Abstracting and Indexing

  • Google Scholar
  • CrossRef
  • WorldCat
  • ResearchGate
  • Academic Keys
  • DRJI
  • Microsoft Academic
  • Academia.edu
  • OpenAIRE

Use of Nanomaterials for the Immobilization of Industrially Important Enzymes

Author(s): Ayesha Fazal Nawaz, Samra Zafar, Syeda Laraib Fatim, Komal Shahzadi, Zarish Fatima, Iqra Siddique

Immobilization enables enzymes to be held in place so that they can be easily separated from the product when needed and can be used again. Conventional methods of immobilization include adsorption, encapsulation, entrapment, cross-linking and covalent binding. However, conventional methods have several drawbacks including reduced stability, loss of biomolecules, less enzyme loading or activity and limited diffusion. The aim of this study is the evaluation of importance of nanomaterials for the immobilization of industrially important enzymes. Nano materials are now in trend for the immobilization of different enzymes due to their physichemical properties. Gold nanoparticles, silver nanoparticles, nano diamonds, graphene, carbon nanotubes and others are used for immobilization. Among covalent and non-covalent immobilization of enzymes involving both single and multiwalled carbon nanotubes, non-covalent immobilization with functionalized carbon nanotubes is superior. Therefore, enzymes immobilized with nanomaterials possess greater stability, retention of catalytic activity and reusability of enzymes.

© 2016-2022, Copyrights Fortune Journals. All Rights Reserved!