Abstracting and Indexing

  • Google Scholar
  • CrossRef
  • WorldCat
  • ResearchGate
  • Academic Keys
  • DRJI
  • Microsoft Academic
  • Academia.edu
  • OpenAIRE

D-Neuron, Ligand Neuron of Trace Amine-Associated Receptor 1 (TAAR1): Key of Novel Non-D2 Receptor-Binding Antipsychotics

Author(s): Keiko Ikemoto

The latest psychopharmacological study showed effectiveness of a novel non-D2-receptor-binding drug, SEP-363856, for the treatment of schizophrenia. The compound is trace amine-associated receptor 1 (TAAR1) full agonist and also 5-hydroxytryptamin 1A (5-HT 1A) receptor partial agonist. I found the TAAR1 ligand neuron, D-neuron, in the striatum and nucleus accumbens (Acc), a neuroleptic acting site of human brains, though failed to find in the homologous area of monkey brains. To study human D-neuron functions, total of 154 post-mortem brains from Brain banks of Shiga University of Medical Science et al. and a modified immunohistochemical method using high qualified antibodies against monoamine-related substances, were used. The number of D-neurons in the caudate nucleus, putamen, and Acc was reduced in post-mortem brains with schizophrenia. The reduction was significant (p<0.05) in Acc. I proposed “D-cell hypothesis of schizophrenia”, that NSC dysfunction-based D-neuron reduction is cellular and molecular basis of mesolimbic dopamine (DA) hyperactivity, progressive pathophysiology and prospectiveness of TAAR1 medicinal chemistry, emphasizing importance of D-neuron.

Journal Statistics

Impact Factor: * 5.3

CiteScore: 2.9

Acceptance Rate: 11.01%

Time to first decision: 10.4 days

Time from article received to acceptance: 2-3 weeks

Discover More: Recent Articles

Grant Support Articles

© 2016-2024, Copyrights Fortune Journals. All Rights Reserved!