in Table 7. From Table 4 and Table 7 it is 
evident that averaging the gene scores from the deep graph 
infomax model and the knowledge graph embedding model 
further improves the mean rank of the silver standard genes 
in the fully ranked geneset.

Figure 9: Plots showing the mean rank of the silver standard genes in the fully ranked geneset by co-optimized KGE and deep graph infomax 
algorithms (a) Mean rank for silver standard genes from different KGE models prior to co-optimization (b) Mean rank for silver standard genes 
from the deep graph infomax algorithm using different GNN encoders prior to co-optimization (c) Mean rank for silver standard genes whose 
gene scores are generated by the deep graph infomax algorithm post co-optimization with RotatE. (d) Mean rank for silver standard genes from 
co-optimized RotatE, mean rank for silver standard genes from deep graph infomax algorithm prior to co-optimization and mean rank for silver 
standard genes whose gene scores are generated by the deep graph infomax algorithm post co-optimization with RotatE
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Figure 10: Comparison of the mean ranks for the silver standard genes with and without co-optimization. (a) Mean rank for the silver standard 
genes ranked by the non co-optimized KGE and deep graph infomax algorithm. (b) Mean rank for the silver standard genes ranked by the co-
optimized KGE and deep graph infomax algorithm.

rank of the silver standard genes and furthermore averaging 
the gene scores from the co-optimized models and ranking 
the geneset based on the average score yields the best mean 
rank for the silver standard genes in the geneset.
Explaining the gene rankings generated by our 
algorithm

In order to examine the most relevant features of the 
experimental data that are responsible for the implication of a 
given gene as being causal to AD and thereby getting ranked 
at the top of the prioritized geneset by our co-optimized 
model;   some of the top ranked silver standard genes by 
our best performing co-optimized algorithm (RotatE + Deep 
Graph Infomax with a GraphSAGE encoder) have been 
considered below:

1. PDGFRB (Platelet derived growth factor receptor beta)
2. CYBB (Cytochrome b-245 beta chain)
3. KIF5A (Kinesin Family Member 5A)
4. VDR (Vitamin D Receptor)
5. ARAF ( A-Raf proto-oncogene)
6. APOE (Apolipoprotein E)

As shown in Figure 11, we utilize saliency maps to
visualize the node feature importance, integrated node 
importance and link importance in a given gene’s ego-net. 
The interpretability metrics such as node feature importance, 
integrated node importance andlink importance are computed 
using integrated gradients by fitting a GNN model that 
uses the gene scores as the labels for the respective nodes 
in the protein-protein interaction network. Let us consider 
the top 6 ranked silver standard genes to examine the node 
feature importance given to the experimental genetic node 
features corresponding to the genes, node importance given 
to other connected genes and the link importance given to 
the edge connecting the genes together in the protein-protein 
interaction network.

MR Hits@1 Hits@10

RotatE 374.6 0.092 0.36

Table 5: Rank-based evaluation metrics were computed for silver 
standard genes in the geneset that was ranked using the co-optimized 
RotatE model.

Co-optimized Deep Graph Infomax MR
GCN 432.82

GAT 408.36

GraphSAGE 355.64
APPNP 380.46

Table 6: Mean rank for silver standard genes whose gene scores 
were generated by the deep graph infomax algorithm post co-
optimization with RotatE.

Averaging gene scores post  
co-optimization MR

RotatE 374.60

RotatE + GCN 412.35

RotatE + GAT 400.58

RotatE + GraphSAGE 346.81
RotatE + APPNP 370.21

Table 7: Mean rank for silver standard genes whose gene scores 
were generated by averaging the gene scores from co-optimized 
KGE and deep graph infomax algorithms.

Comparison between combining gene scores 
from RotatE and Deep graph infomax models 
in the presence and absence of co-optimization:

By juxtaposing the mean rank plots in the presence and 
absence of co-optimization as shown in Figure 10, it is evident 
that the effect of co-optimizing the node embeddings from 
the deep graph infomax algorithm and the RotatE algorithm 
(knowledge graph embedding algorithm) improves the mean 
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Figure 11: Saliency maps that showcase the important genes and protein-protein interactions that impact the gene score assigned to each of the 
top ranked silver standard gene by our algorithm (a) PDGFRB (b) CYBB (c) KIF5A (d) VDR (e) ARAF and (f) APOE. The red colored nodes 
and edges indicate higher importance in determining the gene score of the target silver standard gene and the blue colored nodes and edges 
indicate lower importance in determining the gene score of the target silver standard gene. A bigger sized node in the saliency map has more 
impact on the gene score of the target silver standard gene than a smaller sized node. Diamond shaped nodes have greater impact on the gene 
score of target silver standard gene than circular nodes.
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PDGFRB (Platelet derived growth factor receptor 
beta)
Node feature importance :

1. Risk of developing Alzheimer’s Disease based on its
prevalence in family history (Common variant analysis
feature)

2. Differential gene expression of PDGFRB for multiple cell
types (microglia, astrocyte and neuron) in a transgenic
mouse model of Alzheimer's Disease (AD) where the mice
were sacrificed after 13 months when amyloid pathology
and microgliosis became pervasive. (Expression analysis
feature)

3. Differential gene expression of PDGFRB for choroid
plexus cells in a triple transgenic mouse model of
Alzheimer’s Disease (AD) measured using single cell
RNA sequencing from tissue samples of the hippocampus. 
It identifies the transcriptional response associated with
amyloid and tau pathology in choroid plexus cells.
(Expression analysis feature)

4. Differential gene expression of PDGFRB in the brain
tissue microglia from the prefrontal cortex collected using
single nucleus RNA sequencing. (Expression analysis
feature)

5. Presence of rare variants in PDGFRB that can alter the
age of onset of Alzheimer’s Disease (AD) detected using
Whole Exome Sequencing (WES) and gene burden test.
(Rare variant analysis feature)

Integrated node importance : 

PDGFRB, TBC1D17, PGK1, PREP, PLSCR1, THAP12, 
CLN8, SAAL1, DUSP13, TMEM9

Link importance :

● PDGFA, GABARAP

● PDGFRB, HIP1

● PDGFRB, PTPRS

● PDGFRB, SH3KBP1

● HIP1, ACTC1

Signaling Pathway activation :

• Apoptotic Pathways in Synovial Fibroblasts

• GPCR Pathway

• ERK Signaling

• PI3K/AKT Signaling

Molecular function : Developmental protein, Receptor,
Transferase, Tyrosine-protein Kinase Biological process : 
Chemotaxis

CYBB (Cytochrome b-245 beta chain)
Node feature importance:

1. Differential gene expression of CYBB for endothelial
cells in a triple transgenic mouse model of Alzheimer’s
Disease (AD) measured using single cell RNA sequencing 
from tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and
tau pathology in endothelial cells. (Expression analysis
feature)

2. Differential gene expression of CYBB for excitatory
neurons in a triple transgenic mouse model of Alzheimer’s 
Disease (AD) measured using single cell RNA sequencing 
from tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and tau
pathology in excitatory neurons. (Expression analysis
feature)

3. Differential gene expression of CYBB for astrocytes in
Alzheimer’s Disease (AD) patients measured using sorted
cell RNA sequencing from tissue samples of the superior
frontal gyrus in the frontal cortex. (Expression analysis
feature)

4. Differential gene expression of TREM2 gene in microglia
response to amyloid-beta deposition in an Alzheimer's
Disease (AD) mouse model named 5XFAD. (Expression
analysis feature)

5. Differential gene expression of CYBB in the
oligodendrocyte precursor cells from the prefrontal
cortex collected using single nucleus RNA sequencing.
(Expression analysis feature)

Integrated node importance:

PHACTR2, ARL5A, CYBB, ARHGDIA, KHDRBS1, 
PAK5, RNF19A, DAAM2, NCKAP1, ACTR5

Link importance:

● CYBC1, P2RX1

● CYBB, GNG8

● CYBC1, CD79B

● CYBB, SOD1

● CYBC1, AQP10

Signaling Pathway activation :

● Signaling by Rho GTPases

● Innate Immune System

● Class I MHC mediated antigen processing

● Antigen processing-Cross presentation

Molecular function : Ion channel, Oxidoreductase,
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Voltage-gated channel Biological process : Electron and Ion 
transport

KIF5A (Kinesin Family Member 5A)
Node feature importance:

1. Differential gene expression of KIF5A in oligodendrocytes
from the prefrontal cortex collected using single nucleus
RNA sequencing. (Expression analysis feature)

2. Differential gene expression of TREM2 gene in microglia
response to amyloid-beta deposition in an Alzheimer's
Disease (AD) mouse model named 5XFAD. (Expression
analysis feature)

3. Differential gene expression of KIF5A for astrocytes in
Alzheimer’s Disease (AD) patients measured using sorted
cell RNA sequencing from tissue samples of the superior
frontal gyrus in the frontal cortex. (Expression analysis
feature)

4. Differential gene expression of KIF5A for excitatory
neurons in a triple transgenic mouse model of Alzheimer’s 
Disease (AD) measured using single cell RNA sequencing 
from tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and tau
pathology in excitatory neurons. (Expression analysis
feature)

5. Differential gene expression of KIF5A for astrocytes in
a triple transgenic mouse model of Alzheimer’s Disease
(AD) measured using single cell RNA sequencing from
tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and tau
pathology in astrocytes. (Expression analysis feature)

Integrated node importance:

PGK1, PHACTR2, PREP, ASPN, KIFC1, ARL5A, 
TMEM9, ERMP1, PDE3A, NME7

Link importance:
● PTDSS2, PTDSS2

● PFN4, ACTC1

● KIF5A, DYNLL2

● NPEPPS, UBA52

● KIF5A, TRAK2

Signaling Pathway activation :

● Golgi-to-ER retrograde transport

● Signaling by Rho GTPases

● Vesicle-mediated transport

● Class I MHC mediated antigen processing

Molecular function : Motor Protein

Biological process : Anterograde axonal protein 
transport, Chemical synaptic transmission and Microtubule-
based movement

VDR (Vitamin D Receptor)
Node feature importance

1. Differential gene expression of VDR for choroid plexus
cells in a triple transgenic mouse model of Alzheimer’s
Disease (AD) measured using single cell RNA sequencing 
from tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and tau
pathology in choroid plexus cells. (Expression analysis
feature)

2. Differential gene expression of VDR in oligodendrocytes
from the prefrontal cortex collected using single nucleus
RNA sequencing. (Expression analysis feature)

3. Differential gene expression of TREM2 gene in microglia
response to amyloid-beta deposition in an Alzheimer's
Disease (AD) mouse model named 5XFAD. (Expression
analysis feature)

4. Differential gene expression of VDR for Cajal-Retzius
cells in a triple transgenic mouse model of Alzheimer’s
Disease (AD) measured using single cell RNA sequencing 
from tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and tau
pathology in Cajal-Retzius cells. (Expression analysis
feature)

5. Differential gene expression of VDR for astrocytes in
Alzheimer’s Disease (AD) patients measured using sorted
cell RNA sequencing from tissue samples of the superior
frontal gyrus in the frontal cortex. (Expression analysis
feature)

Integrated node importance:

PDGFRB, PGK1, ZBTB44, FH, PLSCR1, DPEP1, STX6, 
UBXN10, LMNA, AP1S2

Link imp.ortance:

● VDR, FA2H

● VDR, IL12B

● IL12B, IL23R

● IL12B, IL23A

● CCDC78, VDR

Signaling Pathway activation :

● Gene transcription

● Nuclear receptor transcription

● Metabolism of proteins

● Metabolism of steroids
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Molecular function : DNA-binding, Receptor

Biological process : Transcription, Transcription 
regulation ARAF (A-Raf proto-oncogene)

Node feature importance:

1. Differential gene expression of TREM2 gene in microglia
response to amyloid-beta deposition in an Alzheimer's
Disease (AD) mouse model named 5XFAD. (Expression
analysis feature)

2. Differential gene expression of ARAF for astrocytes in
a triple transgenic mouse model of Alzheimer’s Disease
(AD) measured using single cell RNA sequencing from
tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and tau
pathology in astrocytes. (Expression analysis feature)

3. Risk of developing Alzheimer’s Disease based on
evidence from UK Biobank GWAS catalog. (common
variant analysis feature)

4. Differential gene expression of ARAF in microglial cells
from the prefrontal cortex collected using single nucleus
RNA sequencing. (Expression analysis feature)

5. Differential gene expression of ARAF for microglia
in a transgenic mouse model of tauopathy. (Expression
analysis feature)

Integrated node importance:

PDGFRB, PGK1, ZBTB44, PHACTR2, PLSCR1, 
DPEP1, ASPN, TMEM9, FAM153B, PDE3A

Link importance:

● MAP2K2, LSM1

● MAP2K1, LSM1

● GNA12, GNG5

● ARAF, LNX1

● GNL3, UBA52

Signaling Pathway activation :

● Prolactin signaling

● IL-9 signaling

● CNTF signaling

● GPCR signaling

Molecular function : Kinase, Serine/threonine-protein
kinase, Transferase

Biological process : MAPK cascade, protein 
phosphorylation and modification, regulation of proteasomal 
ubiquitin dependent protein catabolic process, regulation of 
TOR signaling

APOE (Apolipoprotein E)
Node feature importance:

1. Differential gene expression of APOE for microglia in
a transgenic mouse model of tauopathy. (Expression
analysis feature)

2. Differential gene expression of APOE for endothelial
cells in a triple transgenic mouse model of Alzheimer’s
Disease (AD) measured using single cell RNA sequencing 
from tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and
tau pathology in endothelial cells. (Expression analysis
feature)

3. Differential gene expression of APOE in the
oligodendrocyte precursor cells from the prefrontal
cortex collected using single nucleus RNA sequencing.
(Expression analysis feature)

4. Presence of rare variants in APOE that can alter the risk
for Alzheimer’s Disease (AD) detected using Whole
Exome Sequencing (WES) and gene burden test. (Rare
variant analysis feature)

5. Differential gene expression of APOE for oligodendrocytes
in a triple transgenic mouse model of Alzheimer’s Disease 
(AD) measured using single cell RNA sequencing from
tissue samples of the hippocampus. It identifies the
transcriptional response associated with amyloid and tau
pathology in oligodendrocytes. (Expression analysis feature)

Integrated node importance:

VAC14, ADGRL3, THAP12, SLC25A25, KIFC1, ARL5A, 
TMCC2, HERPUD1, PLK4, NECTIN1

Link importance:

● APOC2, TTPA

● APOE, APOC2

● APOC2, APOA2

● APOA2, APOC2

● APOE, APOA1

Signaling Pathway activation :

● Plasma lipoprotein assembly, remodeling, and clearance

● Statin inhibition of cholesterol production

● Visual phototransduction

● Binding of ligands by scavenger receptors

Molecular function : Heparin binding

Biological process : Cholesterol metabolism, Host-
virus interaction, Lipid metabolism, Lipid transport, Steroid 
metabolism, Sterol metabolism, Transport



Prabhakar V and Liu K., Arch Clin Biomed Res 2023 
DOI:10.26502/acbr.50170342

Citation: Vignesh Prabhakar, Kai Liu. Unsupervised Co-Optimization of A Graph Neural Network and A Knowledge Graph Embedding Model to 
Prioritize Causal Genes for Alzheimer’s Disease. Archives of Clinical and Biomedical Research. 7 (2023): 275-300.

Volume 7 • Issue 3 297 

Conclusion
Co-optimizing graph neural network embeddings 

with knowledge graph embeddings is a novel approach of 
incorporating prior knowledge from a large knowledge graph 
in the training procedure of a graph neural network algorithm 
on another domain of graph data with the goal being to 
supplement the learning outcome from the graph neural 
network with the prior knowledge from the knowledge graph 
and vice versa. For our use case to prioritize drug targets for 
Alzheimer’s Disease; supplementing the learning outcome 
from experimental data with that of the learning outcome 
from literature and viceversa proved to be an effective 
method in identifying causal genes relevant to Alzheimer’s 
Disease whose expression levels can be regulated to explore 
potential drug targets for treating Alzheimer’s Disease. The 
effectiveness of our strategy is validated by the low mean 
rank achieved for the silver standard genes in the context of 
the fully ranked geneset. Since the silver standard genes are 
known to be causal in nature; a low mean rank achieved for 
the silver standard genes when ranking all the genes in the 
geneset essentially entails that our algorithm is effective in 
prioritizing the causal genes for Alzheimer’s Disease based 
on the experimental data and literature evidence available for 
the same.
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