Abstracting and Indexing

  • PubMed NLM
  • Chemical Abstract Service (CAS)
  • Publons
  • Index Medicus (IMSEAR)
  • Google Scholar
  • ResearchGate
  • Genamics
  • Academic Keys
  • Enugu State University of Science and Technology
  • DRJI
  • Microsoft Academic
  • Academia.edu
  • OpenAIRE
  • Semantic Scholar

MicroFLOQ® Direct: A Helpful Tool for the Coronavirus SARS-Cov-2 Rapid Detection without RNA Purification

Author(s): Mathilde Recipon, Amaury Pussiau, Sébastien Follot, Noussair Latifa, Jean-Louis Herrmann, Martin Rottman, Olivier Gallet, Sabrina Kellouche, Johanne Leroy-Dudal, Georges Pierrini, Franck Mar

In the context of SARS-Cov-2 virus disease (Covid19) pandemic, molecular diagnostic tools were rapidly developed as there are fundamental for a rapid detection of infected people. In this context, and in order to optimize the manipulations and reduce the time to get results, we report the successful use of a sampling tool for Covid19 diagnosis named microFLOQ® Direct (MFD). Hundred upper respiratory specimens sampled from patients with potential Covid19 were evaluated using MFD, and results were compared to the results obtained by standard sampling procedure using dry swabs and physiologic serum as the transport medium. MFD results compared to results issued from the classic RNA purification and amplification steps from transport medium showed that MFD can be directly used for RT-PCR analysis without the preliminary inactivation and extraction steps. So, MFD could limit handling errors compared to the different treatment steps with dry swabs and transport medium, and therefore the risk of operator contamination, and could simplify the analytical process and enables to get results in less than 2 hours. We expect that the proposed detection kit using MFD sampling represents a relevant and operational screening tool in the field of molecular detection of viral and bacterial diseases during pandemic or for public health or agro-veterinary purposes.

Journal Statistics

Impact Factor: * 3.0

CiteScore: 2.9

Acceptance Rate: 11.01%

Time to first decision: 10.4 days

Time from article received to acceptance: 2-3 weeks

Discover More: Recent Articles

Grant Support Articles

    Editor In Chief

    Jean-Marie Exbrayat

  • General Biology-Reproduction and Comparative Development,
    Lyon Catholic University (UCLy),
    Ecole Pratique des Hautes Etudes,
    Lyon, France

© 2016-2024, Copyrights Fortune Journals. All Rights Reserved!